首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Preclinical and clinical studies have demonstrated that stem cell transplantation can improve the left ventricular (LV) contractile performance, yet the underlying mechanisms remain unknown. We examined whether mesenchymal stem cell (MSC) transplantation-induced beneficial effects are secondary to paracrine-associated improvements in LV contractile performance, wall stress, and myocardial bioenergetics in hearts with postinfarction LV remodeling. Myocardial contractile function and bioenergetics were compared 4 wk after acute myocardial infarction in normal pigs (n = 6), untreated pigs with myocardial infarction (MI group; n = 6), and pigs receiving autologous MSC transplantation (MI + MSC group; n = 5). A distal occlusion of the left anterior descending coronary artery instigated significant myocardial hypertrophy. Ejection fraction decreased from 55.3 +/- 3.1% (normal) to 30.4 +/- 2.3% (MI group; P < 0.01) and to 45.4 +/- 3.1% (MI + MSC group; P < 0.01 vs. MI). Hearts in the MI group developed severe contractile dyskinesis in the infarct zone and border zone (BZ). MSC transplantation significantly improved contractile performance from dyskinesis to active contraction (P < 0.01 vs. MI). BZ systolic wall stress was severely increased in MI hearts but significantly improved after MSC transplantation (P < 0.01 vs. MI). The BZ demonstrated profound bioenergetic abnormalities in MI pigs; this was significantly improved after MSC transplantation (P < 0.01 vs. MI). Patchy spared myocytes were found in the infarct zone of hearts receiving MSC transplantation but not in control hearts. These data demonstrate that MSC transplantation into the BZ causes significant improvements in myocardial contractile performance and reduction in wall stress, which ultimately results in significant bioenergetic improvements. Low cell engraftment indicates that MSCs did not provide a structural contribution to the damaged heart and that the observed beneficial effects likely resulted from paracrine repair mechanisms.  相似文献   

2.
After myocardial infarction (MI), the border zone expands chronically, causing ventricular dilatation and congestive heart failure (CHF). In an ovine model (n = 4) of anteroapical MI that results in CHF, contrast echocardiography was used to image short-axis left ventricular (LV) cross sections and identify border zone myocardium before and after coronary artery ligation. In the border zone at end systole, the LV endocardial curvature (K) decreased from 0.86 +/- 0.33 cm(-1) at baseline to 0.35 +/- 0.19 cm(-1) at 1 h (P < 0.05), corresponding to a mean decrease of 55%. Also in the border zone, the wall thickness (h) decreased from 1.14 +/- 0.26 cm at baseline to 1.01 +/- 0.25 cm at 1 h (P < 0.05), corresponding to a mean decrease of 11%. By Laplace's law, wall stress is inversely proportional to the product K. h. Therefore, a 55% decrease in K results in a 122% increase in circumferential stress; a 11% decrease in h results in a 12% increase in circumferential stress. These findings indicate that after MI, geometric changes cause increased dynamic wall stress, which likely contributes to border zone expansion and remodeling.  相似文献   

3.
Our aim was to establish parameters describing systolic and diastolic function in mice after myocardial infarction (MI) that distinguish MI with pulmonary congestion from MI without congestion. Echocardiography, left ventricular (LV) catheterization, and infarct size measurements were performed on days 3, 5, 7, and 14 after ligation of the left coronary artery in C57BL/6 mice. Sham-operated mice were used as controls (Sham). MI mice with lung weight normalized to tibial length >125% of the average in the corresponding Sham group were considered to have pulmonary congestion (MIchf). MI mice with a smaller increase were called MI nonfailing (MInf). An infarct >40% of total LV circumference measured in two-dimensional long axis distinguished MIchf from MInf on both an average and an individual basis. Mean maximum rate of rise of LV pressure, LV fractional shortening, and posterior wall shortening velocity were significantly lower in MIchf compared with Sham at all time points and to MInf at 7 days. The diastolic parameters mitral flow deceleration velocity, LV end-diastolic pressure, and maximum rate of decline in LV pressure (LVdP/dtmin) discriminated the MIchf groups from Sham at all time points. Mitral flow deceleration velocity and LVdP/dtmin separated MIchf from MInf at 7 days. In addition to distinguishing all the groups on an average basis, left atrial diameter distinguished all MIchf animals from Sham and MInf. In conclusion, significantly increased left atrial diameter and infarct size >40% of total LV circumference may serve as major criteria for heart failure with pulmonary congestion after MI in mice.  相似文献   

