首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of vascular tone and blood flow involves interactions between numerous local and systemic vascular control signals, many of which are altered by Type 2 diabetes (T2D). Vascular responses to endothelin-1 (ET-1) are mediated by endothelin type A (ET(A)) and type B (ET(B)) receptors that have been implicated in cross talk with alpha(1)-adrenoceptors (alpha(1)-AR). ET(A) and ET(B) receptor expression and plasma ET-1 levels are elevated in T2D; however, whether this influences coronary alpha(1)-AR function has not been examined. Therefore, we examined the effect of ET(A) and ET(B) receptor inhibition on coronary vasoconstriction to ET-1 and alpha(1)-AR activation in a mouse model of T2D. Coronary vascular responses were examined in isolated mouse hearts from control and diet-induced T2D C57BL/6J mice. Responses to ET-1 and the selective alpha(1)-AR agonist phenylephrine (PE) were examined alone and in the presence of the nitric oxide synthase inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME) alone or in combination with selective ET(A) or ET(B) receptor inhibitors BQ-123 and BQ-788, respectively. Vasoconstriction to ET-1 was enhanced, whereas ET(B), but not ET(A), receptor blockade reduced basal coronary tone in T2D hearts. In the presence of l-NAME, ET(A) receptor inhibition attenuated ET-1 vasoconstriction in both groups, whereas ET(B) inhibition abolished this response only in control hearts. In addition, ET(A) inhibition enhanced alpha(1)-AR-mediated vasoconstriction in T2D, but not control, hearts following l-NAME treatment. Therefore, in this model, enhanced coronary ET-1 responsiveness is mediated primarily through smooth muscle ET(B) receptors, whereas the interaction with alpha(1)-ARs is mediated solely through the ET(A) receptor subtype.  相似文献   

2.
Endothelin-1 (ET-1) and nitric oxide (NO) exert opposite effects in the cardiovascular system, and there is evidence that the NO counters the potential deleterious effects of ET-1. We investigated whether NO affects the increased mRNA expression of ET-1 and endothelin receptors induced by (i) 30 min of ischemia with or without 30 min reperfusion in myocytes from isolated rat hearts or (ii) ischemic conditions (acidosis or hypoxia) in cultured rat neonatal ventricular myocytes. Ischemia with or without reperfusion produced more than a twofold increase in mRNA expression of ET-1 as well as the ET(A) and ET(B) receptor (P < 0.05), although these effects were completely blocked by the NO donor 3-morpholinosydnonimine (SIN-1; 1 microM). To assess the possible factors regulating ET expression, myocytes were exposed to acidosis (pH 6.8-6.2) or to hypoxic conditions in an anaerobic chamber for 24 h in the presence or absence of SIN-1. At all acidic pHs, ET-1 and ET(A) receptor mRNA expression was significantly (P < 0.05) elevated approximately threefold, although the magnitude of elevation was independent of the degree of acidosis. These effects were completely prevented by SIN-1. ET(B) receptor expression was unaffected by acidosis. Hypoxia increased ET-1 as well as ET(A) and ET(B) receptor expression threefold (P < 0.05), although this was unaffected by SIN-1. Our results demonstrate that myocardial ischemia and reperfusion upregulate the ET system, which is inhibited by NO. Although increased expression of the ET system can be mimicked by both acidosis and hypoxia, only the effects of the former are NO sensitive. NO may serve an endogenous inhibitory factor which regulates the expression of the ET system under pathological conditions.  相似文献   

