首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Toll/interleukin-1 receptor (TIR) family members play important roles in host defense. These receptors signal through TIR domain-containing adapter proteins. In this report, we identified a novel TIR domain-containing adapter protein designated as TIRP. Co-immunoprecipitation experiments suggest that TIRP is associated with IL-1 receptors. TIRP also interacts with kinase-inactive mutants of IRAK and IRAK-4, IRAK-2, IRAK-M, and TRAF6. Overexpression of TIRP activates NF-kappaB and potentiates IL-1 receptor-mediated NF-kappaB activation. A dominant negative mutant of TIRP inhibits IL-1- but not tumor necrosis factor-triggered NF-kappaB activation. Moreover, TIRP-mediated NF-kappaB activation is inhibited by dominant negative mutants of IRAK, IRAK-2, TRAF6, and IKKbeta. Our findings suggest that TIRP is involved in IL-1-triggered NF-kappaB activation and functions upstream of IRAK, IRAK-2, TRAF6, and IKKbeta  相似文献   

2.
Toll and interleukin-1 receptor (TIR) domains were originally described from comparisons of proteins found in mammals and Drosophila. They are now known to occur in several organisms, with the most TIR proteins being found in ARABIDOPSIS: our analysis of the sequenced Arabidopsis genome has revealed the presence of at least 135 proteins containing TIR domains. Several novel types of TIR-domain-containing proteins are found in Arabidopsis that are not found in other genomes. Here, we discuss the roles of TIR-domain-containing proteins in pathogen resistance and as candidate signaling modules.  相似文献   

3.
Toll/interleukin-1 receptor (TIR) domain-containing adapter protein/MyD88 adapter-like (TIRAP/Mal) is an adapter protein that facilitates recruitment of MyD88 to TLR4 and TLR2 signaling complexes. We previously generated a library of cell-permeating TLR4 TIR-derived decoy peptides fused to the translocating segment of the Drosophila Antennapedia homeodomain and examined each peptide for the ability to inhibit TLR4 signaling (Toshchakov, V. Y., Szmacinski, H., Couture, L. A., Lakowicz, J. R., and Vogel, S. N. (2011) J. Immunol. 186, 4819-4827). We have now expanded this study to test TIRAP decoy peptides. Five TIRAP peptides, TR3 (for TIRAP region 3), TR5, TR6, TR9, and TR11, inhibited LPS-induced cytokine mRNA expression and MAPK activation. Inhibition was confirmed at the protein level; select peptides abolished the LPS-induced cytokine production measured in cell culture 24 h after a single treatment. Two of the TLR4 inhibitory peptides, TR3 and TR6, also inhibited cytokine production induced by a TLR2/TLR1 agonist, S-(2,3-bis(palmitoyloxy)-(2R,2S)-propyl)-N-palmitoyl-(R)-Cys-Ser-Lys(4)-OH; however, a higher peptide concentration was required to achieve comparable inhibition of TLR2 versus TLR4 signaling. Two TLR4 inhibitory peptides, TR5 and TR6, were examined for the ability to inhibit TLR4-driven cytokine induction in mice. Pretreatment with either peptide significantly reduced circulating TNF-α and IL-6 in mice following LPS injection. This study has identified novel TLR inhibitory peptides that block cellular signaling at low micromolar concentrations in vitro and in vivo. Comparison of TLR4 inhibition by TLR4 and TIRAP TIR-derived peptides supports the view that structurally diverse regions mediate functional interactions of TIR domains.  相似文献   

4.
MyD88 is a Toll/IL-1 receptor (TIR) domain-containing adapter common to signaling pathways via Toll-like receptor (TLR) family. However, accumulating evidence demonstrates the existence of a MyD88-independent pathway, which may explain unique biological responses of individual TLRs, particularly TLR3 and TLR4. TIR domain-containing adapter protein (TIRAP)/MyD88 adapter-like, a second adapter harboring the TIR domain, is essential for MyD88-dependent TLR2 and TLR4 signaling pathways, but not for MyD88-independent pathways. Here, we identified a novel TIR domain-containing molecule, named TIR domain-containing adapter inducing IFN-beta (TRIF). As is the case in MyD88 and TIRAP, overexpression of TRIF activated the NF-kappaB-dependent promoter. A dominant-negative form of TRIF inhibited TLR2-, TLR4-, and TLR7-dependent NF-kappaB activation. Furthermore, TRIF, but neither MyD88 nor TIRAP, activated the IFN-beta promoter. Dominant-negative TRIF inhibited TLR3-dependent activation of both the NF-kappaB-dependent and IFN-beta promoters. TRIF associated with TLR3 and IFN regulatory factor 3. These findings suggest that TRIF is involved in the TLR signaling, particularly in the MyD88-independent pathway.  相似文献   

