首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Autophagy》2013,9(4):500-506
Autophagy is involved in cellular clearance of aggregate-prone proteins, thereby having a cytoprotective function. Studies in yeast have shown that the PI 3-kinase Vps34 and its regulatory protein kinase Vps15 are important for autophagy, but the possible involvement of these proteins in autophagy in a multicellular animal has not been addressed genetically. Here, we have created a Drosophila deletion mutant of vps15 and studied its role in autophagy and aggregate clearance. Homozygous Δvps15 Drosophila died at the early L3 larval stage. Using GFP-Atg8a as an autophagic marker, we employed fluorescence microscopy to demonstrate that fat bodies of wild type Drosophila larvae accumulated autophagic structures upon starvation whereas vps15 fat bodies showed no such response. Likewise, electron microscopy revealed starvation-induced autophagy in gut cells from wild type but not Δvps15 larvae. Fluorescence microscopy showed that Δvps15 mutant tissues accumulated profiles that were positive for ubiquitin and Ref(2)P, the Drosophila homolog of the sequestosome marker SQSTM1/p62. Biochemical fractionation and Western blotting showed that these structures were partially detergent insoluble, and immuno-electron microscopy further demonstrated the presence of Ref(2)P positive membrane free protein aggregates.. These results provide the first genetic evidence for a function of Vps15 in autophagy in multicellular organisms and suggest that the Vps15-containing PI 3-kinase complex may play an important role in clearance of protein aggregates.  相似文献   

2.
J H Stack  P K Herman  P V Schu    S D Emr 《The EMBO journal》1993,12(5):2195-2204
The Vps15 protein kinase and the Vps34 phosphatidylinositol 3-kinase (PI 3-kinase) are required for the sorting of soluble hydrolases to the yeast vacuole. Over-production of Vps34p suppresses the growth and vacuolar protein sorting defects associated with vps15 kinase domain mutants, suggesting that Vps15p and Vps34p functionally interact. Subcellular fractionation and sucrose density gradients indicate that Vps15p is responsible for the association of Vps34p with an intracellular membrane fraction. Chemical cross-linking and native immunoprecipitation experiments demonstrate that Vps15p and Vps34p interact as components of a hetero-oligomeric protein complex. In addition, we show that an intact Vps15 protein kinase domain is required for activation of the Vps34 PI 3-kinase, suggesting that the Vps34 lipid kinase is regulated by a Vps15p-mediated protein phosphorylation event. We propose that Vps15p and Vps34p function together as components of a membrane-associated signal transduction complex that regulates intracellular protein trafficking decisions through protein and lipid phosphorylation events.  相似文献   

3.
Stomatal guard cells play a key role in gas exchange for photosynthesis and in minimizing transpirational water loss from plants by opening and closing the stomatal pore. The bulk of the osmotic content driving stomatal movements depends on ionic fluxes across both the plasma membrane and tonoplast, the metabolism of organic acids, primarily Mal (malate), and its accumulation and loss. Anion channels at the plasma membrane are thought to comprise a major pathway for Mal efflux during stomatal closure, implicating their key role in linking solute flux with metabolism. Nonetheless, little is known of the regulation of anion channel current (I(Cl)) by cytosolic Mal or its immediate metabolite OAA (oxaloacetate). In the present study, we have examined the impact of Mal, OAA and of the monocarboxylic acid anion acetate in guard cells of Vicia faba L. and report that all three organic acids affect I(Cl), but with markedly different characteristics and sidedness to their activities. Most prominent was a suppression of ICl by OAA within the physiological range of concentrations found in vivo. These findings indicate a capacity for OAA to co-ordinate organic acid metabolism with I(Cl) through the direct effect of organic acid pool size. The findings of the present study also add perspective to in vivo recordings using acetate-based electrolytes.  相似文献   