4.
Increased glucose utilization and regional differences in contractile function are well-known alterations of the failing heart and play an important pathophysiological role. We tested whether, similar to functional derangement, changes in glucose uptake develop following a regional pattern. Heart failure was induced in 13 chronically instrumented minipigs by pacing the left ventricular (LV) free wall at 180 beats/min for 3 wk. Regional changes in contractile function and stress were assessed by magnetic resonance imaging, whereas regional flow and glucose uptake were measured by positron emission tomography utilizing, respectively, the radiotracers [(13)N]ammonia and (18)F-deoxyglucose. In heart failure, LV end-diastolic pressure was 20 +/- 4 mmHg, and ejection fraction was 35 +/- 4% (all P < 0.05 vs. control). Sustained pacing-induced dyssynchronous LV activation caused a more pronounced decrease in LV systolic thickening (7.45 +/- 3.42 vs. 30.62 +/- 8.73%, P < 0.05) and circumferential shortening (-4.62 +/- 1.0 vs. -7.33 +/- 1.2%, P < 0.05) in the anterior/anterior-lateral region (pacing site) compared with the inferoseptal region (opposite site). Conversely, flow was reduced significantly by approximately 32% compared with control and was lower in the opposite site region. Despite these nonhomogeneous alterations, regional end-systolic wall stress was uniformly increased by 60% in the failing LV. Similar to wall stress, glucose uptake markedly increased vs. control (0.24 +/- 0.004 vs. 0.07 +/- 0.01 micromol x min(-1) x g(-1), P < 0.05), with no significant regional differences. In conclusion, high-frequency pacing of the LV free wall causes a dyssynchronous pattern of contraction that leads to progressive cardiac failure with a marked mismatch between increased glucose uptake and regional contractile dysfunction.  相似文献   

5.
With aging, structural and functional changes occur in the myocardium without obvious impairment of systolic left ventricular (LV) function. Transmural differences in myocardial vulnerability for these changes may result in increase of transmural inhomogeneity in contractile myofiber function. Subendocardial fibrosis and impairment of subendocardial perfusion due to hypertension might change the transmural distribution of contractile myofiber function. The ratio of LV torsion to endocardial circumferential shortening (torsion-to-shortening ratio; TSR) during systole reflects the transmural distribution of contractile myofiber function. We investigated whether the transmural distribution of systolic contractile myofiber function changes with age. Magnetic resonance tissue tagging was performed to derive LV torsion and endocardial circumferential shortening. TSR was quantified in asymptomatic young [age 23.2 (SD 2.6) yr, n = 15] and aged volunteers [age 68.8 (SD 4.4) yr, n = 16]. TSR and its standard deviation were significantly elevated in the aged group [0.47 (SD 0.12) aged vs. 0.34 (SD 0.05) young; P = 0.0004]. In the aged group, blood pressure and the ratio of LV wall mass to end-diastolic volume were mildly elevated but could not be correlated to the increase in TSR. There were no significant differences in other indexes of systolic LV function such as end-systolic volume and ejection fraction. The elevated systolic TSR in the asymptomatic aged subjects suggests that aging is associated with local loss of contractile myofiber function in the subendocardium relative to the subepicardium potentially caused by subclinical pathological incidents.  相似文献   

6.
Following myocardial infarction (MI), contractile dysfunction develops not only in the infarct zone but also in noninfarcted regions of the left ventricle remote from the infarct zone. Inflammatory activation secondary to MI stimulates inducible nitric oxide synthase (iNOS) induction with excess production of nitric oxide. We hypothesized that the anti-inflammatory effects of selective A(2A)-adenosine receptor (A(2A)AR) stimulation would suppress inflammation and preserve cardiac function in the remote zone early after MI. A total of 53 mice underwent 60 min of coronary occlusion followed by 24 h of reperfusion. The A(2A)AR agonist (ATL146e, 2.4 microg/kg) was administered intraperitoneally 1, 3, and 6 h postreperfusion. Because of the 1-h delay in treatment after MI, ATL146e had no effect on infarct size, as demonstrated by contrast-enhanced cardiac MRI (n = 18) performed 24 h post-MI. ATL146e did however preserve global cardiac function at that time by limiting contractile dysfunction in remote regions [left ventricle wall thickening: 51 +/- 4% in treated (n = 9) vs. 29 +/- 3% in nontreated groups (n = 9), P < 0.01]. RT-PCR, immunohistochemistry, and Western blot analysis indicated that iNOS mRNA and protein expression were significantly reduced by ATL146e treatment in both infarcted and noninfarcted zones. Similarly, elevations in plasma nitrate-nitrite after MI were substantially blunted by ATL146e (P < 0.01). Finally, treatment with ATL146e reduced NF-kappaB activation in the myocardium by over 50%, not only in the infarct zone but also in noninfarcted regions (P < 0.05). In conclusion, A(2A)AR stimulation after MI suppresses inflammatory activation and preserves cardiac function, suggesting the potential utility of A(2A)AR agonists against acute heart failure in the immediate post-MI period.  相似文献   