3.
Endothelin-1 (ET-1) is an autocrine factor in the mammalian heart important in enhancing cardiac performance, protecting against myocardial ischemia, and initiating the development of cardiac hypertrophy. The ETA receptor is a seven-transmembrane G-protein-coupled receptor whose precise subcellular localization in cardiac muscle is unknown. Here we used fluorescein ET-1 and 125I-ET-1 to provide evidence for ET-1 receptors in cardiac transverse tubules (T-tubules). Moreover, the ETA receptor and downstream effector phospholipase C-beta 1 were co-localized within T-tubules using standard immunofluorescence techniques, and protein kinase C (PKC)-epsilon-enhanced green fluorescent protein bound reversibly to T-tubules upon activation. Localized photorelease of diacylglycerol further suggested compartmentation of PKC signaling, with release at the myocyte "surface" mimicking the negative inotropic effects of bath-applied PKC activators and "deep" release mimicking the positive inotropic effect of ET-1. The functional significance of T-tubular ET-1 receptors was further tested by rendering the T-tubule lumen inaccessible to bath-applied ET-1. Such "detubulated" cardiac myocytes showed no positive inotropic response to 20 nM ET-1, despite retaining both a nearly normal twitch response to field stimulation and a robust positive inotropic response to 20 nm isoproterenol. We propose that ET-1 enhances myocyte contractility by activating ETA receptor-phospholipase C-beta 1-PKC-epsilon signaling complexes preferentially localized in cardiac T-tubules. Compartmentation of ET-1 signaling complexes may explain the discordant effects of ET-1 versus bath applied PKC activators and may contribute to both the specificity and diversity of the cardiac actions of ET-1.  相似文献   

4.
Both endothelin (ET) and adrenomedullin (AM), produced by cardiac myocytes, are thought to be locally-acting hormones in the heart. Recently, calcitonin receptor-like receptor (CRLR) and receptor activity modifying proteins (RAMPs) have been shown to function together to serve as AM receptors stimulating cAMP production. In the present study, we examined the effects of ET on AM secretion, intracellular cAMP response to AM, and gene expressions of CRLR and RAMPs in cultured cardiac myocytes. Synthetic ET-1 dose-dependently increased AM secretion from the cardiomyocytes. AM increased the intracellular cAMP level in a dose-dependent manner and the cAMP accumulation by AM was significantly amplified by 24 h preincubation with ET-1. 10 nmol/L ET-1 significantly increased the CRLR mRNA level without any effect on RAMP1 mRNA. 1 micromol/L ET-1 significantly reduced the RAMP2 mRNA level, but ET-1 dose-dependently increased the RAMP3 mRNA level in the cardiac myocytes. These findings suggest that ET-1 not only stimulates AM secretion, but also modulates intracellular cAMP responses to AM probably by altering the expressions of CRLR and RAMPs in rat cardiomyocytes.  相似文献   

5.
Endothelin-A (ET(A)) and endothelin-B (ET(B)) receptors have been demonstrated in intact heart and cardiac membranes. ET(A) receptors have been demonstrated on adult ventricular myocytes. The aim of the present study was to determine the presence of ET(B) and the relative contribution of this receptor subtype to total endothelin-1 (ET-1) binding on adult ventricular myocytes. Saturation binding experiments indicated that ET-1 bound to a single population of receptors (Kd = 0.52 +/- 0.13 nM, n = 4) with an apparent maximum binding (Bmax) of 2.10 +/- 0.25 sites (x 10(5))/cell (n = 4). Competition experiments using 40 pM [125I]ET-1 and nonradioactive ET-1 revealed a Ki of 660 +/- 71 pM (n = 10) and a Hill coefficient (nH) of 0.99 +/- 0.10 (n = 10). A selective ET(A) antagonist, BQ610, displaced 80% of the bound [125I]ET-1. No displacement was observed by concentrations of an ET(B)-selective antagonist, BQ788, up to 1.0 microM. However, in the presence of 1.0 microM BQ610, BQ788 inhibited the remaining [125I]ET-1 binding. Similarly, in the presence of 1.0 microM BQ788, BQ610 inhibited the remaining specific [125I]ET-1 binding. Binding of an ET(B1)-selective agonist, [125I]IRL-1620, confirmed the presence of ET(B). ET(B) bound to ET-1 irreversibly, whereas binding to ET(A) demonstrated both reversible and irreversible components, and BQ610 and BQ788 bound reversibly. Reducing the incubation temperature to 0 degrees C did not alter the irreversible component of ET-1 binding. Hence, both ET(A) and ET(B) receptors are present on intact adult rat ventricular myocytes, and the ratio of ET(A):ET(B) binding sites is 4:1. Both receptor subtypes bind to ET-1 by a two-step association involving the formation of a tight receptor-ligand complex; however, the kinetics of ET-1 binding to ET(A) versus ET(B) differ.  相似文献   