4.
The endosomal sorting complexes required for transport (ESCRTs) are required to sort integral membrane proteins into intralumenal vesicles of the multivesicular body (MVB). Mutations in the ESCRT-III subunit CHMP2B were recently associated with frontotemporal dementia and amyotrophic lateral sclerosis (ALS), neurodegenerative diseases characterized by abnormal ubiquitin-positive protein deposits in affected neurons. We show here that autophagic degradation is inhibited in cells depleted of ESCRT subunits and in cells expressing CHMP2B mutants, leading to accumulation of protein aggregates containing ubiquitinated proteins, p62 and Alfy. Moreover, we find that functional MVBs are required for clearance of TDP-43 (identified as the major ubiquitinated protein in ALS and frontotemporal lobar degeneration with ubiquitin deposits), and of expanded polyglutamine aggregates associated with Huntington's disease. Together, our data indicate that efficient autophagic degradation requires functional MVBs and provide a possible explanation to the observed neurodegenerative phenotype seen in patients with CHMP2B mutations.  相似文献   

5.
Chan CB  Chen Y  Liu X  Tang X  Lee CW  Mei L  Ye K 《The EMBO journal》2011,30(20):4274-4286
AMPAR (α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptor) is an ion channel involved in the formation of synaptic plasticity. However, the molecular mechanism that couples plasticity stimuli to the trafficking of postsynaptic AMPAR remains poorly understood. Here, we show that PIKE (phosphoinositide 3-kinase enhancer) GTPases regulate neuronal AMPAR activity by promoting GluA2/GRIP1 association. PIKE-L directly interacts with both GluA2 and GRIP1 and forms a tertiary complex upon glycine-induced NMDA receptor activation. PIKE-L is also essential for glycine-induced GluA2-associated PI3K activation. Genetic ablation of PIKE (PIKE(-/-)) in neurons suppresses GluA2-associated PI3K activation, therefore inhibiting the subsequent surface expression of GluA2 and the formation of long-term potentiation. Our findings suggest that PIKE-L is a critical factor in controlling synaptic AMPAR insertion.  相似文献   

6.
Vps34p is a phosphatidylinositol 3-kinase that is part of a membrane-associated complex with the Vps15p protein kinase. This kinase complex is required for the delivery of soluble proteins to the lysosomal/vacuolar compartment of eukaryotic cells. This study examined the Vps34p-Vps15p association and identified the domains within each protein that were important for this interaction. Using several different approaches, the interaction domain within Vps34p was mapped to a 28-amino acid element near its C terminus. This Vps34p motif was both necessary and sufficient for the interaction with Vps15p. Two-hybrid mapping experiments indicated that two separate regions of Vps15p were required for the association with Vps34p; they are the N-terminal protein kinase domain and a set of three tandem repeats of about 39 amino acids each. Neither domain alone was sufficient for the interaction. These Vps15p repeat elements are similar in sequence to the HEAT motifs that have been implicated in protein interactions in other proteins, including the Huntingtin protein. Finally, these studies identified a novel motif at the very C terminus of Vps34p that was required for phosphatidylinositol 3-kinase activity. This domain is highly conserved specifically in all Vps34p-like phosphatidylinositol 3-kinases but is not required for the interaction with Vps15p. This study thus represents a first step toward a better understanding of how this Vps15p.Vps34p kinase complex is assembled and regulated in vivo.  相似文献   

7.
Chronic activation of the phosphoinositide 3-kinase (PI3K)/PTEN signal transduction pathway contributes to metastatic cell growth, but up to now effectors mediating this response are poorly defined. By simulating chronic activation of PI3K signaling experimentally, combined with three-dimensional (3D) culture conditions and gene expression profiling, we aimed to identify novel effectors that contribute to malignant cell growth. Using this approach we identified and validated PKN3, a barely characterized protein kinase C-related molecule, as a novel effector mediating malignant cell growth downstream of activated PI3K. PKN3 is required for invasive prostate cell growth as assessed by 3D cell culture assays and in an orthotopic mouse tumor model by inducible expression of short hairpin RNA (shRNA). We demonstrate that PKN3 is regulated by PI3K at both the expression level and the catalytic activity level. Therefore, PKN3 might represent a preferred target for therapeutic intervention in cancers that lack tumor suppressor PTEN function or depend on chronic activation of PI3K.  相似文献   