7.
Pressure overload cardiac hypertrophy may be a compensatory mechanism to normalize systolic wall stress and preserve left ventricular (LV) function. To test this concept, we developed a novel in vivo method to measure myocardial stress (sigma)-strain (epsilon) relations in normal and hypertrophied mice. LV volume was measured using two pairs of miniature omnidirectional piezoelectric crystals implanted orthogonally in the endocardium and one crystal placed on the anterior free wall to measure instantaneous wall thickness. Highly linear sigma-epsilon relations were obtained in control (n = 7) and hypertrophied mice produced by 7 days of transverse aortic constriction (TAC; n = 13). Administration of dobutamine in control mice significantly increased the load-independent measure of LV contractility, systolic myocardial stiffness. In TAC mice, systolic myocardial stiffness was significantly greater than in control mice (3,156 +/- 1,433 vs. 1,435 +/- 467 g/cm(2), P < 0.01), indicating enhanced myocardial contractility with pressure overload. However, despite the increased systolic performance, both active (time constant of LV pressure decay) and passive (diastolic myocardial stiffness constant) diastolic properties were markedly abnormal in TAC mice compared with control mice. These data suggest that the development of cardiac hypertrophy is associated with a heightened contractile state, perhaps as an early compensatory response to pressure overload.  相似文献   

8.
Regional nonuniformity is a feature of both diseased and normal left ventricles (LV). With the use of magnetic resonance (MR) myocardial tagging, we performed three-dimensional strain analysis on 87 healthy adults in local cardiac and fiber coordinate systems (radial, circumferential, longitudinal, and fiber strains) to characterize normal nonuniformities and to test the validity of wall thickening as a parameter of regional function. Regional morphology included wall thickness and radii of curvature measurements. With respect to transmural nonuniformity, subendocardial strains exceeded subepicardial strains. Going from base to apex, wall thickness and circumferential radii of curvature decreased, whereas longitudinal radii of curvature increased. All of the strains increased from LV base to apex, resulting in a higher ejection fraction (EF) at the apex than at the base (70.9 +/- 0.4 vs. 62.4 +/- 0.4%; means +/- SE, P < 0.0001). When we looked around the circumference of the ventricle, the anterior part of the LV was the flattest and thinnest and showed the largest wall thickening (46.6 +/- 1.2%) but the lowest EF (64.7 +/- 0.5%). The posterior LV wall was thicker, more curved, and showed a lower wall thickening (32.8 +/- 1.0%) but a higher EF (71.3 +/- 0.5%). The regional contribution of the LV wall to the ejection of blood is thus highly variable and is not fully characterized by wall thickening alone. Differences in regional LV architecture and probably local stress are possible explanations for this marked functional nonuniformity.  相似文献   

9.
Injectable hydrogels are a potential therapy for mitigating adverse left ventricular (LV) remodeling after myocardial infarction (MI). Previous studies using magnetic resonance imaging (MRI) have shown that hydrogel treatment improves systolic strain in the borderzone (BZ) region surrounding the infarct. However, the corresponding contractile properties of the BZ myocardium are still unknown. The goal of the current study was to quantify the in vivo contractile properties of the BZ myocardium post-MI in an ovine model treated with an injectable hydrogel. Contractile properties were determined 8 weeks following posterolateral MI by minimizing the difference between in vivo strains and volume calculated from MRI and finite element model predicted strains and volume. This was accomplished by using a combination of MRI, catheterization, finite element modeling, and numerical optimization. Results show contractility in the BZ of animals treated with hydrogel injection was significantly higher than untreated controls. End-systolic (ES) fiber stress was also greatly reduced in the BZ of treated animals. The passive stiffness of the treated infarct region was found to be greater than the untreated control. Additionally, the wall thickness in the infarct and BZ regions was found to be significantly higher in the treated animals. Treatment with hydrogel injection significantly improved BZ function and reduced LV remodeling, via altered MI properties. These changes are linked to a reduction in the ES fiber stress in the BZ myocardium surrounding the infarct. The current results imply that injectable hydrogels could be a viable therapy for maintaining LV function post-MI.  相似文献   