6.
Recent studies have shown that CD36 plays important roles as a major scavenger receptor for oxidized low-density lipoproteins and as a crucial transporter for long-chain fatty acids. CD36 deficiency might be associated with insulin resistance and abnormal dynamics of long-chain fatty acids. Endothelin-1 (ET-1), which is synthesized and secreted by vascular endothelial cells, is the most potent endogenous vasoconstrictor known and also stimulates the proliferation of vascular smooth muscle cells (VSMCs) and thus is believed to play an important role in the development of various circulatory disorders, including hypertension and atherosclerosis. The aim of the present study was to investigate the regulatory effect of ET-1 on CD36 expression in cultured VSMCs. VSMCs were treated for different times (0-24 h) with a fixed concentration (100 nM) of ET-1 or with different concentrations (0-100 nM) for a fixed time (24 h); then CD36 expression was determined using Western blots. CD36 expression was significantly decreased by ET in a time- and dose-dependent manner. This inhibitory effect was prevented by the ET(A) receptor antagonist BQ-610 (10 microM) but not the ET(B) receptor antagonist BQ-788 (10 microM). To further explore the underlying mechanisms of ET-1 action, we examined the involvement of the tyrosine kinase-mediated and MAPK-mediated pathways. The inhibitory effect of ET-1 on CD36 protein expression was blocked by inhibition of tyrosine kinase activation by use of genistein (100 microM) and by the ERK inhibitor PD-98059 (75 microM) but not by the p38 MAPK inhibitor SB-203580 (20 microM). In conclusion, we have demonstrated that ET-1, acting via the ET(A) receptor, suppresses CD36 protein expression in VSMCs by activation of the tyrosine kinase and ERK pathways.  相似文献   

7.
The hepatopulmonary syndrome (HPS) results from intrapulmonary vasodilation in the setting of cirrhosis and portal hypertension. In experimental HPS, pulmonary endothelial endothelin B (ET(B)) receptor overexpression and increased circulating endothelin-1 (ET-1) contribute to vasodilation through enhanced endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) production. In both experimental cirrhosis and prehepatic portal hypertension, ET(B) receptor overexpression correlates with increased vascular shear stress, a known modulator of ET(B) receptor expression. We investigated the mechanisms of pulmonary endothelial ET(B) receptor-mediated eNOS activation by ET-1 in vitro and in vivo. The effect of shear stress on ET(B) receptor expression was assessed in rat pulmonary microvascular endothelial cells (RPMVECs). The consequences of ET(B) receptor overexpression on ET-1-dependent ET(B) receptor-mediated eNOS activation were evaluated in RPMVECs and in prehepatic portal hypertensive animals exposed to exogenous ET-1. Laminar shear stress increased ET(B) receptor expression in RPMVECs without altering mRNA stability. Both shear-mediated and targeted overexpression of the ET(B) receptor enhanced ET-1-mediated ET(B) receptor-dependent eNOS activation in RPMVECs through Ca(2+)-mediated signaling pathways and independent of Akt activation. In prehepatic portal hypertensive animals relative to control, ET-1 administration also activated eNOS independent of Akt activation and triggered HPS. These findings support that increased pulmonary microvascular endothelial ET(B) receptor expression modulates ET-1-mediated eNOS activation, independent of Akt, and contributes to the development of HPS.  相似文献   