8.
9.
10.
Interleukin-1 (IL-1) binds to its type I receptors (IL-1R), which in complex with IL-1R accessory protein (IL-1R AcP) induces various intracellular signaling events. We report here that IL-1 triggers the recruitment of phosphoinositide 3-kinase (PI 3-kinase) to a signaling complex and induces its lipid kinase activity in a biphasic manner. This IL-1-induced complex consists of IL-1R, IL-1R AcP, PI 3-kinase, and the IL-1-receptor-associated kinase (IRAK). Deletion of the C-terminus 27 amino acids of IL-1R AcP resulted in a mutant, CDelta27, that could not recruit PI 3-kinase to the signalsome nor stimulate PI3-kinase activity. Moreover, CDelta27 functioned as a dominant-negative mutant that inhibited IL-1-induced PI 3-kinase and NFkappaB activation. CDelta27, however, had no effect on IL-1-dependent activation of the Jun N-terminal kinase (JNK), indicating that distinct regions of IL-1R AcP mediate the activation of PI 3-kinase and JNK. Thus, our results identified a functional region in the IL-1R AcP required for the recruitment and activation of PI 3-kinase.  相似文献   

11.
A membrane-associated complex composed of the Vps15 protein kinase and the Vps34 phosphatidylinositol 3-kinase (PtdIns 3-kinase) is essential for the delivery of proteins to the yeast vacuole. An active Vps15p is required for the recruitment of Vps34p to the membrane and subsequent stimulation of Vps34p PtdIns 3-kinase activity. Consistent with this, mutations altering highly conserved residues in the lipid kinase domain of Vps34p lead to a dominant-negative phenotype resulting from titration of activating Vps15 proteins. In contrast, catalytically inactive Vps15p mutants do not produce a dominant mutant phenotype because they are unable to associate with Vps34p in a wild-type manner. These data indicate that an intact Vps15p protein kinase domain is necessary for the association with and activation of Vps34p, and they demonstrate that a functional Vps15p-Vps34p complex is absolutely required for the efficient delivery of proteins to the vacuole. Analysis of a temperature-conditional allele of VPS15, in which a shift to the nonpermissive temperature leads to a decrease in cellular PtdIns(3)P levels, indicates that the loss of Vps15p function leads to a defect in activation of Vps34p. In addition, characterization of a temperature-sensitive allele of VPS34 demonstrates that inactivation of Vps34p leads to the immediate missorting of soluble vacuolar proteins (e.g., carboxypeptidase Y) without an apparent defect in the sorting of the vacuolar membrane protein alkaline phosphatase. This rapid block in vacuolar protein sorting appears to be the result of loss of PtdIns 3- kinase activity since cellular PtdIns(3)P levels decrease dramatically in vps34 temperature-sensitive mutant cells that have been incubated at the nonpermissive temperature. Finally, analysis of the defects in cellular PtdIns(3)P levels in various vps15 and vsp34 mutant strains has led to additional insights into the importance of PtdIns(3)P intracellular localization, as well as the roles of Vps15p and Vps34p in vacuolar protein sorting.  相似文献   

12.
The Phosphatidylinositol-3 kinase/Protein Kinase B (PI3K/PKB) signaling pathway controls growth, metabolism, and lifespan in animals, and deregulation of its activity is associated with diabetes and cancer in humans. Here, we describe Susi, a coiled-coil domain protein that acts as a negative regulator of insulin signaling in Drosophila. Whereas loss of Susi function increases body size, overexpression of Susi reduces growth. We provide genetic evidence that Susi negatively regulates dPI3K activity. Susi directly binds to dP60, the regulatory subunit of dPI3K. Since Susi has no overt similarity to known inhibitors of PI3K/PKB signaling, it defines a novel mechanism by which this signaling cascade is kept in check. The fact that Susi is expressed in a circadian rhythm, with highest levels during the night, suggests that Susi attenuates insulin signaling during the fasting period.  相似文献   

