首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 961 毫秒
1.
Wech proteins     
Members of the integrin family of cell adhesion receptors are pivotal to the formation of complex tissues and organs in animals. They mediate cell adhesion by interacting with the extracellular matrix and by binding to intracellular linker proteins that connect to the cytoskeleton. We have recently identified a new and evolutionarily conserved component of the linker complex, the Drosophila Wech protein. Wech is essential for embryonic muscle attachment. It belongs to the RBCC/TRIM family of cytoplasmic multidomain proteins and contains a carboxyterminal NHL domain. Wech protein is specifically localized to the embryonic muscle attachment sites and wech mutant embryos show muscle detachment from the body wall. In β-integrin or talin mutants Wech is mislocalized, as the localization of Integrin-linked-kinase (ILK) depends on Wech. Biochemical data indicate that Wech is associated with the head domain of Talin and the kinase domain of ILK suggesting that Wech may be involved in the linkage of both core proteins of the linker complex. We discuss that Wech proteins may be crucial and evolutionarily conserved regulators of cell-type specific integrin functions and that their activities may underlie complex regulation by microRNAs.  相似文献   

2.
3.
Transmembrane adhesion receptors, such as integrins, mediate cell adhesion by interacting with intracellular proteins that connect to the cytoskeleton. Talin, one such linker protein, is essential to connect extracellular matrix-bound integrins to the cytoskeleton. Talin can connect to the cytoskeleton either directly, through its actin-binding motifs, or indirectly, by recruiting other actin-binding proteins. Talin's carboxy-terminal end contains a well-characterized actin-binding domain (ABD). We tested the role of the C-terminal ABD of talin in integrin function in Drosophila. We found that introduction of mutations that reduced actin binding in vitro into the isolated C-terminal Talin-ABD impaired actin binding in vivo. Moreover, when engineered into full-length talin, these mutations disrupted a subset of integrin-mediated adhesion-dependent developmental events. Specifically, morphogenetic processes that involve dynamic, short-term integrin-mediated adhesion were particularly sensitive to impaired function of the C-terminal Talin-ABD. We propose that during development talin connects integrins to the cytoskeleton in distinct ways in different types of integrin-mediated adhesion: directly in transient adhesions and indirectly in stable long-lasting adhesions. Our results provide insight into how a similar array of molecular components can contribute to diverse adhesive processes throughout development.  相似文献   

4.
UNC-97/PINCH is an evolutionarily conserved protein that contains five LIM domains and is located at cell-extracellular matrix attachment sites known as cell adhesion complexes. To understand the role of UNC-97/PINCH in cell adhesion, we undertook a combined genetic and cell biological approach to identify the steps required to assemble cell adhesion complexes in Caenorhabditis elegans. First, we have generated a complete loss of function mutation in the unc-97 coding region. unc-97 null mutants arrest development during embryogenesis and reveal that the myofilament lattice and its attachment structures, which include PAT-4/ILK (integrin-linked kinase) and integrin fail to assemble into properly organized arrays. Although in the absence of UNC-97/PINCH, PAT-4/ILK and integrin fail to organize normally, they are capable of colocalizing together at the muscle cell membrane. Alternatively, in integrin and pat-4 mutants, UNC-97/PINCH fails to localize to the muscle cell membrane and instead is found diffusely throughout the muscle cell cytoplasm. In agreement with mammalian studies, we show that LIM domain 1 of UNC-97/PINCH is required for its interaction with PAT-4/ILK in yeast two-hybrid assays. Additionally, we find, by LIM domain deletion analysis, that LIM1 is required for the localization of UNC-97/PINCH to cell adhesion complexes. Our results provide evidence that UNC-97/PINCH is required for the development of C. elegans and is required for the formation of integrin based adhesion structures.  相似文献   

