首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Correction of fragile X syndrome in mice   总被引:5,自引:0,他引:5  
  相似文献   

2.
3.
The loss of fragile X mental retardation (FMR1) gene function causes fragile X syndrome (FXS), a common mental retardation syndrome. Anxiety and abnormal social behaviors are prominent features of FXS in humans. To better understand the role of FMR1 in these behaviors, we analyzed anxiety-related and social behaviors in Fmr1 knockout (KO) mice. In the mirrored chamber test, Fmr1 KO mice showed greater aversion to the central mirrored chamber than wild-type (WT) littermates, suggesting increased anxiety-like responses to reflected images of mice. Fmr1 KO mice exhibited abnormal social interactions in a tube test of social dominance, winning fewer matches than WT littermates. In a partition test, Fmr1 KO mice had normal levels of social interest and social recognition. However, during direct interaction tests, Fmr1 KO mice showed significant increases in sniffing behaviors. We further tested the influence of environmental familiarity on the social responses of Fmr1 KO mice to unfamiliar partners. In unfamiliar partitioned cages, Fmr1 KO mice did not differ from WT mice in investigation of unfamiliar partners. However, in familiar partitioned cages, Fmr1 KO mice showed less investigation of a newly introduced partner during the first 5 min and more investigation during the last 5 min of a 20-min partition test, behaviors consistent with initial social anxiety followed by enhanced social investigation. Our findings indicate that the loss of Fmr1 gene function results in altered anxiety and social behavior in mice and demonstrate that the Fmr1 KO mouse is a relevant animal model for the abnormal social responses seen in FXS.  相似文献   

4.
Fragile X syndrome is a leading heritable cause of mental retardation that results from the loss of FMR1 gene function. A Drosophila model for Fragile X syndrome, based on the loss of dfmr1 activity, exhibits phenotypes that bear similarity to Fragile X-related symptoms. Herein, we demonstrate that treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium can rescue courtship and mushroom body defects observed in these flies. Furthermore, we demonstrate that dfmr1 mutants display cognitive deficits in experience-dependent modification of courtship behavior, and treatment with mGluR antagonists or lithium restores these memory defects. These findings implicate enhanced mGluR signaling as the underlying cause of the cognitive, as well as some of the behavioral and neuronal, phenotypes observed in the Drosophila Fragile X model. They also raise the possibility that compounds having similar effects on metabotropic glutamate receptors may ameliorate cognitive and behavioral defects observed in Fragile X patients.  相似文献   

5.
Xu S  Poidevin M  Han E  Bi J  Jin P 《PloS one》2012,7(5):e37937
Fragile X syndrome is caused by the loss of the FMR1 gene product, fragile X mental retardation protein (FMRP). The loss of FMRP leads to altered circadian rhythm behaviors in both mouse and Drosophila; however, the molecular mechanism behind this phenomenon remains elusive. Here we performed a series of gene expression analyses, including of both mRNAs and microRNAs (miRNAs), and identified a number of mRNAs and miRNAs (miRNA-1 and miRNA-281) with circadian rhythm-dependent altered expression in dfmr1 mutant flies. Identification of these RNAs lays the foundation for future investigations of the molecular pathway(s) underlying the altered circadian rhythms associated with loss of dFmr1.  相似文献   

6.
Mutations that abolish expression of an X-linked gene, FMR1, result in the pathogenesis of fragile X syndrome, the most common form of inherited mental retardation. To understand the normal function of the FMR1 protein, we have produced fly strains bearing deletions in a Drosophila homolog of FMR1 (dfmr1). Since fragile X patients show a number of abnormal behaviors including sleep problems, we investigated whether a loss-of-function mutation of dfmr1 affect circadian behavior. Here we show that under constant darkness (DD), a lack of dfmr1 expression causes arrhythmic locomotor activity, but in light:dark cycles, their behavioral rhythms appear normal. In addition, the clock-controlled eclosion rhythm is normal in DFMR1-deficient flies. These results suggest that DFMR1 plays a critical role in the circadian output pathway regulating locomotor activity in Drosophila.  相似文献   

7.
8.
The fragile X mental retardation syndrome is caused by large methylated expansions of a CGG repeat in the FMR1 gene that lead to the loss of expression of FMRP, an RNA-binding protein. FMRP is proposed to act as a regulator of mRNA transport or translation that plays a role in synaptic maturation and function. The recent observations of unexpected phenotypes in some carriers of fragile X premutations suggest a pathological role, in these individuals, of an abnormal FMR1 mRNA. FMRP was recently shown to interact preferentially with mRNAs containing a G quartet structure. Mouse and Drosophila models are used to decipher the function of FMRP, which was found to inhibit translation of some mRNA targets, but may be stimulatory in other cases. Proteins interacting with FMRP have been identified, and suggest a link with the Rac1 GTPase pathway that is important in neuronal maturation. Recent advances also include identification of other genes implicated in X-linked mental retardation.  相似文献   