13.
Autophagy is a catabolic process used to deliver cellular material to the lysosome for degradation. The core Vps34/class III phosphatidylinositol 3-kinase (PI3K) complex, consisting of Atg6, Vps15, and Vps34, is highly conserved throughout evolution, critical for recruiting autophagy-related proteins to the preautophagosomal structure and for other vesicular trafficking processes, including vacuolar protein sorting. Atg6 and Vps34 have been well characterized, but the Vps15 kinase remains poorly characterized with most studies focusing on nutrient deprivation-induced autophagy. Here, we investigate the function of Vps15 in different cellular contexts and find that it is necessary for both stress-induced and developmentally programmed autophagy in various tissues in Drosophila melanogaster. Vps15 is required for autophagy that is induced by multiple forms of stress, including nutrient deprivation, hypoxia, and oxidative stress. Furthermore, autophagy that is triggered by physiological stimuli during development in the fat body, intestine, and salivary gland also require the function of Vps15. In addition, we show that Vps15 is necessary for efficient salivary gland protein secretion. These data illustrate the broad importance of Vps15 in multiple forms of autophagy in different animal cells, and also highlight the pleiotropic function of this kinase in multiple vesicle-trafficking pathways.Autophagy is an evolutionarily conserved process in which cytoplasmic proteins or organelles are packaged into lysosomes for degradation. This process can be initiated by a variety of stimuli, such as high levels of starvation or stress, to provide nutrients to the cells or to clear the cell of damaged organelles or protein aggregates.1 In some circumstances, autophagy can promote an alternative form of cell death, such as in the clearance of larval tissues in Drosophila melanogaster.2 As defects in autophagy have been implicated in several physiological and pathological conditions, such as cancer, neurodegenerative diseases, and aging,3,4 it is important to obtain a complete understanding of the molecular mechanisms controlling autophagy.The induction of autophagy is regulated by the Atg1/Ulk1 complex, and this complex is regulated by mechanistic target of rapamycin (mTOR).5 Vesicle nucleation is controlled by the class III phosphoinositide 3-kinase (PI3K) complex that generates phosphatidylinositol 3-phosphate (PI3P).6 This conserved complex consists of vacuolar protein sorting 34 (Vps34; also known as Pik3c3), Atg6/Becn1 (also known as Vps30 in yeast), and the serine-threonine kinase Vps15/ird1 (p150 in mammals; also known as Pik3r4).7,8 Localized production of PI3P by Vps34 can act to recruit proteins containing PX or FYVE domains to membrane compartments, such as the autophagosome isolation membrane.9 Vps34 is also required more broadly for several vesicular trafficking processes such as the sorting of hydrolytic enzymes to the yeast vacuole and mammalian lysosome, and endocytic trafficking.10, 11, 12 There is mounting evidence demonstrating the pleiotropic function of the PI3K/Vps34 complex, but this has not been well studied in the context of autophagy under different physiological and cell contexts in animals.Of the three core PI3K complex proteins, Vps15 remains an understudied kinase, and its function has not been rigorously investigated in multicellular organisms in vivo. Most of the focus on the role of this complex in autophagy regulation has been on nutrient deprivation-initiated autophagy. Indeed, previous studies determined Vps15 to be necessary for starvation-induced autophagy in the Drosophila larval fat body.13,14 However, its role in hormone-regulated autophagy, a process that occurs in the intestine,15 salivary glands,16 and fat body17 of developing Drosophila, as well as its role in other stress-induced conditions have not yet been examined. In order to address the role of Vps15 in these and other processes regulated by autophagy, we utilized Vps15 knockdown as well as a previously described null mutant14 to examine its role in a multicellular organism in vivo. We found that Vps15 is required not only for stress-induced autophagy in multiple tissues, but it is also a broad regulator of developmentally programmed autophagy in Drosophila. In addition, Vps15 is necessary for efficient protein secretion, as indicated by its role in the secretion of glue proteins from the Drosophila salivary gland. Together, these results highlight the importance of Vps15 in multiple processes in vivo.  相似文献   