5.
6.
The tripartite motif (TRIM) protein family, defined by N-terminal RING, B-box, and coiled-coil (RBCC) domains, consists of either a single type 2 B-box domain or tandem B-box domains of type 1 and type 2 (B1B2). Here, we report the first structure of the B-box domains in their native tandem orientation. The B-boxes are from Midline-1, a putative ubiquitin E3 ligase that is required for the proteosomal degradation of the catalytic subunit of protein phosphatase 2A (PP2Ac). This function of MID1 is facilitated by the direct binding of Alpha4, a regulatory subunit of PP2Ac, to B-box1, while B-box2 appears to influence this interaction. Both B-box1 and B-box2 bind two zinc atoms in a cross-brace motif and adopt a similar betabetaalpha structure reminiscent of the RING, PHD, ZZ, and U-box domains, although they differ from each other and with RING domains in the spacing of their zinc-binding residues. The two B-box domains pack against each other with the interface formed by residues located on the structured loop consisting of the two antiparallel beta-strands. The surface area of the interface is 188 A2 (17% of the total surface). Consistent with the globular structure, the Tm of the tandem B-box domain (59 degrees C) is higher than the individual domains, supporting a stable interaction between the B-box 1 and 2 domains. Notably, the interaction is reminiscent of the interaction of recently determined RING dimers, suggesting the possibility of an evolutionarily conserved role for B-box2 domains in regulating functional RING-type folds.  相似文献   

7.
8.
Transmembrane adhesion receptors, such as integrins, mediate cell adhesion by interacting with intracellular proteins that connect to the cytoskeleton. Talin, one such linker protein, is thought to have two roles: mediating inside-out activation of integrins, and connecting extracellular matrix (ECM)-bound integrins to the cytoskeleton. Talin's amino-terminal head, which consists of a FERM domain, binds an NPxY motif within the cytoplasmic tail of most integrin beta subunits. This is consistent with the role of FERM domains in recruiting other proteins to the plasma membrane. We tested the role of the talin-head-NPxY interaction in integrin function in Drosophila. We found that introduction of a mutation that perturbs this binding in vitro into the isolated talin head disrupts its recruitment by integrins in vivo. Surprisingly, when engineered into the full-length talin, this mutation did not disrupt talin recruitment by integrins nor its ability to connect integrins to the cytoskeleton. However, it reduced the ability of talin to strengthen integrin adhesion to the ECM, indicating that the function of the talin-head-NPxY interaction is solely to regulate integrin adhesion.  相似文献   

9.
TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases   总被引:10,自引:0,他引:10  
The TRIM/RBCC proteins are defined by the presence of the tripartite motif composed of a RING domain, one or two B-box motifs and a coiled-coil region. These proteins are involved in a plethora of cellular processes such as apoptosis, cell cycle regulation and viral response. Consistently, their alteration results in many diverse pathological conditions. The highly conserved modular structure of these proteins suggests that a common biochemical function may underlie their assorted cellular roles. Here, we review recent data indicating that some TRIM/RBCC proteins are implicated in ubiquitination and propose that this large protein family represents a novel class of 'single protein RING finger' ubiquitin E3 ligases.  相似文献   

10.
The contractile stimulation of smooth muscle tissues stimulates the recruitment of proteins to membrane adhesion complexes and the initiation of actin polymerization. We hypothesized that integrin-linked kinase (ILK), a beta-integrin-binding scaffolding protein and serine/threonine kinase, and its binding proteins, PINCH, and alpha-parvin may be recruited to membrane adhesion sites during contractile stimulation of tracheal smooth muscle to mediate cytoskeletal processes required for tension development. Immunoprecipitation analysis indicted that ILK, PINCH, and alpha-parvin form a stable cytosolic complex and that the ILK.PINCH.alpha-parvin complex is recruited to integrin adhesion complexes in response to acetylcholine (ACh) stimulation where it associates with paxillin and vinculin. Green fluorescent protein (GFP)-ILK and GFP-PINCH were expressed in tracheal muscle tissues and both endogenous and recombinant ILK and PINCH were recruited to the membrane in response to ACh stimulation. The N-terminal LIM1 domain of PINCH binds to ILK and is required for the targeting of the ILK-PINCH complex to focal adhesion sites in fibroblasts during cell adhesion. We expressed the GFP-PINCH LIM1-2 fragment, consisting only of LIM1-2 domains, in tracheal smooth muscle tissues to competitively inhibit the interaction of ILK with PINCH. The PINCH LIM1-2 fragment inhibited the recruitment of endogenous ILK and PINCH to integrin adhesion sites and prevented their association of ILK with beta-integrins, paxillin, and vinculin. The PINCH LIM1-2 fragment also inhibited tension development, actin polymerization, and activation of the actin nucleation initiator, N-WASp. We conclude that the recruitment of the ILK.PINCH.alpha-parvin complex to membrane adhesion complexes is required to initiate cytoskeletal processes required for tension development in smooth muscle.  相似文献   

