首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S. T. Schultz  J. H. Willis 《Genetics》1995,141(3):1209-1223
We use mutation-selection recursion models to evaluate the relative contributions of mutation and inbreeding history to variation among individuals in inbreeding depression and the ability of experiments to detect associations between individual inbreeding depression and mating system genotypes within populations. Poisson mutation to deleterious additive or recessive alleles generally produces far more variation among individuals in inbreeding depression than variation in history of inbreeding, regardless of selfing rate. Moreover, variation in inbreeding depression can be higher in a completely outcrossing or selfing population than in a mixed-mating population. In an initially random mating population, the spread of a dominant selfing modifier with no pleiotropic effects on male outcross success causes a measurable increase in inbreeding depression variation if its selfing rate is large and inbreeding depression is caused by recessive lethals. This increase is observable during a short period as the modifier spreads rapidly to fixation. If the modifier alters selfing rate only slightly, it fails to spread or causes no measurable increase in inbreeding depression variance. These results suggest that genetic associations between mating loci and inbreeding depression loci could be difficult to demonstrate within populations and observable only transiently during rapid evolution to a substantially new selfing rate.  相似文献   

2.
Hermaphroditic individuals can produce both selfed and outcrossed progeny, termed mixed mating. General theory predicts that mixed-mating populations should evolve quickly toward high rates of selfing, driven by rapid purging of genetic load and loss of inbreeding depression (ID), but the substantial number of mixed-mating species observed in nature calls this prediction into question. Lower average ID reported for selfing than for outcrossing populations is consistent with purging and suggests that mixed-mating taxa in evolutionary transition will have intermediate ID. We compared the magnitude of ID from published estimates for highly selfing (r > 0.8), mixed-mating (0.2 ≤ r ≥ 0.8), and highly outcrossing (r < 0.2) plant populations across 58 species. We found that mixed-mating and outcrossing taxa have equally high average lifetime ID (δ= 0.58 and 0.54, respectively) and similar ID at each of four life-cycle stages. These results are not consistent with evolution toward selfing in most mixed-mating taxa. We suggest that prevention of purging by selective interference could explain stable mixed mating in many natural populations. We identify critical gaps in the empirical data on ID and outline key approaches to filling them.  相似文献   

3.
Significantly different maternal line responses to inbreeding provide a mechanism for the invasion of a selfing variant into a population. The goal of this study was to examine the extent of family-level variation in inbreeding depression in the mixed-mating, perennial herb Scabiosa columbaria. Plants from one population were raised, and hand-pollinated to produce selfed and outcrossed progeny, and the effects of inbreeding depression on life-cycle traits were analyzed. Inbreeding depression significantly affected early life cycle traits. The pollination treatment by family interaction was significant for almost all traits, indicating a high family-level variation in inbreeding depression. The correlations between inbreeding depression values (e.g., percentage germination and flowering date, and flowering date and aboveground biomass) exhibited alternate signs, illustrating the type of association between inbreeding depression loci for different traits across the life cycle. Overall, it is concluded that the extent of among-family variation in inbreeding depression might allow a selfing variant of S. columbaria to invade an outcrossing population, though the pattern of correlations between inbreeding depression values might prevent effective purging of the deleterious genetic load.  相似文献   

4.
Theory predicts that inbreeding depression (ID) should decline via purging in self‐fertilizing populations. Yet, intraspecific comparisons between selfing and outcrossing populations are few and provide only mixed support for this key evolutionary process. We estimated ID for large‐flowered (LF), predominantly outcrossing vs. small‐flowered (SF), predominantly selfing populations of the dune endemic Camissoniopsis cheiranthifolia by comparing selfed and crossed progeny in glasshouse environments differing in soil moisture, and by comparing allozyme‐based estimates of the proportion of seeds selfed and inbreeding coefficient of mature plants. Based on lifetime measures of dry mass and flower production, ID was stronger in nine LF populations [mean δ = 1?(fitness of selfed seed/fitness of outcrossed seed) = 0.39] than 16 SF populations (mean δ = 0.03). However, predispersal ID during seed maturation was not stronger for LF populations, and ID was not more pronounced under simulated drought, a pervasive stress in sand dune habitat. Genetic estimates of δ were also higher for four LF (δ = 1.23) than five SF (δ = 0.66) populations; however, broad confidence intervals around these estimates overlapped. These results are consistent with purging, but selective interference among loci may be required to maintain strong ID in partially selfing LF populations, and trade‐offs between selfed and outcrossed fitness are likely required to maintain outcrossing in SF populations.  相似文献   

