首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Spatial coordination between the axis of the spindle and the division plane is critical in asymmetric cell divisions. In the budding yeast S. cerevisiae, orientation of the mitotic spindle responds to two intertwined programs dictating the position of the spindle poles: one providing the blueprint for built-in pole asymmetry, the other sequentially confining microtubule-cortex interactions to the bud and the bud neck. The first program sets a temporal asymmetry to limit astral microtubules to a single pole prior to spindle pole separation. The second enforces this polarity by allowing these early formed microtubules to undergo capture at the bud cell cortex while stopping newly formed microtubules once cortical capture shifts to the bud neck. The remarkable precision of this integrated program results in an invariant pattern of spindle pole inheritance in which the "old" spindle pole is destined to the bud. An additional layer of asymmetry is superimposed to couple successful chromosomal segregation between the mother and the bud with mitotic exit. This is based on the asymmetric localization to the committed daughter-bound pole of signaling components of the mitotic exit network. This system operates irrespective of intrinsic spindle polarity to ensure that it is always the pole translocating into the bud that carries the signal to regulate mitotic exit.

Key Words:

Cell cycle, Polarity, checkpoint, Microtubule, Cortical cues  相似文献   

9.
10.
Spatial coordination between the axis of the spindle and the division plane is critical in asymmetric cell divisions. In the budding yeast S. cerevisiae, orientation of the mitotic spindle responds to two intertwined programs dictating the position of the spindle poles: one providing the blueprint for built-in pole asymmetry, the other sequentially confining microtubule-cortex interactions to the bud and the bud neck. The first program sets a temporal asymmetry to limit astral microtubules to a single pole prior to spindle pole separation. The second enforces this polarity by allowing these early formed microtubules to undergo capture at the bud cell cortex while stopping newly formed microtubules once cortical capture shifts to the bud neck. The remarkable precision of this integrated program results in an invariant pattern of spindle pole inheritance in which the "old" spindle pole is destined to the bud. An additional layer of asymmetry is superimposed to couple successful chromosomal segregation between the mother and the bud with mitotic exit. This is based on the asymmetric localization to the committed daughter-bound pole of signaling components of the mitotic exit network. This system operates irrespective of intrinsic spindle polarity to ensure that it is always the pole translocating into the bud that carries the signal to regulate mitotic exit.  相似文献   

11.
Patients with multiple endocrine neoplasia type 1 (MEN1) develop multiple endocrine tumors, primarily affecting the parathyroid, pituitary, and endocrine pancreas, due to the inactivation of the MEN1 gene. A conditional mouse model was developed to evaluate the loss of the mouse homolog, Men1, in the pancreatic beta cell. Men1 in these mice contains exons 3 to 8 flanked by loxP sites, such that, when the mice are crossed to transgenic mice expressing cre from the rat insulin promoter (RIP-cre), exons 3 to 8 are deleted in beta cells. By 60 weeks of age, >80% of mice homozygous for the floxed Men1 gene and expressing RIP-cre develop multiple pancreatic islet adenomas. The formation of adenomas results in elevated serum insulin levels and decreased blood glucose levels. The delay in tumor appearance, even with early loss of both copies of Men1, implies that additional somatic events are required for adenoma formation in beta cells. Comparative genomic hybridization of beta cell tumor DNA from these mice reveals duplication of chromosome 11, potentially revealing regions of interest with respect to tumorigenesis.  相似文献   