11.
Integrins play a crucial role in cell motility, cell proliferation and cell survival. The evolutionarily conserved LIM protein PINCH is postulated to act as part of an integrin-dependent signaling complex. In order to evaluate the role of PINCH in integrin-mediated cellular events, we have tested directly the in vivo function of PINCH in Drosophila melanogaster. We demonstrate that the steamer duck (stck) alleles that were first identified in a screen for potential integrin effectors represent mutations in Drosophila pinch. stck mutants die during embryogenesis, revealing a key role for PINCH in development. Muscle cells within embryos that have compromised PINCH function display disturbed actin organization and cell-substratum adhesion. Mutation of stck also causes failure of integrin-dependent epithelial cell adhesion in the wing. Consistent with the idea that PINCH could contribute to integrin function, PINCH protein colocalizes with betaPS integrin at sites of actin filament anchorage in both muscle and wing epithelial cells. Furthermore, we show that integrins are required for proper localization of PINCH at the myotendinous junction. The integrin-linked kinase, ILK, is also essential for integrin function. We demonstrate that Drosophila PINCH and ILK are complexed in vivo and are coincident at the integrin-rich muscle-attachment sites in embryonic muscle. Interestingly, ILK localizes appropriately in stck mutant embryos, therefore the phenotypes exhibited by the stck mutants are not attributable to mislocalization of ILK. Our results provide direct genetic evidence that PINCH is essential for Drosophila development and is required for integrin-dependent cell adhesion.  相似文献   

12.
The cytoskeletal protein talin serves as an essential link between integrins and the actin cytoskeleton in several similar, but functionally distinct, adhesion complexes, including focal adhesions, costameres, and intercalated disks. Vertebrates contain two talin genes, TLN1 and TLN2, but the different roles of Talin1 and Talin2 in cell adhesion are unclear. In this report we have analyzed Talin1 and Talin2 in striated muscle. Using isoform-specific antibodies, we found that Talin2 is highly expressed in mature striated muscle. Using mouse C2C12 cells and primary human skeletal muscle myoblasts as models of muscle differentiation, we show that Talin1 is expressed in undifferentiated myoblasts and that Talin2 expression is upregulated during muscle differentiation at both the mRNA and protein levels. We have also identified regulatory sequences that may be responsible for the differential expression of Talin1 and Talin2. Using GFP-tagged Talin1 and Talin2 constructs, we found that GFP-Talin1 targets to focal adhesions while GFP-Talin2 targets to abnormally large adhesions in myoblasts. We also found that ectopic expression of Talin2 in myoblasts, which do not contain appreciable levels of Talin2, dysregulates the actin cytoskeleton. Finally we demonstrate that Talin2, but not Talin1, localizes to costameres and intercalated disks, which are stable adhesions required for the assembly of mature striated muscle. Our results suggest that Talin1 is the primary link between integrins and actin in dynamic focal adhesions in undifferentiated, motile cells, but that Talin2 may serve as the link between integrins and the sarcomeric cytoskeletonin stable adhesion complexes in mature striated muscle.  相似文献   

13.
The TRIM family of proteins is distinguished by its tripartite motif (TRIM). Typically, TRIM proteins contain a RING finger domain, one or two B-box domains, a coiled-coil domain and the more variable C-terminal domains. TRIM16 does not have a RING domain but does harbour two B-box domains. Here we showed that TRIM16 homodimerized through its coiled-coil domain and heterodimerized with other TRIM family members; TRIM24, Promyelocytic leukaemia (PML) protein and Midline-1 (MID1). Although, TRIM16 has no classic RING domain, three-dimensional modelling of TRIM16 suggested that its B-box domains adopts RING-like folds leading to the hypothesis that TRIM16 acts as an ubiquitin ligase. Consistent with this hypothesis, we demonstrated that TRIM16, devoid of a classical RING domain had auto-polyubiquitination activity and acted as an E3 ubiquitin ligase in vivo and in vitro assays. Thus via its unique structure, TRIM16 possesses both heterodimerization function with other TRIM proteins and also has E3 ubiquitin ligase activity.  相似文献   