5.
The variation and evolution of reproductive traits in island plants have much attention from conservation and evolutionary biologists. However, plants on islands in the Mediterranean region have very little attention. In the present study, we examine the floral biology and mating system of Cyclamen creticum , a diploid perennial herb endemic to Crete and Karpathos. Our purpose is to quantify (1) variation and covariation of floral traits related to the mating system, (2) the ability of the species to self in the absence of pollinators and its relative performance on selfing and outcrossing and (3) generic diversity within and among populations. Pollen/ovule ratios were indicative of a xenogamous species. A controlled pollination experiment showed that the species is self-compatible but is unable to set seed, in the absence of pollinators, probably due to stigma-anther separation. A multiplicative estimate of inbreeding depression based on fruit maturation, seed number and percentage seed germination gave δ= 0.38 Population genetic diversity was high, 54.76% polymorphic loci, a mean of 1.78 alleles per locus and a mean observed heterozygosity of 0.053. F -statistics nevertheless indicated high inbreeding rates (mean F is= 0.748) in natural populations, and low levels of population differentiation (mean Fis= 0.168). C. creticum thus appears to have a mixed-mating system with high levels of (pollinator) mediated inbreeding (either by facilitated selfing, geitonogamy or biparental inbreeding) in natural populations.  相似文献   

6.
The focus of this study was to examine the consequences of five sequential generations of enforced selfing and outcrossing in two annual populations of the mixed-mating Mimulus guttatus. Our primary goal was to determine whether purging of deleterious recessive alleles occurs uniformly between populations and among families, and thus gain insights into the mode of gene action (dominance, overdominance, and/or epistasis) governing the expression of inbreeding depression at both the population and family levels across the life cycle.  相似文献   

7.
The amounts of inbreeding depression upon selfing and of heterosis upon outcrossing determine the strength of selection on the selfing rate in a population when this evolves polygenically by small steps. Genetic models are constructed which allow inbreeding depression to change with the mean selfing rate in a population by incorporating both mutation to recessive and partially dominant lethal and sublethal alleles at many loci and mutation in quantitative characters under stabilizing selection. The models help to explain observations of high inbreeding depression (> 50%) upon selfing in primarily outcrossing populations, as well as considerable heterosis upon outcrossing in primarily selfing populations. Predominant selfing and predominant outcrossing are found to be alternative stable states of the mating system in most plant populations. Which of these stable states a species approaches depends on the history of its population structure and the magnitude of effect of genes influencing the selfing rate.  相似文献   

8.
Cultivated plants have been molded by human-induced selection, including manipulations of the mating system in the twentieth century. How these manipulations have affected realized parameters of the mating system in freely evolving cultivated populations is of interest for optimizing the management of breeding populations, predicting the fate of escaped populations and providing material for experimental evolution studies. To produce modern varieties of sunflower (Helianthus annuus L.), self-incompatibility has been broken, recurrent generations of selfing have been performed and male sterility has been introduced. Populations deriving from hybrid-F1 varieties are gynodioecious because of the segregation of a nuclear restorer of male fertility. Using both phenotypic and genotypic data at 11 microsatellite loci, we analyzed the consanguinity status of plants of the first three generations of such a population and estimated parameters related to the mating system. We showed that the resource reallocation to seed in male-sterile individuals was not significant, that inbreeding depression on seed production averaged 15-20% and that cultivated sunflower had acquired a mixed-mating system, with ~50% of selfing among the hermaphrodites. According to theoretical models, the female advantage and the inbreeding depression at the seed production stage were too low to allow the persistence of male sterility. We discuss our methods of parameter estimation and the potential of such study system in evolutionary biology.  相似文献   

9.
Wright's gene fixation index F and two single-locus effective selfing rates—the selfing rate at loci with fixed alleles, and the selfing rate at loci without fixed alleles—were estimated in five populations of Mimulus guttatus. These two effective selfing rates describe the inbreeding observed at a single locus when both uniparental and biparental inbreeding are practiced. Estimates were made using progeny arrays assayed for six allozyme loci and two morphological loci exhibiting dominance. The average of the two selfing rates computed for subpopulations (ca. 10 m diameter) ranged from 24% to 59%, with a mean of 37%. When computed for populations (ca. 1 km diameter), average selfing rates were about 10% higher. In four populations, the selfing rate at loci with fixed alleles was higher than the selfing rate at loci without fixed alleles. Thus, the covariance of selfing with parental gene fixation was positive. In one of the populations, estimates for individual plants sampled along a transect gave positive correlations for selfing rates and for gene-fixation indices between adjacent plants. A highly positive correlation between selfing rate and gene fixation of individual plants was also observed. In another population, the covariance of selfing with gene fixation was higher for a locus causing leaf spots than for allozyme loci. This covariance is partially caused by 1) variation in homozygosity among neighborhoods and 2) biparental inbreeding within neighborhoods. The consequences of this covariance are discussed.  相似文献   