5.
The Toll/interleukin-1 (IL-1) receptor (TIR) family comprises two groups of transmembrane proteins, which share functional and structural properties. The members of the IL-1 receptor (IL-1R) subfamily are characterized by three extracellular immunoglobulin (Ig)-like domains. They form heterodimeric signaling receptor complexes consisting of receptor and accessory proteins. The members of the Toll-like receptor (TLR) subfamily recognize alarm signals that can be derived either from pathogens or the host itself. TLRs possess leucine-rich repeats in their extracellular part. TLRs can form dimeric receptor complexes consisting of two different TLRs or homodimers in the case of TLR4. The TLR4 receptor complex requires supportive molecules for optimal response to its ligand lipopolysaccharide (LPS). A hallmark of the TIR family is the cytoplasmic TIR domain that is indispensable for signal transduction. The TIR domain serves as a scaffold for a series of protein-protein interactions which result in the activation of a unique signaling module consisting of MyD88, interleukin-1 receptor associated kinase (IRAK) family members and Tollip, which is used exclusively by TIR family members. Subsequently, several central signaling pathways are activated in parallel, the activation of NFkappaB being the most prominent event of the inflammatory response. Recent developments indicate that in addition to the common signaling module MyD88/IRAK/Tollip, other molecules can modulate signaling by TLRs, especially of TLR4, resulting in differential biological answers to distinct pathogenic structures. Subtle differences in TLR signaling pathways are now becoming apparent, which reveal how the innate immune system decides at a very early stage the direction in which the adaptive immune response will develop. The creation of pathogen-specific mediator environments by dendritic cells defines whether a cellular or humoral response will be activated in response to the pathogen.  相似文献   

6.
7.
8.
In this study we have identified members of the Toll-like receptor (TLR) family (namely, TLRs 4, 6, 8, and 9) as proteins to which the intracellular protein tyrosine kinase, Bruton's tyrosine kinase (Btk), binds. Detailed analysis of the interaction between Btk and TLR8 demonstrates that the presence of both Box 2 and 3 motifs in the Toll/interleukin-1 receptor domain was required for the interaction. Furthermore, co-immunoprecipitation experiments revealed that Btk can also interact with key proteins involved in TLR4 signal transduction, namely, MyD88, Mal (MyD88 adapter-like protein), and interleukin-1 receptor-associated kinase-1, but not TRAF-6. The ability of Btk to interact with TLR4 and Mal suggests a role for Btk in lipopolysaccharide (LPS) signal transduction. Stimulation of the human monocytic cell line THP-1 with LPS resulted in an increase in the level of tyrosine phosphorylation of Btk (indicative of activation). The autokinase activity of Btk was also stimulated after LPS stimulation. In addition, a dominant negative form of Btk inhibited TLR4-mediated activation of a nuclear factor kappaB (NFkappaB)-dependent reporter gene in HEK293 cells as well as LPS-induced activation of NFkappaB in the astrocytoma cell line U373 and the monocytic cell line RAW264.7. Further investigation revealed that the Btk-specific inhibitor, LFM-A13, inhibited the activation of NFkappaB by LPS in THP-1 cells. Our findings implicate Btk as a Toll/interleukin-1 receptor domain-binding protein that is important for NFkappaB activation by TLR4.  相似文献   