8.
Endothelin-1 (ET-1) has acute positive inotropic effects, but consequences of chronically increased ET-1 on contractile function of cardiac myocytes are largely unknown. In the present study, effects of long-term treatment with ET-1 (10 nM) for 5 days on both force development [force of contraction (FOC)] and kinetics of contraction were determined in heart tissue reconstituted from rat cardiac cells. Isometric force was measured in response to cumulative concentrations of Ca(2+) and isoprenaline. ET-1 augmented basal FOC by 64 +/- 11% (P < 0.05), which was associated with a significantly blunted contractile response to Ca(2+) and isoprenaline. Moreover, ET-1 significantly prolonged relaxation (62 +/- 3 vs. 53 +/- 2 ms). Selective ET(A) (BQ-123) and ET(B) receptor blockade (BQ-788) demonstrated that effects of ET-1 on contractile function were mediated through the ET(A) receptor subtype. Effects of ET-1 were prevented by cotreatment with either Ro31-8425, a PKC inhibitor, or dimethylamiloride, an inhibitor of the Na(+)/H(+) exchanger. In contrast to long-term ET-1 treatment, no changes in contractile parameters were observed after ET-1 treatment for 3 h before force measurement. These data suggest that chronic ET-1 stimulation has dual effects on contractility: improvement of basal force but impairment of twitch kinetics and inotropic responsiveness to beta-adrenoceptor stimulation. The signaling pathways involved include ET(A) receptors, PKC, and the Na(+)/H(+) exchanger. The present in vitro findings raise the possibility that ET-1 may exert both adaptive and maladaptive effects in the failing myocardium in which local accumulation of ET-1 is present.  相似文献   

9.
Endothelin-1 (ET-1) pathophysiologic actions are mediated via binding with two receptor subtypes, ET(A) and ET(B). Release of ET-1 from endocardial endothelial cells and cardiac myocytes can modulate heart tissue necrosis and alterations. This study investigates the remodeling processes in Sprague-Dawley rats of myocardial infarction (MI) induced by ligating the left anterior descending coronary artery. Histological studies were done on cell type distribution using cell specific markers and Western blot analysis to localize ET-1 receptor subtypes and assess their expression post-MI. In addition, the binding kinetics of ET-1 with its receptors in heart perfusion, inlet via the aortic lumen and effluent outlet via the right atrium, between two animal model-subgroups were done: (1) sham-operated, and sham-operated-CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate)-treated; and (2) MI-operated, and MI-operated-CHAPS-treated. Effluent ET-1 concentration was plotted vs. time using a physical model for 1:1 ligand-receptor binding at coronary endothelium and myocytes. First order impulse function was used to calculate the affinity constants. In MI hearts, fluorescence activity increased for ET(A) vs. ET(B) across areas of the muscle compared to normal hearts. Western blotting showed upregulation of ET(A) and ET(B) receptors in MI compared with normal hearts. Results of ET-1 binding affinity post-MI indicated drastic reduction in spite the upregulation of ET(B) on coronary endothelium. Furthermore, substantial affinity increase was observed between ET-1 binding with ET(A) at the myocyte site. These findings stipulate that during 1 month post-MI some biochemical and hormonal effects could alter ET-1 receptor subtype(s) regulation and pharmacodynamics thus predisposing to cardiac hypertrophy and mitogenesis.  相似文献   

10.
We examined endothelin-1 (ET-1) regulation of the xenobiotic efflux pump, multidrug resistance-associated protein isoform 2 (MRP2), in intact dogfish shark rectal salt gland tubules using a fluorescent substrate sulforhodamine 101 and confocal microscopy. Subnanomolar to nanomolar concentrations of ET-1 rapidly reduced the cell-to-lumen transport of sulforhodamine 101. These effects were prevented by an ET(B) receptor antagonist but not by an ET(A) receptor antagonist. Immunostaining with an antibody to mammalian ET(B) receptors showed specific localization to the basolateral membrane of the shark rectal gland epithelial cells. ET-1 effects on transport were blocked by a protein kinase C (PKC)-selective inhibitor, implicating PKC in ET-1 signaling. A protein kinase A (PKA)-selective inhibitor had no effect. Forskolin reduced luminal accumulation of sulforhodamine 101, but inhibition of PKA did not block the forskolin effect. Consistent with this observation, a cAMP analog that does not activate PKA reduced luminal accumulation of sulforhodamine 101. These results indicate that shark rectal gland transport on MRP2 is regulated by ET acting through an ET(B) receptor and PKC. In addition, cAMP affects transporter function through a PKA-independent mechanism, possibly by competition for transport.  相似文献   