10.
Jarne P  David P 《Heredity》2008,100(4):431-439
We review molecular methods for estimating selfing rates and inbreeding in populations. Two main approaches are available: the population structure approach (PSA) and progeny-array approach (PAA). The PSA approach relies on single-generation samples and produces estimates that integrate the inbreeding history over several generations, but is based on strong assumptions (for example, inbreeding equilibrium). The PSA has classically relied on single-locus inbreeding coefficients averaged over loci. Unfortunately PSA estimates are very sensitive to technical problems such as the occurrence of null alleles at one or more of the loci. Consequently inbreeding might be substantially overestimated, especially in outbred populations. However, the robustness of the PSA has recently been greatly improved by the development of multilocus methods free of such bias. The PAA, on the other hand, is based on the comparison between offspring and mother genotypes. As a consequence, PAA estimates do not reflect long-term inbreeding history but only recent mating events of the maternal individuals studied ('here and now' selfing). In addition to selfing rates, the PAA allows estimating other mating system parameters, including biparental inbreeding and the correlation of selfing among sibs. Although PAA estimates could also be biased by technical problems, incompatibilities between the mother's genotype and her offspring allow the identification and correction of such bias. For all methods, we provide guidelines on the required number of loci and sample sizes. We conclude that the PSA and PAA are equally robust, provided multilocus information is used. Although experimental constraints may make the PAA more demanding, especially in animals, the two methods provide complementary information, and can fruitfully be conducted together.  相似文献   

11.
 Isozyme analysis of seed samples derived from natural and managed populations of the tropical pine Pinus caribaea vars ‘bahamensis’ and ‘caribaea’ was used to assess population genetic structure in its native range and to detect changes occurring during early domestication of the species. Baseline data from natural populations of the two varieties showed that populations sampled as seed are characterized by high gene diversity (mean He=0.26) and a low level of inbreeding ( mean Fis=0.15). A UPGMA tree of genetic relatedness among populations indicates that the two varieties represent distinct evolutionary units. Within each variety there is significant differentiation among populations, and this is greater for the more fragmented populations of var ‘bahamensis’ (Fst=0.08) than for var ‘caribaea’ (Fst=0.02). Seed from a seed orchard population of var ‘caribaea’ established within its natural range showed no change in genetic diversity but did show a reduced inbreeding coefficient (Fis=0.09) compared with its progenitor populations, suggesting a decrease in selfing and/or biparental inbreeding. A bulked seed sample from an exotic plantation of var ‘bahamensis’ in Australia displayed a large increase in the inbreeding coefficient (Fis=0.324) compared with that found in natural populations, possibly due to elevated self-fertilization. Finally, a bulked seed sample from an exotic plantation population of var ‘caribaea’ from China showed enhanced genetic diversity, an increase in the inbreeding coefficient and more linkage disequilibrium than its presumed progenitor populations. It was also genetically divergent from them. RFLP analysis of chloroplast DNA variation in the Chinese sample suggested that seeds of the related taxa P. elliottii and P. taeda, or seeds derived from hybridization with these taxa growing in the seed production area, had been included in the seed crop during harvesting. We conclude that monitoring of appropriate genetic markers may be an effective means of identifying potentially deleterious genetic changes occurring during forest tree domestication. Received: 10 August 1998 / Accepted: 8 September 1998  相似文献   

12.
Deleting species from model food webs   总被引:1,自引:0,他引:1  
Although self-fertilization and its evolutionary consequences have been widely studied, the relative influence of genetic and environmental factors on the determination of mixed-mating systems remains poorly known. In 1999 and 2000, we surveyed the mating system, the population dynamics and some life-history traits of four populations of the freshwater snail Biomphalaria pfeifferi , the major intermediate host of Schistosoma mansoni in Africa, in two areas of Madagascar (Itasy and Antananarivo). We confirmed that B. pfeifferi is a predominant selfer, with selfing rates ranging between 80 and 100%. Temporal and geographical variation of the selfing rate was observed at both local and large spatial scale. Historical processes of colonization and invasion of B. pfeifferi in Madagascar could explain the geographical variation of the mating system observed at regional scale. Pure selfing has probably evolved in the two populations of Antananarivo area as a reproductive assurance strategy in a metapopulation where extinction is frequent and migration rare. The reproductive assurance hypothesis does not explain the spatio-temporal mating system variations observed in Itasy area. However genetic factors including inbreeding depression-the expression of which can be environmentally mediated-and metapopulation dynamics could influence the mating system in both populations sampled in Itasy and lead to different levels of evolutionary stable intermediate selfing rate in this region. Our results therefore highlight the influence of environmental heterogeneity and stochasticity on mating system.  相似文献   