10.
11.
Myocardial infarction (MI) is characterized by ventricular remodeling, hypertrophy of the surviving myocardium, and an insufficient angiogenic response. Thyroxine is a powerful stimulus for myocardial angiogenesis. Male rats that underwent coronary artery ligation and subsequent MI were given 3,5-diiodothyropropionic acid (DITPA; MI+DITPA group) during a 3-wk period. We evaluated ventricular remodeling using echocardiography and histology and myocardial vessel growth using image analysis. Protein expression was assessed using Western blotting and immunohistochemistry. This study tested the hypothesis that the thyroxine analog DITPA facilitates angiogenesis and influences postinfarction remodeling in the surviving hypertrophic myocardium. The increase in the region of akinesis (infarct expansion) was blunted in the MI+DITPA rats compared with the MI group (3 vs. 21%); the treated rats had smaller percent increases in the left ventricular (LV) volume (64 +/- 14 vs. 95 +/- 12) and the LV volume-to-mass ratio (47 +/- 13 vs. 84 +/- 10) as well as a blunted decrease in ejection fraction (-9 +/- 8 vs. -30 +/- 7%). Arteriolar length density was higher after treatment in the largest (>50% of the free wall) infarcts (64 +/- 3 vs. 43 +/- 7). Angiogenic growth factors [vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF)] and the angiopoietin receptor tyrosine kinase with immunoglobulin and epidermal growth factor homology domains (Tie-2) values were elevated during the first week after infarction. DITPA did not cause additional increases in VEGF or Tie-2 values but did induce an increase in bFGF value after 3 days of treatment. This study provides the first evidence for an anatomical basis, i.e., attenuated ventricular remodeling and arteriolar growth, for improved function attributed to DITPA therapy of the infarcted heart. The favorable influences of DITPA on LV remodeling after large infarction are principally due to border zone preservation.  相似文献   

12.
Ataxia telangiectasia mutated kinase (ATM) is a cell cycle checkpoint protein activated in response to DNA damage. We recently reported that ATM plays a protective role in myocardial remodeling following β-adrenergic receptor stimulation. Here we investigated the role of ATM in cardiac remodeling using myocardial infarction (MI) as a model. Methods and Results: Left ventricular (LV) structure, function, apoptosis, fibrosis, and protein levels of apoptosis- and fibrosis-related proteins were examined in wild-type (WT) and ATM heterozygous knockout (hKO) mice 7 days post-MI. Infarct sizes were similar in both MI groups. However, infarct thickness was higher in hKO-MI group. Two dimensional M-mode echocardiography revealed decreased percent fractional shortening (%FS) and ejection fraction (EF) in both MI groups when compared to their respective sham groups. However, the decrease in %FS and EF was significantly greater in WT-MI vs hKO-MI. LV end systolic and diastolic diameters were greater in WT-MI vs hKO-MI. Fibrosis, apoptosis, and α-smooth muscle actin staining was significantly higher in hKO-MI vs WT-MI. MMP-2 protein levels and activity were increased to a similar extent in the infarct regions of both groups. MMP-9 protein levels were increased in the non-infarct region of WT-MI vs WT-sham. MMP-9 protein levels and activity were significantly lower in the infarct region of WT vs hKO. TIMP-2 protein levels similarly increased in both MI groups, whereas TIMP-4 protein levels were significantly lower in the infarct region of hKO group. Phosphorylation of p53 protein was higher, while protein levels of manganese superoxide dismutase were significantly lower in the infarct region of hKO vs WT. In vitro, inhibition of ATM using KU-55933 increased oxidative stress and apoptosis in cardiac myocytes.  相似文献   