9.
10.
11.
The Toll/interleukin 1 receptor (TIR) domain is a region found in the cytoplasmic tails of members of the Toll-like receptor/interleukin-1 receptor superfamily. The domain is essential for signaling and is also found in the adaptor proteins Mal (MyD88 adaptor-like) and MyD88, which function to couple activation of the receptor to downstream signaling components. Experimental structures of two Toll/interleukin 1 receptor domains reveal a alpha-beta-fold similar to that of the bacterial chemotaxis protein CheY, and other evidence suggests that the adaptors can make heterotypic interactions with both the receptors and themselves. Here we show that the purified TIR domains of Mal and MyD88 can form stable heterodimers and also that Mal homodimers and oligomers are dissociated in the presence of ATP. To identify structural features that may contribute to the formation of signaling complexes, we produced models of the TIR domains from human Toll-like receptor 4 (TLR4), Mal, and MyD88. We found that although the overall fold is conserved the electrostatic surface potentials are quite distinct. Docking studies of the models suggest that Mal and MyD88 bind to different regions in TLRs 2 and 4, a finding consistent with a cooperative role of the two adaptors in signaling. Mal and MyD88 are predicted to interact at a third non-overlapping site, suggesting that the receptor and adaptors may form heterotetrameric complexes. The theoretical model of the interactions is supported by experimental data from glutathione S-transferase pull-downs and co-immunoprecipitations. Neither theoretical nor experimental data suggest a direct role for the conserved proline in the BB-loop in the association of TLR4, Mal, and MyD88. Finally we show a sequence relationship between the Drosophila protein Tube and Mal that may indicate a functional equivalence of these two adaptors in the Drosophila and vertebrate Toll pathways.  相似文献   

12.
13.
Toll-like receptor signaling requires interactions of the Toll/IL-1 receptor (TIR) domains of the receptor and adapter proteins. Using the mammalian protein-protein interaction trap strategy, homology modeling, and site-directed mutagenesis, we identify the interaction surfaces in the TLR4 TIR domain for the TLR4-TLR4, TLR4-MyD88 adapter-like (MAL), and TLR4-TRIF-related adapter molecule (TRAM) interaction. Two binding sites are equally important for TLR4 dimerization and adapter recruitment. In a model based on the crystal structure of the dimeric TLR10 TIR domain, the first binding site mediates TLR4-TLR4 TIR-TIR interaction. Upon dimerization, two identical second binding sites of the TLR4 TIR domain are juxtaposed and form an extended binding platform for both MAL and TRAM. In our mammalian protein-protein interaction trap assay, MAL and TRAM compete for binding to this platform. Our data suggest that adapter binding can stabilize the TLR4 TIR dimerization.  相似文献   

14.
Kank proteins: a new family of ankyrin-repeat domain-containing proteins   总被引:2,自引:0,他引:2  
The human Kank gene was found as a candidate tumor suppressor for renal cell carcinoma, and encodes an ankyrin-repeat domain-containing protein, Kank. Here, we report a new family of proteins consisting of three Kank (Kank1)-associated members, Kank2, Kank3 and Kank4, which were found by domain and phylogenetic analyses. Besides the conserved ankyrin-repeat and coiled-coil domains, there was a conserved motif at the N-terminal (KN motif) containing potential motifs for nuclear localization and export signals. Gene expression of these genes was examined by RT-PCR at the mRNA level and by Western blotting and immunostaining at the protein level. Kank family genes showed variations in the expression level among tissues and kidney cell lines. Furthermore, the results of overexpression of these genes in NIH3T3 cells suggest that all of these family proteins have an identical role in the formation of actin stress fibers.  相似文献   

15.
The Toll/interleukin-1 receptor (TIR) domain is conserved in the intracellular regions of Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs) as well as in several cytoplasmic adapter molecules. This domain has crucial roles in signal transduction by these receptors for host immune response. Here we report the crystal structure at 2.3-A resolution of the TIR domain of human IL-1RAPL, the first structure of a TIR domain of the IL-1R superfamily. There are large structural differences between this TIR domain and that of TLR1 and TLR2. Helix alphaD in IL-1RAPL is almost perpendicular to its equivalent in TLR1 or TLR2. The BB loop contains a hydrogen bond unique to IL-1RAPL between Thr residues at the 8th and 10th positions. The structural and sequence diversity among these domains may be important for specificity in the signal transduction by these receptors. A dimer of the TIR domain of IL-1RAPL is observed in the crystal, although this domain is monomeric in solution. Residues in the dimer interface are mostly unique to IL-1RAPL, which is consistent with the distinct functional roles of this receptor. Our functional studies show IL-1RAPL can activate JNK but not the ERK or the p38 MAP kinases, whereas its close homolog, TIGIRR, cannot activate JNK. Deletion mutagenesis studies show that the activation of JNK by IL-1RAPL does not depend on the integrity of its TIR domain, suggesting a distinct mechanism of signaling through this receptor.  相似文献   