9.
10.
Wang H  Wu LJ  Kim SS  Lee FJ  Gong B  Toyoda H  Ren M  Shang YZ  Xu H  Liu F  Zhao MG  Zhuo M 《Neuron》2008,59(4):634-647
The fragile X mental retardation protein (FMRP) is an RNA-binding protein that controls translational efficiency and regulates synaptic plasticity. Here, we report that FMRP is involved in dopamine (DA) modulation of synaptic potentiation. AMPA glutamate receptor subtype 1 (GluR1) surface expression and phosphorylation in response to D1 receptor stimulation were reduced in cultured Fmr1(-/-) prefrontal cortex (PFC) neurons. Furthermore, D1 receptor signaling was impaired, accompanied by D1 receptor hyperphosphorylation at serine sites and subcellular redistribution of G protein-coupled receptor kinase 2 (GRK2) in both PFC and striatum of Fmr1(-/-) mice. FMRP interacted with GRK2, and pharmacological inhibition of GRK2 rescued D1 receptor signaling in Fmr1(-/-) neurons. Finally, D1 receptor agonist partially rescued hyperactivity and enhanced the motor function of Fmr1(-/-) mice. Our study has identified FMRP as a key messenger for DA modulation in the forebrain and may provide insights into the cellular and molecular mechanisms underlying fragile X syndrome.  相似文献   

11.
Understanding fragile X syndrome: insights from retarded flies   总被引:2,自引:0,他引:2  
Gao FB 《Neuron》2002,34(6):859-862
Fragile X syndrome, the most common form of inherited mental retardation, is caused by loss-of-function mutations in the fragile X mental retardation 1 (fmr1) gene. FMR1 is an RNA binding protein that is highly expressed in neurons of the central nervous system. Recent studies in Drosophila indicate that FMR1 plays an important role in synaptogenesis and axonal arborization, which may underlie the observed deficits in flight ability and circadian behavior of fmr1 mutant flies. The relevance of these studies to our understanding of fragile X syndrome is discussed.  相似文献   

12.
The fragile X mental retardation syndrome is caused by large methylated expansions of a CGG repeat in the FMR1 gene leading to the loss of expression of FMRP, an RNA-binding protein. FMRP is proposed to act as a regulator of mRNA transport or translation that plays a role in synaptic maturation and function. To study the physiological function of the FMR1 protein, mouse and Drosophila models have been developed. The loss-of-function mouse model shows slightly enlarged testes, a subtle behavioral phenotype, and discrete anomalies of dendrite spines similar to those observed in brains of patients. Studies in Drosophila indicate that FXMR plays an important role in synaptogenesis and axonal arborization, which may underlie the observed deficits in flight ability and circadian behavior of FXR mutant flies. The relevance of these studies to our understanding of fragile X syndrome is discussed.  相似文献   

13.
Fragile X syndrome is caused by loss-of-function mutations in the fragile X mental retardation 1 gene. How these mutations affect neuronal development and function remains largely elusive. We generated specific point mutations or small deletions in the Drosophila fragile X-related (Fmr1) gene and examined the roles of Fmr1 in dendritic development of dendritic arborization (DA) neurons in Drosophila larvae. We found that Fmr1 could be detected in the cell bodies and proximal dendrites of DA neurons and that Fmr1 loss-of-function mutations increased the number of higher-order dendritic branches. Conversely, overexpression of Fmr1 in DA neurons dramatically decreased dendritic branching. In dissecting the mechanisms underlying Fmr1 function in dendrite development, we found that the mRNA encoding small GTPase Rac1 was present in the Fmr1-messenger ribonucleoprotein complexes in vivo. Mosaic analysis with a repressor cell marker (MARCM) and overexpression studies revealed that Rac1 has a cell-autonomous function in promoting dendritic branching of DA neurons. Furthermore, Fmr1 and Rac1 genetically interact with each other in controlling the formation of fine dendritic branches. These findings demonstrate that Fmr1 affects dendritic development and that Rac1 is partially responsible for mediating this effect.  相似文献   

14.
A slight increase in mean corpuscular hemoglobin (MCH) has been reported in erythrocytes from human fragile X patients. As it is difficult to perform casecontrolled studies in patients with fragile X syndrome, we studied MCH in erythrocytes from transgenic mice with an Fmr1 knockout. None of the knockout mice showed increased MCH levels when compared with normal littermates. We conclude that it is unlikely that the FMR1 gene product has an effect on MCH.  相似文献   