11.
Endothelin-1 stimulates leptin production in adipocytes   总被引:3,自引:0,他引:3  
Leptin is an adipocyte-derived hormone that regulates body fat stores and feeding behavior. In an effort to identify endogenous diffusible modulators of leptin production, we found that endothelin-1 (ET-1) up-regulates leptin expression in adipocytes. ET-1 is as potent and efficacious as insulin in stimulating leptin production in two different adipocyte cell lines. Endothelins stimulate leptin production via the endothelin-A receptor (ET(A)), as judged by a potency rank order of ET-1 ET-3. We detected expression of ET(A) but not ET(B) in both cell lines by Northern blot analysis. In addition, the ET(A)-selective antagonist FR139317 inhibited ET-1-induced leptin expression more potently than did the ET(B)-selective antagonist BQ788. ET-1 and insulin positively interact with each other in increasing leptin production in adipocytes. In primary mouse white fat cells, we detected expression of both ET(A) and ET(B) by Northern blot and in situ hybridization analyses. We conclude that ET-1 stimulates leptin production via the ET(A) receptor in cultured adipocytes.  相似文献   

12.
Purkinje fibers of the cardiac conduction system differentiate from heart muscle cells during embryogenesis. In the avian heart, Purkinje fiber differentiation takes place along the endocardium and coronary arteries. To date, only the vascular cytokine endothelin (ET) has been demonstrated to induce embryonic cardiomyocytes to differentiate into Purkinje fibers. This ET-induced Purkinje fiber differentiation is mediated by binding of ET to its transmembrane receptors that are expressed by myocytes. Expression of ET converting enzyme 1, which produces a biologically active ET ligand, begins in cardiac endothelia, both arterial and endocardial, at initiation of conduction cell differentiation and continues throughout heart development. Yet, the ability of cardiomyocytes to convert their phenotype in response to ET declines as embryos mature. Therefore, the loss of responsiveness to the inductive signal appears not to be associated with the level of ET ligand in the heart. This study examines the role of ET receptors in this age-dependent loss of inductive responsiveness and the expression profiles of three different types of ET receptors, ET(A), ET(B) and ET(B2), in the embryonic chick heart. Whole-mount in situ hybridization analyses revealed that ET(A) was ubiquitously expressed in both ventricular and atrial myocardium during heart development, while ET(B) was predominantly expressed in the atrium and the left ventricle. ET(B2) expression was detected in valve leaflets but not in the myocardium. RNase protection assays showed that ventricular expression of ET(A) and ET(B) increased until Purkinje fiber differentiation began. Importantly, the levels of both receptor isotypes decreased after this time. Retrovirus-mediated overexpression of ET(A) in ventricular myocytes in which endogenous ET receptors had been downregulated, enhanced their responsiveness to ET, allowing them to differentiate into conduction cells. These results suggest that the developmentally regulated expression of ET receptors plays a crucial role in determining the competency of ventricular myocytes to respond to inductive ET signaling in the chick embryo.  相似文献   

13.
Effects of endothelin-1 (ET-1) on glial cell line-derived neurotrophic factor (GDNF) production in cultured astrocytes were examined. Treatment of cultured astrocytes with ET-1 (100 nM) increased mRNA levels of GDNF in 1-6h. The effect of ET-1 was inhibited by BQ788, an ET(B) receptor antagonist, but not by FR139317, an ET(A) receptor antagonist. ET-1 stimulated release of GDNF into culture medium. Dexamethasone (1 microM) and pyrrolidine dithiocarbamate (PDTC, 100 microM), which inhibit activation of NFkappaB, prevented the increases in GDNF mRNA by H(2)O(2). In contrast, the effect of ET-1 was not affected by dexamethasone and PDTC. The increase of astrocytic GDNF mRNA by ET-1 was inhibited by BAPTA/AM (30 microM) and PD98059 (50 microM), but not by calphostin C, staurosporine, and cyclosporine A. These results suggest that ET-1 stimulated expression of astrocytic GDNF through ET(B) receptor-mediated increases in cytosolic Ca(2+) and ERK activation.  相似文献   

