首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article we report the isolation of a novel zebrafish gene, pitx3, which plays an important role in the formation of several placode-derived structures. In wildtype embryos, pitx3 is first expressed in a crescent-shaped area in the anterior end of the embryo. At later stages, the primordia of the anterior pituitary, the lens, the olfactory sensory epithelium, and cranial ganglia express this gene. Pitx3 is not expressed in the more posterior preplacodal region that gives rise to the epibranchial, otic, and lateral line placodes. The dynamics of pitx3 in the anterior region of wildtype embryos suggests that pitx3 expression marks a common step in the formation of the pituitary, lens, olfactory placode as well as the trigeminal placode. Analysis of pitx3 expression in mutants lacking the hedgehog or nodal function demonstrates the differential dependence of pitx3 expression in these structures on nodal and hedgehog signaling. While the lens and trigeminal placodes express pitx3 in the absence of hedgehog and nodal signaling, there is no expression of pitx3 in the anteriormost ectoderm adjacent to the neural plate from which the anterior pituitary would derive. In mutants with impaired hedgehog signaling, the lens placode frequently extends into more anterior ventral regions of the embryo.  相似文献   

2.
3.
4.
5.
Adriamycin is an effective anticancer drug used in a wide range of cancers. Anticancer drugs modulate oncogenes and nodal regulatory molecules that affect cell differentiation and organismal development. In this study, we explore the effect of adriamycin on Kruppel‐like factor4 (Klf4), an essential pluripotent factor by choosing zebrafish embryos as a model system. Klf4 is involved in the regulation of cellular growth, proliferation, and differentiation. In zebrafish embryogenesis, Klf4 is a major regulator of differentiation of polster in the anterior mesendoderm region of cells into hatching gland cells. The importance of this study is to check the effect of adriamycin on embryonic development. We found, adriamycin dose dependently altered the gene expression level of Klf4 that occurs in parallel to its detrimental effect on hatching. Supportively, cathepsin L and cyclase‐associated protein1 are the other two markers of hatching that are altered along with Klf4.  相似文献   

6.
7.
8.
Krüppel-like factor (KLF) proteins have elicited significant attention due to their emerging key role in metabolic and endocrine diseases. Here, we extend this knowledge through the biochemical characterization of KLF16, unveiling novel mechanisms regulating expression of genes involved in reproductive endocrinology. We found that KLF16 selectively binds three distinct KLF-binding sites (GC, CA, and BTE boxes). KLF16 also regulated the expression of several genes essential for metabolic and endocrine processes in sex steroid-sensitive uterine cells. Mechanistically, we determined that KLF16 possesses an activation domain that couples to histone acetyltransferase-mediated pathways, as well as a repression domain that interacts with the histone deacetylase chromatin-remodeling system via all three Sin3 isoforms, suggesting a higher level of plasticity in chromatin cofactor selection. Molecular modeling combined with molecular dynamic simulations of the Sin3a-KLF16 complex revealed important insights into how this interaction occurs at an atomic resolution level, predicting that phosphorylation of Tyr-10 may modulate KLF16 function. Phosphorylation of KLF16 was confirmed by in vivo (32)P incorporation and controlled by a Y10F site-directed mutant. Inhibition of Src-type tyrosine kinase signaling as well as the nonphosphorylatable Y10F mutation disrupted KLF16-mediated gene silencing, demonstrating that its function is regulatable rather than constitutive. Subcellular localization studies revealed that signal-induced nuclear translocation and euchromatic compartmentalization constitute an additional mechanism for regulating KLF16 function. Thus, this study lends insights on key biochemical mechanisms for regulating KLF sites involved in reproductive biology. These data also contribute to the new functional information that is applicable to understanding KLF16 and other highly related KLF proteins.  相似文献   

9.
10.
11.
12.
目的探讨Kruppel样因子4(Kruppel-like factor 4,KLF4)在内毒素血症小鼠中的表达模式及意义。方法运用实时荧光PCR技术和Western blot技术,分别从mRNA水平和蛋白水平探讨内毒素血症小鼠肝脏和肺脏中KLF4的表达;运用生物信息学技术,对启动子区含有KLF4的结合位点的炎症介质基因进行了预测;运用RT-PCR技术,从mRNA水平探讨内毒素血症小鼠肝脏和肺脏中IL1β的表达模式。结果内毒素血症小鼠肝脏和肺脏中KLF4 mRNA的表达下凋,KLF4蛋白的表达先下凋后升高;IL-18、IL-15、IL-12、IL-18、IL-10等炎症介质基因的启动子区均含有KLF4的结合元件,这些炎症基因的表达可能直接受到KLF4的调控;内毒素血症小鼠肝脏和肺脏中IL-IB的表达模式与KLF4的表达模式呈相反趋势。结论内毒素血症小鼠肝脏和肺脏中KLF4表达下调,KLF4在炎症介质基因表达调控中可能具有重要作用。  相似文献   

13.
14.
Hypoxia-induced vascular smooth muscle cells (VSMCs) migration plays an important role in vascular remodeling and is implicated in vascular diseases, such as atherosclerosis and pulmonary hypertension. We previously observed the increased expression of krüppel-like factor 4 (KLF4) in VSMCs under hypoxia. However, whether the upregulation of KLF4 participates in hypoxia-induced VSMCs migration is still unknown. In this study, we demonstrated that KLF4 was an important player in the process of VSMCs migration under hypoxia since interference of KLF4 by small interfering RNA mostly dampened hypoxia-induced migration of VSMCs. In addition, using luciferase reporter and ChIP assays, we confirmed two hypoxia-inducible factor 1α (HIF1α) binding elements (located at -150 to -163 and -3922 to -3932) in the upstream regulatory region of klf4 locus and identified KLF4 as a novel direct target gene of HIF1α. Our findings unveil a novel regulatory mechanism that involves HIF1α-induced upregulation of KLF4, which plays a vital role in VSMCs migration under hypoxia.  相似文献   

15.
16.
17.
A novel role of the hedgehog pathway in lens regeneration   总被引:4,自引:0,他引:4  
Lens regeneration in the adult newt is a classic example of replacing a lost organ by the process of transdifferentiation. After lens removal, the pigmented epithelial cells of the dorsal iris proliferate and dedifferentiate to form a lens vesicle, which subsequently differentiates to form a new lens. In searching for factors that control this remarkable process, we investigated the expression and role of hedgehog pathway members. These molecules are known to affect retina and pigment epithelium morphogenesis and have been recently shown to be involved in repair processes. Here we show that Shh, Ihh, ptc-1, and ptc-2 are expressed during lens regeneration. The expression of Shh and Ihh is quite unique since these genes have never been detected in lens. Interestingly, both Shh and Ihh are only expressed in the regenerating and developing lens, but not in the intact lens. Interfering with the hedgehog pathway results in considerable inhibition of the process of lens regeneration, including decreased cell proliferation as well as interference with lens fiber differentiation in the regenerating lens vesicle. Down-regulation of ptc-1 was also observed when inhibiting the pathway. These results provide the first evidence of a novel role for the hedgehog pathway in specific regulation of the regenerating lens.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号