14.
Heat shock factor-binding protein (HSBP) 1 is a small, evolutionarily conserved protein originally identified in a yeast two-hybrid screen using the trimerization domain of heat shock factor (HSF) 1 as the bait. Similar in size to HSF1 trimerization domain, human HSBP1 contains two arrays of hydrophobic heptad repeats (designated HR-N and HR-C) characteristic of coiled-coil proteins. Proteins of the HSBP family are relatively small (<100 residues), comprising solely a putative coiled-coil oligomerization domain without any other readily recognizable structural or functional motif. Our biophysical and biochemical characterization of human HSBP1 reveals a cooperatively folded protein with high alpha-helical content and moderate stability. NMR analyses reveal a single continuous helix encompassing both HR-N and HR-C in the highly conserved central region, whereas the less conserved carboxyl terminus is unstructured and accessible to proteases. Unlike previously characterized coiled-coils, backbone 15N relaxation measurements implicate motional processes on the millisecond time scale in the coiled-coil region. Analytical ultracentrifugation and native PAGE studies indicate that HSBP1 is predominantly trimeric over a wide concentration range. NMR analyses suggest a rotationally symmetric trimer. Because the highly conserved hydrophobic heptad repeats extend over 60% of HSBP1, we propose that HSBP most likely regulates the function of other proteins through coiled-coil interactions.  相似文献   

15.
Epithelial tubes represent fundamental building blocks of metazoan organisms; however, the mechanisms responsible for their formation and maintenance are not well understood. Here, we show that the evolutionarily conserved coiled-coil MAGUK protein Dlg5 is required for epithelial tube maintenance in mammalian brain and kidneys. We demonstrate that Dlg5(-/-) mice develop fully penetrant hydrocephalus and kidney cysts caused by a deficiency in membrane delivery of cadherin-catenin adhesion complexes and loss of cell polarity. Dlg5 travels with cadherin-containing vesicles and binds to syntaxin 4, a t-SNARE protein that regulates fusion of transport vesicles with the lateral membrane domain. We propose that Dlg5 functions in plasma membrane delivery of cadherins by linking cadherin-containing transport vesicles with the t-SNARE targeting complex. These findings show that Dlg5 is causally involved in hydrocephalus and renal cysts and reveal that targeted membrane delivery of cadherin-catenin adhesion complexes is critical for cell polarity and epithelial tube maintenance.  相似文献   

16.
Smith SJ  McCann RO 《Biochemistry》2007,46(38):10886-10898
Focal adhesion complexes are plasma membrane-associated multicomponent complexes that are essential for integrin-linked signal transduction as well as cell adhesion and cell motility. The cytoskeletal protein Talin1 links integrin adhesion receptors with the actin cytoskeleton. Talin1 and the other animal and amoebozoan talins are members of the I/LWEQ module superfamily, which also includes fungal Sla2 and animal Hip1/Hip1R. The I/LWEQ module is a conserved C-terminal structural element that is critical for I/LWEQ module protein function. The I/LWEQ module of Talin1 binds to F-actin and targets the protein to focal adhesions in vivo. The I/LWEQ modules of Sla2 and Hip1 are required for the participation of these proteins in endocytosis. In addition to these roles in I/LWEQ module protein function, we have recently shown that the I/LWEQ module also contains a determinant for protein dimerization. Taken together, these results suggest that actin binding, subcellular targeting, and dimerization are associated in I/LWEQ module proteins. In this report we have used alanine-scanning mutagenesis of a putative coiled coil at the C-terminus of the Talin1 I/LWEQ module to show that the amino acids responsible for dimerization are necessary for F-actin binding, the stabilization of actin filaments, the cross-linking of actin filaments, and focal adhesion targeting. Our results suggest that this conserved dimerization motif in the I/LWEQ module plays an essential role in the function of Talin1 as a component of focal adhesions and, by extension, the other I/LWEQ module proteins in other multicomponent assemblies involved in cell adhesion and vesicle trafficking.  相似文献   

17.
Plectin is a versatile cytolinker protein critically involved in the organization of the cytoskeletal filamentous system. The muscle-specific intermediate filament (IF) protein desmin, which progressively replaces vimentin during differentiation of myoblasts, is one of the important binding partners of plectin in mature muscle. Defects of either plectin or desmin cause muscular dystrophies. By cell transfection studies, yeast two-hybrid, overlay and pull-down assays for binding analysis, we have characterized the functionally important sequences for the interaction of plectin with desmin and vimentin. The association of plectin with both desmin and vimentin predominantly depended on its fifth plakin repeat domain and downstream linker region. Conversely, the interaction of desmin and vimentin with plectin required sequences contained within the segments 1A-2A of their central coiled-coil rod domain. This study furthers our knowledge of the interaction between plectin and IF proteins important for maintenance of cytoarchitecture in skeletal muscle. Moreover, binding of plectin to the conserved rod domain of IF proteins could well explain its broad interaction with most types of IFs.  相似文献   