14.
Left ventricular dysfunction in swine with a recent myocardial infarction (MI) is associated with neurohumoral activation, including increased catecholamines and endothelin (ET). Although the increase in ET may serve to maintain blood pressure and, hence, perfusion of essential organs such as the heart and brain, it could also compromise myocardial perfusion by evoking coronary vasoconstriction. In the present study, we tested the hypothesis that endogenous ET contributes to perturbations in myocardial O2 balance during exercise in remodeled myocardium of swine with a recent MI. For this purpose, 26 chronically instrumented swine (10 with and 16 without MI) were studied at rest and while running on a treadmill at 1-4 km/h. After MI, plasma ET increased from 3.2 +/- 0.4 to 4.9 +/- 0.3 pM (P < 0.05). In normal swine, blockade of ETA (by EMD-122946) or ETA-ETB (by tezosentan) receptors resulted in an increase in coronary venous PO2, i.e., coronary vasodilation at rest, which decreased during exercise. In contrast, neither ETA nor ETA-ETB receptor blockade resulted in coronary vasodilation in swine with MI. Coronary vasoconstriction to intravenous ET-1 infusion in awake resting swine was blunted after MI. To investigate whether factors released by cardiac myocytes contributed to decreased vascular responsiveness to ET, we performed ET-1 dose-response curves in isolated coronary arterioles (70-200 microm). Vasoconstriction to ET-1 in isolated arterioles from MI swine was enhanced. In conclusion, the vasoconstrictor influence of endogenous as well as exogenous ET on coronary circulation in vivo is reduced. Because the response of isolated coronary arterioles to ET is increased after MI, the reduced vasoconstrictor influence in vivo suggests modulation of ET receptor sensitivity by cardiac myocytes, which may serve to maintain adequate myocardial perfusion.  相似文献   

15.
Functional receptors for the peptides of the endothelin (ET) and sarafotoxin (SRTX) family were characterized in newborn rat heart myocytes using human and rat endothelins (ET-1 and ET-3, respectively), SRTX-b and SRTX-c. Binding studies in intact cells and homogenates revealed significantly higher affinities of ET-1 and SRTX-b than of ET-3 and SRTX-c towards these receptors. This binding profile of ET/SRTX peptides points to their interaction with the receptor subtype designated E-S alpha. All four peptides induced time- and dose-dependent phosphoinositide hydrolysis with the following rank order of potency: ET-1 greater than SRTX-b greater than SRTX-c greater than ET-3. Thus, ET-3 which possesses an intermediate affinity toward the receptor was the least effective with regard to this response. These results confirm and extend our earlier report that the ET/SRTX peptides interact with a newly characterized receptor(s) associated with phosphoinositide metabolism and Ca2+ mobilization. The initiation of inositol phosphate formation is largely independent of extracellular Ca2+, verapamil and nifedipine, indicating that the ET/SRTX peptides are not agonists for the voltage-dependent Ca2+-channels.  相似文献   