12.
MEN 1 syndrome (Multiple Endocrine Neoplasia type 1) is a rare endocrine disorder characterized by the association of tumors in several endocrine glands, mainly in parathyroids, gut and pituitary. At our institution in the years 1982-2004 we have followed 26 patients with MEN 1 syndrome belonging to 19 families. The diagnosis of MEN 1 was based on Gubbio Consensus (JCEM 86: 5658-5671, 2001). Mean age at the diagnosis of MEN 1 was 35 years. Primary hyperparathyroidism was the most frequent pathology, which was diagnosed in 25 of 26 patients (96%). Gut endocrine tumors were found in 20 patients (77%), while pituitary tumors in 18 (70%). Non-functioning gut tumors were most frequent (n=9), followed by insulinoma (n=7) and gastrinoma (n=4). Prolactinoma was the most frequent pituitary tumor found in 12 patients (67%). Three patients died during the observation period - all of them of generalized gut endocrine tumor (gastrinoma in 2 cases and foregut carcinoid in one case). The management of MEN 1 is not easy and careful analysis of clinical picture is necessary in each individual case. Several important observations can be made on the basis of own experience and the literature: 1. In each sporadic pathology, which may be a part of MEN 1, one should consider. the possibility of MEN 1. The individual MEN 1 abnormalities are often diagnosed after 40 and later 2. MEN 1 tumor are usually multiple thus necessitating a different therapeutic approach (more radical surgery) 3. The most valuable screening tests are: Ca++, PP, CgA and prolactin 4. Endoscopic ultrasound is the most specific method for the localization of pancreatic endocrine tumors. 5. The results of surgical treatment of MEN 1 tumors are worse than that of sporadic tumors. 6. Prognosis in MEN 1 is determined by the behaviour of gut neuroendocrine tumor 7. No genotype/phenotype correlation in MEN 1 syndrome was found so far. In summary, it should be underlined that MEN 1 syndrome is an endocrine disorder, in which early diagnosis and optimal treatment may significantly improve the prognosis.  相似文献   

13.
14.
15.
16.
17.
18.
Russian Journal of Genetics - Despite recent advances in genomics and the discovery of numerous genes involved in carcinogenesis, the mechanisms of malignant transformation of different tissues...  相似文献   

19.
Multiple endocrine neoplasia type 1 (MEN1), an autosomal dominant disease characterized by neoplasia of the parathyroid glands, anterior pituitary and endocrine pancreas, is rarely reported in Asian populations. The MEN1 gene, mapped to chromosome 11q13 but yet to be cloned, has been found to be homogeneous in Caucasian populations through linkage analysis. Here, two previously unreported Asian kindreds with MEN1 are described; link-age analysis using microsatellite polymorphic markers in the MEN1 region was carried out. The first kindred, of Mongolian-Chinese origin, is a multigeneration family with over 150 living members, eight of whom are affected toB. T. Teh and S. I. Hii are to be considered as joint first authors  相似文献   

20.
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterised by tumours of the parathyroids, pancreas and anterior pituitary. The MEN1 gene has been localised to a 2-Mb region of chromosome 11q13 by meiotic mapping studies in MEN1 families. Such studies may have a limited resolution of approximately 1 cM (i.e. 1 Mb) and we have therefore investigated 96 MEN1 families (40 British, 17 French, 12 Finnish, 7 Swedish, 7 Dutch, 7 North American, 2 Australian, 1 New Zealand, 1 German, 1 Spanish and 1 Danish) for linkage disequilibrium, in order to facilitate a finer mapping resolution. We have utilised five microsatellite DNA sequence polymorphisms from the candidate region and have accurately determined their allele sizes, which ranged from 161 bp to 272 bp. The heterozygosity and number of alleles (given in brackets), respectively, at the loci were: D11S1883 (76%, 11), D11S457 (55%, 5), PYGM (94%, 18), D11S1783 (10%, 4) and D11S449 (87%, 16). Allelic association was assessed by Chi-square 2 ×n contingency tables, by Fisher exact 2 ×n contingency tables and by a likelihood-based approach. The results of haplotype analysis revealed 91 different affected haplotypes in the 96 families, an identical affected haplotype being observed in no more than two families. These results indicate the absence of an ancestral affected haplotype. Significant linkage disequilibrium (P < 0.005) could be established amongst the microsatellite loci but not between the loci and MEN1 in either the total population or in any of the geographical sub-populations. The absence of linkage disequilibrium between MEN1 and the polymorphic loci is probably the result of the occurrence of multiple different disease-causing mutations in MEN1. Received: 1 April 1997 / Accepted: 25 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号