18.
TRIM32, which belongs to the tripartite motif (TRIM) protein family, has the RING finger, B-box, and coiled-coil domain structures common to this protein family, along with an additional NHL domain at the C terminus. TRIM32 reportedly functions as an E3 ligase for actin, a protein inhibitor of activated STAT y (PIASy), dysbindin, and c-Myc, and it has been associated with diseases such as muscular dystrophy and epithelial carcinogenesis. Here, we identify a new substrate of TRIM32 and propose a mechanism through which TRIM32 might regulate apoptosis. Our overexpression and knockdown experiments demonstrate that TRIM32 sensitizes cells to TNFα-induced apoptosis. The RING domain is necessary for this pro-apoptotic function of TRM32 as well as being responsible for its E3 ligase activity. TRIM32 colocalizes and directly interacts with X-linked inhibitor of apoptosis (XIAP), a well known cancer therapeutic target, through its coiled-coil and NHL domains. TRIM32 overexpression enhances XIAP ubiquitination and subsequent proteasome-mediated degradation, whereas TRIM32 knockdown has the opposite effect, indicating that XIAP is a substrate of TRIM32. In vitro reconstitution assay reveals that XIAP is directly ubiquitinated by TRIM32. Our novel results collectively suggest that TRIM32 sensitizes TNFα-induced apoptosis by antagonizing XIAP, an anti-apoptotic downstream effector of TNFα signaling. This function may be associated with TRIM32-mediated tumor suppressive mechanism.  相似文献   

19.
The cytoskeletal protein Talin1 is a critical link between integrins and the actin cytoskeleton, where it is required for the structural and signaling functions of integrin-containing adhesion complexes. However, the elements in Talin1 that are responsible for localizing it to adhesion complexes are not known. In this report we have used a series of constructs based on the modular structure of Talin1 to determine the structural elements that specify the subcellular localization of Talin1. We show that the conserved actin-binding I/LWEQ module at the C-terminus of Talin1 is necessary and sufficient for targeting to focal adhesion complexes. We also used truncation and site-directed mutagenesis to demonstrate that this novel targeting function correlates with, but is separable from, the actin-binding properties of the Talin1 I/LWEQ module. In addition, we have shown that focal adhesion targeting, unlike actin binding, is not conserved among I/LWEQ module proteins. Finally, we have demonstrated that the subcellular localization of the Talin1 I/LWEQ module is regulated by an intrasteric interaction with an upstream alpha-helix, suggesting that both the actin binding and adhesion-targeting elements are masked in full-length Talin1. Our results define a novel role for the I/LWEQ module as the primary adhesion-complex targeting determinant of Talin1 and suggest that pathways that can relieve inhibition of I/LWEQ module function will be important for regulating the structural and signaling properties of adhesion complexes.  相似文献   

20.
Xenopus nuclear factor XNF7, a maternally expressed protein, functions in patterning of the embryo. XNF7 contains a number of defined protein domains implicated in the regulation of some developmental processes. Among these is a tripartite motif comprising a zinc-binding RING finger and B-box domain next to a predicted alpha-helical coiled-coil domain. Interestingly, this motif is found in a variety of protein including several proto-oncoproteins. Here we describe the solution structure of the XNF7 B-box zinc-binding domain determined at physiological pH by 1H NMR methods. The B-box structure represents the first three-dimensional structure of this new motif and comprises a monomer have two beta-strands, two helical turns and three extended loop regions packed in a novel topology. The r.m.s. deviation for the best 18 structures is 1.15 A for backbone atoms and 1.94 A for all atoms. Structure calculations and biochemical data shows one zinc atom ligated in a Cys2-His2 tetrahedral arrangement. We have used mutant peptides to determine the metal ligation scheme which surprisingly shows that not all of the seven conserved cysteines/histidines in the B-box motif are involved in metal ligation. The B-box structure is not similar in tertiary fold to any other known zinc-binding motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号