16.
Endothelin mediates neutrophil recruitment during innate inflammation. Herein we address whether endothelin-1 (ET-1) is involved in neutrophil recruitment in adaptive inflammation in mice, and its mechanisms. Pharmacological treatments were used to determine the role of endothelin in neutrophil recruitment to the peritoneal cavity of mice challenged with antigen (ovalbumin) or ET-1. Levels of ET-1, tumour necrosis factor α (TNFα), and CXC chemokine ligand 1 (CXCL1) were determined by enzyme-linked immunosorbent assay. Neutrophil migration and flow cytometry analyses were performed 4 h after the intraperitoneal stimulus. ET-1 induced dose-dependent neutrophil recruitment to the peritoneal cavity. Treatment with the non-selective ET(A)/ET(B) receptor antagonist bosentan, and selective ET(A) or ET(B) receptor antagonists BQ-123 or BQ-788, respectively, inhibited ET-1- and ovalbumin-induced neutrophil migration to the peritoneal cavity. In agreement with the above, the antigen challenge significantly increased levels of ET-1 in peritoneal exudates. The ET-1- and ovalbumin-induced neutrophil recruitment were reduced in TNFR1 deficient mice, and by treatments targeting CXCL1 or CXC chemokine receptor 2 (CXCR2); further, treatment with bosentan, BQ-123, or BQ-788 inhibited ET-1- and antigen-induced production of TNFα and CXCL1. Furthermore, ET-1 and ovalbumin challenge induced an increase in the number of cells expressing the Gr1(+) markers in the granulocyte gate, CD11c(+) markers in the monocyte gate, and CD4(+) and CD45(+) (B220) markers in the lymphocyte gate in an ET(A)- and ET(B)-dependent manner, as determined by flow cytometry analysis, suggesting that ET-1 might be involved in the recruitment of neutrophils and other cells in adaptive inflammation. Therefore, the present study demonstrates that ET-1 is an important mediator for neutrophil recruitment in adaptive inflammation via TNFα and CXCL1/CXCR2-dependent mechanism.  相似文献   

17.
We have reported that eucapnic intermittent hypoxia (E-IH) causes systemic hypertension, elevates plasma endothelin 1 (ET-1) levels, and augments vascular reactivity to ET-1 and that a nonspecific ET-1 receptor antagonist acutely lowers blood pressure in E-IH-exposed rats. However, the effect of chronic ET-1 receptor inhibition has not been evaluated, and the ET receptor subtype mediating the vascular effects has not been established. We hypothesized that E-IH causes systemic hypertension through the increased ET-1 activation of vascular ET type A (ET(A)) receptors. We found that mean arterial pressure (MAP) increased after 14 days of 7 h/day E-IH exposure (109 +/- 2 to 137 +/- 4 mmHg; P < 0.005) but did not change in sham-exposed rats. The ET(A) receptor antagonist BQ-123 (10 to 1,000 nmol/kg iv) acutely decreased MAP dose dependently in conscious E-IH but not sham rats, and continuous infusion of BQ-123 (100 nmol.kg(-1).day(-1) sc for 14 days) prevented E-IH-induced increases in MAP. ET-1-induced constriction was augmented in small mesenteric arteries from rats exposed 14 days to E-IH compared with those from sham rats. Constriction was blocked by the ET(A) receptor antagonist BQ-123 (10 microM) but not by the ET type B (ET(B)) receptor antagonist BQ-788 (100 microM). ET(A) receptor mRNA content was greater in renal medulla and coronary arteries from E-IH rats. ET(B) receptor mRNA was not different in any tissues examined, whereas ET-1 mRNA was increased in the heart and in the renal medulla. Thus augmented ET-1-dependent vasoconstriction via vascular ET(A) receptors appears to elevate blood pressure in E-IH-exposed rats.  相似文献   

18.
Endothelin-1 (ET-1), a potent vasoconstrictor, has been implicated in the pathogenesis of collagen accumulation, extracellular matrix remodeling, and renal and cardiac fibrosis in diabetes. However, the mechanism by which ET-1 promotes collagen accumulation remains unclear. Here, we analyzed the gene expression profile of ET-1-stimulated mesangial cells to identify determinants of collagen accumulation. In human mesangial cells (a microvascular pericyte that secretes excess collagen in diabetic glomerulosclerosis), ET-1 increased mRNA and protein for MCP-1 (macrophage chemoattractant protein-1) and IL-6. ET-1-induced MCP-1 and IL-6 mRNAs and proteins were blocked by an ET(A) (but not ET(B)) receptor antagonist. ET-1/ET(A) receptor signaling evoked a 7.4-fold increase in collagen accumulation. Exogenous addition of either recombinant MCP-1 or IL-6 increased collagen accumulation by 3.5-fold. Co-stimulation with both MCP-1 and IL-6 did not elevate collagen accumulation further. Neither an MCP-1-neutralizing antibody nor an MCP-1 receptor antagonist inhibited ET-1-induced collagen accumulation. Similarly, neutralizing antibodies against IL-6 or the gp130 subunit of the IL-6 receptor did not attenuate ET-1-induced collagen accumulation. However, co-incubation with MCP-1- and IL-6-neutralizing antibodies inhibited ET-1-induced collagen accumulation by 52%, suggesting a robust autocrine loop wherein MCP-1 and IL-6 are redundant. Taken together, these results demonstrate that an autocrine signaling loop involving MCP-1 and IL-6 contributes to ET-1-induced collagen accumulation.  相似文献   