13.
Regions of myocardial infarct (MI) are surrounded by a border zone (BZ) of normally perfused but dysfunctional myocardium. Although systolic dysfunction has been attributed to elevated wall stress in this region, there is evidence that intrinsic abnormalities of contractile performance exist in BZ myocardium. This study examined whether decreases of high-energy phosphates (HEP) and mitochondrial F(1)F(0)-ATPase (mtATPase) subunits typical of failing myocardium exist in BZ myocardium of compensated postinfarct remodeled hearts. Eight pigs were studied 6 wk after MI was produced by ligation of the left anterior descending coronary artery (LAD) distal to the second diagonal. Animals developed compensated LV remodeling with a decrease of ejection fraction from 54.6 +/- 5.4% to 31 +/- 2.1% (MRI) 5 wk after LAD occlusion. The remote zone (RZ) myocardium demonstrated modest decreases of ATP and mtATPase components. In contrast, BZ myocardium demonstrated profound abnormalities with ATP levels decreased to 42% of normal, and phosphocreatine-to-ATP ratio ((31)P-magnetic resonance spectroscopy) decreased from 2.06 +/- 0.19 in normal hearts to 1.07 +/- 0.10, with decreases in alpha-, beta-, OSCP, and IF(1) subunits of mtATPase, especially in the subendocardium. The reduction of myocardial creatine kinase isoform protein expression was also more severe in the BZ relative to the RZ myocardium. These abnormalities were independent of a change in mitochondrial content because the mitochondrial citrate synthase protein level was not different between the BZ and RZ. This regional heterogeneity of ATP content and expression of key enzymes in ATP production suggests that energetic insufficiency in the peri-infarct region may contribute to the transition from compensated LV remodeling to congestive heart failure.  相似文献   

14.
Earlier studies have shown substantial nonuniformity in normal left ventricular (LV) myocardial function concerning both the degree of shortening and timing of shortening. We hypothesized that nonuniform LV function may be related to nonuniform prestretch induced by atrial contraction. Eleven healthy human subjects were studied using MRI myocardial tagging and strain analysis. The amount of circumferential prestretch was assessed in 30 LV segments. Prestretch was defined as the difference in strain between end diastole (at ECG R wave) and diastasis. Furthermore, both the degree of shortening (quantified as peak circumferential shortening, peak systolic shortening rate, and amount of postsystolic shortening) and timing of shortening (quantified as the onset time of shortening and time to peak shortening) were assessed. LV prestretch was found to be nonuniform, with the highest values in the lateral wall. The amount of segmental prestretch correlated significantly with peak shortening (r = 0.79), peak shortening rate (r = 0.50), amount of postsystolic shortening (r = 0.67), onset time of shortening (r = -0.57), and time to peak shortening (r = 0.71) (P < 0.001 for each of these relations). These relations may be explained by regional differences in wall stress or by a regional Frank-Starling effect. The correlation between timing of shortening and prestretch demonstrates that mechanical timing is not determined by electrical phenomena alone. In conclusion, regional variation in LV function correlates with the nonuniform prestretch from atrial contraction.  相似文献   

15.
We explored whether the hypertensive heart is susceptible to myocardial dysfunction in viable noninfarcted tissue post-myocardial infarction (MI), the potential mechanisms thereof, and the impact of these changes on pump function. Six to seven months after the ligation of the left anterior descending coronary artery, left ventricular (LV) myocardial systolic function, as assessed from the percent shortening of the noninfarcted lateral wall segmental length determined over a range of filling pressures (ultrasonic transducers placed in the lateral wall in anaesthetized, open-chest, ventilated rats) and the percent thickening of the posterior wall (echocardiography), was reduced in infarcted spontaneous hypertensive rats (SHR-MI) (P < 0.05) but not in normotensive Wistar-Kyoto (WKY-MI) animals compared with corresponding controls [SHR-sham operations (Sham) and WKY-Sham]. This change in the regional myocardial function in SHR-MI, but not in WKY-MI, occurred despite a similar degree of LV dilatation (increased LV end-diastolic dimensions and volume intercept of the LV end-diastolic pressure-volume relation) in SHR-MI and WKY-MI rats and a lack of difference in LV relative wall thinning, LV wall stress, apoptosis [terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling (TUNEL)], or necrosis (pathological score) between SHR-MI and WKY-MI rats. Although the change in regional myocardial function in the SHR-MI group was not associated with a greater reduction in baseline global LV chamber systolic function [end-systolic elastance (LV E(es)) and endocardial fractional shortening determined in the absence of an adrenergic stimulus], in the presence of an isoproterenol challenge, noninfarct-zone LV systolic myocardial dysfunction manifested in a significant reduction in LV E(es) in SHR-MI compared with WKY-MI and SHR and WKY-Sham rats (P < 0.04). In conclusion, these data suggest that with chronic MI, the hypertensive heart is susceptible to the development of myocardial dysfunction, a change that cannot be attributed to excessive chamber dilatation, apoptosis, or necrosis, but which in turn contributes toward a reduced cardiac adrenergic inotropic reserve.  相似文献   