16.
17.
Agonist-induced dimerization of TLR4 Toll/IL-1R (TIR) domains initiates intracellular signaling. Therefore, identification of the TLR4-TIR dimerization interface is one key to the rational design of therapeutics that block TLR4 signaling. A library of cell-permeating decoy peptides, each of which represents a nonfragmented patch of the TLR4 TIR surface, was designed such that the peptides entirely encompass the TLR4 TIR surface. Each peptide was synthesized in tandem with a cell-permeating Antennapedia homeodomain sequence and tested for the ability to inhibit early cytokine mRNA expression and MAPK activation in LPS-stimulated primary murine macrophages. Five peptides--4R1, 4R3, 4BB, 4R9, and 4αE--potently inhibited all manifestations of TLR4, but not TLR2 signaling. When tested for their ability to bind directly to TLR4 TIR by F?rster resonance energy transfer using time-resolved fluorescence spectroscopy, Bodipy-TMR-X-labeled 4R1, 4BB, and 4αE quenched fluorescence of TLR4-Cerulean expressed in HeLa or HEK293T cells, whereas 4R3 was partially active, and 4R9 was least active. These findings suggest that the area between the BB loop of TLR4 and its fifth helical region mediates TLR4 TIR dimerization. Moreover, our data provide direct evidence for the utility of the decoy peptide approach, in which peptides representing various surface-exposed segments of a protein are initially probed for the ability to inhibit protein function, and then their specific targets are identified by F?rster resonance energy transfer to define recognition sites in signaling proteins that may be targeted therapeutically to disrupt functional transient protein interactions.  相似文献   

18.
HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway   总被引:31,自引:0,他引:31  
Human heat-shock protein (HSP)70 activates innate immune cells and hence requires no additional adjuvants to render bound peptides immunogenic. Here we tested the assumption that endogenous HSP70 activates the Toll/IL-1 receptor signal pathway similar to HSP60 and pathogen-derived molecular patterns. We show that HSP70 induces interleukin-12 (IL-12) and endothelial cell-leukocyte adhesion molecule-1 (ELAM-1) promoters in macrophages and that this is controlled by MyD88 and TRAF6. Furthermore, HSP70 causes MyD88 relocalization and MyD88-deficient dendritic cells do not respond to HSP70 with proinflammatory cytokine production. Using the system of genetic complementation with Toll-like receptors (TLR) we found that TLR2 and TLR4 confer responsiveness to HSP70 in 293T fibroblasts. The expanding list of endogenous ligands able to activate the ancient Toll/IL-1 receptor signal pathway is in line with the "danger hypothesis" proposing that the innate immune system senses danger signals even if they originate from self.  相似文献   

19.
20.
Opportunistic infections, common in HIV-1-infected patients, increase HIV replication; however, the intracellular signaling mechanisms involved are not clearly known. We have shown that Toll-like receptor 2 (TLR2), TLR4, and TLR9 mediate microbial Ag-induced HIV-long terminal repeat (HIV-LTR) trans-activation and HIV-1 replication, and that LPS-induced HIV-LTR trans-activation is mediated through myeloid differentiation adapter protein. Recently, Toll-IL-1R domain-containing adapter protein (TIRAP) has been identified as an adapter molecule that mediates responses to TLR2 and TLR4 ligands, and TIRAP was suggested to provide signaling specificity for different TLRs. Rac1, a small GTP-binding protein that is activated upon LPS stimulation of macrophages, activates phosphatidylinositol 3-kinase and Akt and leads to NF-kappaB activation. The roles of Rac1 and TIRAP in LPS activation of HIV replication is not known. In the present study we show that LPS stimulation of human microvessel endothelial cells leads to Rac1 activation. Constitutively active Rac1 (Rac1V12) simulated the effect of LPS to activate HIV-LTR, whereas the expression of dominant negative Rac1 (Rac1N17) partially blocked LPS-induced HIV-LTR trans-activation. Rac1V12-induced HIV-LTR activation was independent of myeloid differentiation adapter protein, and dominant negative TIRAP blocked Rac1V12-induced HIV-LTR trans-activation. In this study we show for the first time that activation of Rac1 leads to HIV-LTR trans-activation, and this is mediated through TIRAP. Together these results underscore the importance of Rac1 and TIRAP in TLR4 activation of HIV replication and help delineate the signaling pathways induced by TLRs to mediate microbial Ag-induced HIV replication and HIV pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号