19.
Recently, it has been shown that brain topical superfusion of endothelin (ET)-1 at concentrations around 100 nM induces repetitive cortical spreading depressions (CSDs) in vivo. It has remained unclear whether this effect of ET-1 is related to a primary neuronal/astroglial effect, such as an increase in neuronal excitability or induction of interastroglial calcium waves, or a penumbra-like condition after vasoconstriction. In vitro, ET-1 regulates interastroglial communication via combined activation of ET(A) and ET(B) receptors, whereas it induces vasoconstriction via single activation of ET(A) receptors. We have determined the ET receptor profile and intracellular signaling pathway of ET-1-induced CSDs in vivo. In contrast to the ET(B) receptor antagonist BQ-788 and concentration dependently, the ET(A) receptor antagonist BQ-123 completely blocked the occurrence of ET-1-induced CSDs. The ET(B) receptor antagonist did not increase the efficacy of the ET(A) receptor antagonist. Direct stimulation of ET(B) receptors with the selective ET(B) agonist BQ-3020 did not trigger CSDs. The phospholipase C (PLC) antagonist U-73122 inhibited CSD occurrence in contrast to the protein kinase C inhibitor G?-6983. Our findings indicate that ET-1 induces CSDs through ET(A) receptor and PLC activation. We conclude that the induction of interastroglial calcium waves is unlikely the primary cause of ET-1-induced CSDs. On the basis of the receptor profile, likely primary targets of ET-1 mediating CSD are either neurons or vascular smooth muscle cells.  相似文献   

20.
The endothelins (ET) have been implicated in vasopressin (AVP) release in vivo and in vitro. The effects of ET in this system are complex, and the net AVP secretory response likely depends on a unique combination of ET isoform, ET receptor subtype, and neural locus. The purpose of these studies was to examine the role of ET receptor subtypes at hypothalamic vs. neurohypophysial sites on somatodendritic and neurohypophysial AVP secretion. Experiments were done in cultured explants of the hypothalamo-neurohypophysial system of Long Evans rats. Either the whole explant (standard) or only the hypothalamus or posterior pituitary (compartmentalized) was exposed to log dose increases (0.01-10 nM) of the agonists ET-1 (ET(A) selective), ET-3 (nonselective), or IRL-1620 (ET(B) selective) with or without selective ET(A) (BQ-123, 2-200 nM) or ET(B) (IRL-1038, 6-600 nM) receptor antagonism. In standard explants, ET-1 and ET-3 dose-dependently increased, whereas IRL-1620 decreased net AVP release. Hypothalamic ET(B) receptor activation increased both somatodendritic and neurohypophysial AVP release. At least one intervening synapse was involved, as tetrodotoxin blocked the response. Activation of ET(A) receptors at the hypothalamic level inhibited, whereas ET(A) receptor activation at the posterior pituitary stimulated, neurohypophysial AVP secretion. Antagonism of hypothalamic ET(A) receptors potentiated the stimulatory effect of ET-1 and ET-3 on neurohypophysial secretion, an effect not observed with ET(B) receptor-induced somatodendritic release of AVP. Thus the response of whole explants reflects the net result of both stimulatory and inhibitory inputs. The integration of these excitatory and inhibitory inputs endows the vasopressinergic system with greater plasticity in its response to physiological and pathophysiological states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号