15.
16.
Fragile X syndrome (FXS) is a developmental disorder caused by the loss of Fragile X Mental Retardation 1 (FMR1) gene function because of a CGG repeat expansion (> 200 repeats) in the gene. The molecular mechanism(s) linking loss of FMR1 function to the molecular pathology and cognitive/behavioral disability remain unclear. Given the critical role of extracellular signal-regulated kinase (ERK) in synaptic plasticity and neurodevelopment, a number of recent studies have investigated ERK phosphorylation under basal conditions or upon mGluR-induction using neuronal and peripheral tissues from Fmr1 knockout mice and peripheral tissues from FXS patients. However, these reports have presented conflicting results. The current study is the first to focus on the levels of ERK phosphorylation in brain tissue from human FXS patients. In both human brain tissue and brain tissue from Fmr1 knockout mice there was significantly increased phosphorylation of MEK1/2 and ERK. Indeed, treating Fmr1 knockout mice with the MEK1/2 inhibitor SL327 abrogated audiogenic seizure activity, a feature of the Fmr1 knockout mice that replicates the symptom in patients with FXS. These findings suggest that activation of the ERK pathway results in some cardinal cognitive and clinical features in FXS patients and likely have profound translational implications.  相似文献   

17.
High resolution cytogenetics, microsatellite marker analyses, and fluorescence in situ hybridization were used to define Xq deletions encompassing the fragile X gene, FMR1, detected in individuals from two unrelated families. In Family 1, a 19-year-old male had facial features consistent with fragile X syndrome; however, his profound mental and growth retardation, small testes, and lover limb skeletal defects and contractures demonstrated a more severe phenotype, suggestive of a contiguous gene syndrome. A cytogenetic deletion including Xq26.3–q27.3 was observed in the proband, his phenotypically normal mother, and his learning-disabled non-dysmorphic sister. Methylation analyses at the FMR1 and androgen receptor loci indicated that the deleted X was inactive in > 95% of his mother’s white blood cells and 80–85% of the sister’s leukocytes. The proximal breakpoint for the deletion was approximately 10 Mb centromeric to FMR1, and the distal breakpoint mapped 1 Mb distal to FMR1. This deletion, encompassing ∼13 Mb of DNA, is the largest deletion including FMR1 reported to date. In the second family, a slightly smaller deletion was detected. A female with moderate to severe mental retardation, seizures, and hypothyroidism, had a de novo cytogenetic deletion extending from Xq26.3 to q27.3, which removed ∼12 Mb of DNA around the FMR1 gene. Cytogenetic and molecular data revealed that ∼50% of her white blood cells contained an active deleted X. These findings indicate that males with deletions including Xq26.3–q27.3 may exhibit a more severe phenotype than typical fragile X males, and females with similar deletions may have an abnormal phenotype if the deleted X remains active in a significant proportion of the cells. Thus, important genes for intellectual and neurological development, in addition to FMR1, may reside in Xq26.3–q27.3. One candidate gene in this region, SOX3, is thought to be involved in neuronal development and its loss may partly explain the more severe phenotypes of our patients. Received: 19 December 1996 / Accepted: 13 March 1997  相似文献   

18.
Fragile X mental retardation gene (FMR1) encodes an RNA binding protein that acts as a negative translational regulator. We have developed a Drosophila fragile X syndrome model using loss-of-function mutants and overexpression of the FMR1 homolog (dfxr). dfxr nulls display enlarged synaptic terminals, whereas neuronal overexpression results in fewer and larger synaptic boutons. Synaptic structural defects are accompanied by altered neurotransmission, with synapse type-specific regulation in central and peripheral synapses. These phenotypes mimic those observed in mutants of microtubule-associated Futsch. Immunoprecipitation of dFXR shows association with futsch mRNA, and Western analyses demonstrate that dFXR inversely regulates Futsch expression. dfxr futsch double mutants restore normal synaptic structure and function. We propose that dFXR acts as a translational repressor of Futsch to regulate microtubule-dependent synaptic growth and function.  相似文献   

19.
Fragile X syndrome (FXS) - the leading cause of inherited mental retardation - is an X-linked disease caused by loss of expression of the FMR1 (fragile X mental retardation 1) gene. In addition to impairment of higher-cognitive functions, FXS patients show a variety of physical and other mental abnormalities. FMRP, the protein encoded by the FMR1 gene, is thought to play a key role in translation, trafficking and targeting of mRNA in neurons. To better understand FMRP's functions, the protein partners and mRNA targets that interact with FMRP have been sought. These and functional studies have revealed links with processes such as cytoskeleton remodelling via the RhoGTPase pathway and mRNA processing via the RNA interference pathway. In this review, we focus on recent insights into the function of FMRP and speculate on how the absence of FMRP might cause the clinical phenotypes seen in FXS patients. Finally, we explore potential therapies for FXS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号