16.
Although statins impart a number of cardiovascular benefits, whether statin therapy during the peri-infarct period improves subsequent myocardial structure and function remains unclear. Thus, we evaluated the effects of atorvastatin on cardiac function, remodeling, fibrosis, and apoptosis after myocardial infarction (MI). Two groups of rats were subjected to permanent coronary occlusion. Group II (n = 14) received oral atorvastatin (10 mg/kg/d) daily for 3 wk before and 4 wk after MI, while group I (n = 12) received equivalent doses of vehicle. Infarct size (Masson''s trichrome-stained sections) was similar in both groups. Compared with group I, echocardiographic left ventricular ejection fraction (LVEF) and fractional area change (FAC) were higher while LV end-diastolic volume (LVEDV) and LV end-systolic and end-diastolic diameters (LVESD and LVEDD) were lower in treated rats. Hemodynamically, atorvastatin-treated rats exhibited significantly higher dP/dtmax, end-systolic elastance (Ees), and preload recruitable stroke work (PRSW) and lower LV end-diastolic pressure (LVEDP). Morphometrically, infarct wall thickness was greater in treated rats. The improvement of LV function by atorvastatin was associated with a decrease in hydroxyproline content and in the number of apoptotic cardiomyocyte nuclei. We conclude that atorvastatin therapy during the peri-infarct period significantly improves LV function and limits adverse LV remodeling following MI independent of a reduction in infarct size. These salubrious effects may be due in part to a decrease in myocardial fibrosis and apoptosis.  相似文献   

17.
In vivo evaluation of the transmural extension of myocardial infarction (TEI) is crucial to prediction of viability and prognosis. With the rise of transgenic technology, murine myocardial infarction (MI) models are increasingly used. Our study aimed to evaluate systolic strain rate (SR), a new parameter of regional function, to quantify TEI in a murine model of acute MI induced by various durations of ischemia followed by 24 h of reperfusion. Global and regional left ventricular (LV) function were assessed by echocardiography (13 MHz, Vivid 7, GE) in 4 groups of wild-type mice (C57BL/6, 2 mo old): a sham-treated group (n = 10) and three MI groups [30 (n = 11), 60 (n = 10), and 90 (n = 9) min of left coronary artery occlusion]. Conventional LV dimensions, anterior wall (AW) thickening, and peak systolic SR were measured before and 24 h after reperfusion. Area at risk (AR) was measured by blue dye and infarct size (area of necrosis, AN) and TEI by triphenyltetrazolium chloride staining. AN increased with ischemia duration (25 +/- 2%, 56 +/- 5%, 71 +/- 6% of AR for 30, 60, and 90 min, respectively; P < 0.05). LV end-diastolic volume significantly increased with ischemia duration (30 +/- 5, 34 +/- 5, 43 +/- 5 microl; P < 0.05), whereas LV ejection fraction decreased (63 +/- 5%, 58 +/- 6%, 46 +/- 5%; P < 0.05). AW thickening decrease was not influenced by ischemia duration. Conversely, systolic SR decreased with ischemia duration (13 +/- 5, 4 +/- 3, -2 +/- 6 s(-1); P < 0.05) and was significantly correlated with TEI (r = 0.89, P < 0.01). Receiver operating characteristic (ROC) curves identified systolic SR as the most accurate parameter to predict TEI. In conclusion, in a murine model of MI, SR imaging is superior to conventional echocardiography to predict TEI early after MI.  相似文献   