14.
BACKGROUND: Cell growth arrest and autophagy are required for autophagic cell death in Drosophila. Maintenance of growth by expression of either activated Ras, Dp110, or Akt is sufficient to inhibit autophagy and cell death in Drosophila salivary glands, but the mechanism that controls growth arrest is unknown. Although the Warts (Wts) tumor suppressor is a critical regulator of tissue growth in animals, it is not clear how this signaling pathway controls cell growth. RESULTS: Here, we show that genes in the Wts pathway are required for salivary gland degradation and that wts mutants have defects in cell growth arrest, caspase activity, and autophagy. Expression of Atg1, a regulator of autophagy, in salivary glands is sufficient to rescue wts mutant salivary gland destruction. Surprisingly, expression of Yorkie (Yki) and Scalloped (Sd) in salivary glands fails to phenocopy wts mutants. By contrast, misexpression of the Yki target bantam was able to inhibit salivary gland cell death, even though mutations in bantam fail to suppress the wts mutant salivary gland-persistence phenotype. Significantly, wts mutant salivary glands possess altered phosphoinositide signaling, and decreased function of the class I PI3K-pathway genes chico and TOR suppressed wts defects in cell death. CONCLUSIONS: Although we have previously shown that salivary gland degradation requires genes in the Wts pathway, this study provides the first evidence that Wts influences autophagy. Our data indicate that the Wts-pathway components Yki, Sd, and bantam fail to function in salivary glands and that Wts regulates salivary gland cell death in a PI3K-dependent manner.  相似文献   

15.
The functions of two Schizosaccharomyces pombe Vps9-like genes, SPBC4F6.10/vps901(+) and SPBC29A10.11c/vps902(+), were characterized. Genomic sequence analysis predicted that Vps901p contains a VPS9 domain, whereas cDNA analyses revealed that Vps901p contains a CUE domain (coupling of ubiquitin to ER degradation) in its C-terminal region. Deletion of vps901(+) resulted in mis-sorting and secretion of S. pombe vacuolar carboxypeptidase Cpy1p, whereas deletion of vps902(+) had no effect, suggesting that only Vps901p functions in vacuolar protein transport in S. pombe. Deletion of vps901(+) further produced pleiotropic phenotypes, including vacuolar homotypic fusion and endocytosis defects. Heterologous expression of the budding yeast VPS9 gene corrected the CPY mis-sorting defect in vps901Δ cells. These findings suggest that the VPS9 domain of Vps901p is required for vacuolar protein trafficking in S. pombe.  相似文献   

16.
Aldosterone, a steroid hormone, regulates renalNa+ reabsorption and, therefore,plays an important role in the maintenance of salt and water balance.In a model renal epithelial cell line (A6) we have found thatphosphoinositide 3-kinase (PI 3-kinase) activity is required foraldosterone-stimulated Na+reabsorption. Inhibition of PI 3-kinase by the specific inhibitor LY-294002 markedly reduces both basal and aldosterone-stimulated Na+ transport. Further, one of theproducts of PI 3-kinase, phosphatidylinositol 3,4,5-trisphosphate, isincreased in response to aldosterone in intact A6 monolayers. Thisincrease occurs just before the manifestation of the functional effectof the hormone and is also inhibited by LY-294002. With the use ofblocker-induced noise analysis, it has been demonstrated thatinhibition of phosphoinositide formation causes an inhibition ofNa+ entry in both control andaldosterone-pretreated cultures by reducing the number of openfunctional epithelial Na+ channels(ENaCs) in the apical membrane of the A6 cells. These novelobservations indicate that phosphoinositides are required for ENaCexpression and suggest a mechanism for aldosterone regulation ofchannel function.

  相似文献   

17.
18.
19.
20.
Phosphoinositide (PI) 3-kinases have been characterized as enzymes involved in receptor signal transduction in mammalian cells and in a complex which mediates protein trafficking in yeast. PI 3-kinases linked to receptors with intrinsic or associated tyrosine kinase activity are heterodimeric proteins, consisting of p85 adaptor and p110 catalytic subunits, which can generate the 3-phosphorylated forms of phosphatidylinositol (PtdIns), PtdIns4P and PtdIns(4,5)P2 as potential second messengers. Yeast Vps34p kinase, however, has a substrate specificity restricted to PtdIns and is a PtdIns 3-kinase. Here the molecular characterization of a new human PtdIns 3-kinase with extensive sequence homology to Vps34p is described. PtdIns 3-kinase does not associate with p85 and phosphorylates PtdIns, but not PtdIns4P or PtdIns(4,5)P2. In vivo PtdIns 3-kinase is in a complex with a cellular protein of 150 kDa, as detected by immunoprecipitation from human cells. Protein sequence analysis and cDNA cloning show that this 150 kDa protein is highly homologous to Vps15p, a 160 kDa protein serine/threonine kinase associated with yeast Vps34p. These results suggest that the major components of the yeast Vps intracellular trafficking complex are conserved in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号