18.
Myocardial infarction (MI) may produce significant inflammatory changes and adverse ventricular remodeling leading to heart failure and premature death. Pharmacologic, stem cell transplantation, and exercise have not halted the inexorable rise in the prevalence and great economic costs of heart failure despite extensive investigations of such treatments. New therapeutic modalities are needed. Whole Body Periodic Acceleration (pGz) is a non-invasive technology that increases pulsatile shear stress to the endothelium thereby producing several beneficial cardiovascular effects as demonstrated in animal models, normal humans and patients with heart disease. pGz upregulates endothelial derived nitric oxide synthase (eNOS) and its phosphorylation (p-eNOS) to improve myocardial function in models of myocardial stunning and preconditioning. Here we test whether pGz applied chronically after focal myocardial infarction in rats improves functional outcomes from MI. Focal MI was produced by left coronary artery ligation. One day after ligation animals were randomized to receive daily treatments of pGz for four weeks (MI-pGz) or serve as controls (MI-CONT), with an additional group as non-infarction controls (Sham). Echocardiograms and invasive pressure volume loop analysis were carried out. Infarct transmurality, myocardial fibrosis, and markers of inflammatory and anti-inflammatory cytokines were determined along with protein analysis of eNOS, p-eNOS and inducible nitric oxide synthase (iNOS).At four weeks, survival was 80% in MI-pGz vs 50% in MI-CONT (p< 0.01). Ejection fraction and fractional shortening and invasive pressure volume relation indices of afterload and contractility were significantly better in MI-pGz. The latter where associated with decreased infarct transmurality and decreased fibrosis along with increased eNOS, p-eNOS. Additionally, MI-pGz had significantly lower levels of iNOS, inflammatory cytokines (IL-6, TNF-α), and higher level of anti-inflammatory cytokine (IL-10). pGz improved survival and contractile performance, associated with improved myocardial remodeling. pGz may serve as a simple, safe, non-invasive therapeutic modality to improve myocardial function after MI.  相似文献   

19.
Tagged MRI and finite-element (FE) analysis are valuable tools in analyzing cardiac mechanics. To determine systolic material parameters in three-dimensional stress-strain relationships, we used tagged MRI to validate FE models of left ventricular (LV) aneurysm. Five sheep underwent anteroapical myocardial infarction (25% of LV mass) and 22 wk later underwent tagged MRI. Asymmetric FE models of the LV were formed to in vivo geometry from MRI and included aneurysm material properties measured with biaxial stretching, LV pressure measurements, and myofiber helix angles measured with diffusion tensor MRI. Systolic material parameters were determined that enabled FE models to reproduce midwall, systolic myocardial strains from tagged MRI (630 +/- 187 strain comparisons/animal). When contractile stress equal to 40% of the myofiber stress was added transverse to the muscle fiber, myocardial strain agreement improved by 27% between FE model predictions and experimental measurements (RMS error decreased from 0.074 +/- 0.016 to 0.054 +/- 0.011, P < 0.05). In infarct border zone (BZ), end-systolic midwall stress was elevated in both fiber (24.2 +/- 2.7 to 29.9 +/- 2.4 kPa, P < 0.01) and cross-fiber (5.5 +/- 0.7 to 11.7 +/- 1.3 kPa, P = 0.02) directions relative to noninfarct regions. Contrary to previous hypotheses but consistent with biaxial stretching experiments, active cross-fiber stress development is an integral part of LV systole; FE analysis with only uniaxial contracting stress is insufficient. Stress calculations from these validated models show 24% increase in fiber stress and 115% increase in cross-fiber stress at the BZ relative to remote regions, which may contribute to LV remodeling.  相似文献   

20.
Background aimsIt has been demonstrated that transplantation of human cord blood-derived unrestricted somatic stem cells (USSC) in a porcine model of acute myocardial infarction (MI) significantly improved left ventricular (LV) function and prevented scar formation as well as LV dilation. Differentiation, apoptosis and macrophage mobilization at the infarct site could be excluded as the underlying mechanisms. The paracrine effect of the cells is most likely to be observed as the cause for the USSC treatment. The aim of our study was to examine the cardiomyocyte metabolism and the role of high-energy phosphates at the marginal infarct.MethodsUSSC were transplanted into the myocardium of the LV, which was supplied by a ligated circumflex artery. Forty-eight hours later, the hearts were harvested and biopsies were performed from the marginal infarct zone surrounding the site of the cell injection. The concentrations of creatinine phosphate (CP), adenosine monophosphate (AMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP) were determined by chromatography.ResultsThe concentration of ADP, ATP and CP in the marginal zone of the infarction was significantly higher in the USSC group. The mean global left ventricular ejection fraction (LVEF) (SD) was 64% (8%) before MI; post-MI, LVEF decreased to 35% (9%).ConclusionsPreservation of high-energy phosphates in the marginal infarct zone suggests that the preservation of energy reserves of surviving cardiomyocytes is a possible mechanism of action of transplanted stem cells in acutely ischemic myocardium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号