13.
Electrophoretic analysis of progeny arrays was used to determine whether Ardisia escallonioides (Myrsinaceae). a self-compatible tropical understory shrub in south Florida, exhibits a mixed-mating system. Ten seedlings from seven to 16 maternal plants from four populations were analyzed using five polymorphic enzyme systems. Multilocus population out-crossing rates ranged from 0.39 to > 1, with three populations showing high levels of selfing. Both single and multilocus inbreeding coefficients (F) indicated excess homozygosity in seedlings but not adults for three of the four populations. Population outcrossing rate was not positively correlated with increased numbers of flowering plants. The importance of annual variation in population outcrossing rates is discussed with regard to the high temporal variability in seedling recruitment in this species.  相似文献   

14.
High inbreeding depression is thought to be one of the major factors preventing evolutionary transitions in hermaphroditic plants from self‐incompatibility (SI) and outcrossing toward self‐compatibility (SC) and selfing. However, when selfing does evolve, inbreeding depression can be quickly purged, allowing the evolution of complete self‐fertilization. In contrast, populations that show intermediate selfing rates (a mixed‐mating system) typically show levels of inbreeding depression similar to those in outcrossing species, suggesting that selection against inbreeding might be responsible for preventing the transition toward complete self‐fertilization. By implication, crosses among populations should reveal patterns of heterosis for mixed‐mating populations that are similar to those expected for outcrossing populations. Using hand‐pollination crosses, we compared levels of inbreeding depression and heterosis between populations of Linaria cavanillesii (Plantaginaceae), a perennial herb showing contrasting mating systems. The SI population showed high inbreeding depression, whereas the SC population displaying mixed mating showed no inbreeding depression. In contrast, we found that heterosis based on between‐population crosses was similar for SI and SC populations. Our results are consistent with the rapid purging of inbreeding depression in the derived SC population, despite the persistence of mixed mating. However, the maintenance of outcrossing after a transition to SC is inconsistent with the prediction that populations that have purged their inbreeding depression should evolve toward complete selfing, suggesting that the transition to SC in L. cavanillesii has been recent. SC in L. cavanillesii thus exemplifies a situation in which the mating system is likely not at an equilibrium with inbreeding depression.  相似文献   

15.
Levels of allozyme variation and intrapopulation spatial genetic structure of the two terrestrial clonal orchids Liparis kumokiri , a self-compatible relatively common species, and L. makinoana , a self-incompatible rare species, were examined for 17 ( N  = 1875) and four ( N  = 425) populations, respectively, in South Korea. Populations of L. makinoana harboured high levels of genetic variation ( H e = 0.319) across 15 loci. In contrast, L. kumokiri exhibited a complete lack of allozyme variation ( H e = 0.000). Considering the lack of genetic variability, it is suggested that current populations of L. kumokiri in South Korea originated from a genetically depauperate ancestral population. For L. makinoana , a significant deficit of heterozygosity (mean F IS = 0.198) was found in population samples excluding clonal ramets, suggesting that pollen dispersal is localized, generating biparental inbreeding. The significant fine-scale genetic structuring (≤ 2 m) found in a previous study, in addition to the moderate levels of population differentiation ( F ST = 0.107) and the significant relationship between genetic and geographical distances ( r  = 0.680) found here, suggests a leptokurtic distribution of seed dispersal for L. makinoana . Although populations of L. makinoana harbour high levels of genetic variation, they are affected by a recent genetic bottleneck. This information suggests that genetic drift and limited gene flow could be the main evolutionary forces for speciation of a species-rich genus such as Liparis .  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 41–48.  相似文献   

16.
In a mixed-mating population, the fitness of selfed individuals, relative to outcrossed individuals, can be estimated from observed changes of the inbreeding coefficient F. In general, three measurements of F, or two measurements of F and one of the selfing rate, spanning two generations are needed. If however, adult F is assumed constant among generations, the adult F and selfing rate of one generation are sufficient to estimate relative fitness. Estimates of the relative fitness of selfed individuals for 14 Mimulus populations, assuming equilibrium of adult F, averaged 0.38, which is significantly lower than the 0.50 threshold needed to favor selfing genotypes. However, estimates for some populations showed large variance and over the 14 populations, relative fitness did not correlate with selfing rate. Violations of the equilibrium assumption causes a positive bias of the estimate and a spurious negative correlation of estimates with selfing rate. Estimates of relative fitness based on two generations of F do not suffer these problems. The need for large sample sizes, multiallelic loci, and moderate levels of natural selfing limits the usefulness of using changes of F to infer inbreeding depression.  相似文献   

17.
This article analyzes how partial selfing in a large source population influences its ability to colonize a new habitat via the introduction of a few founder individuals. Founders experience inbreeding depression due to partially recessive deleterious alleles as well as maladaptation to the new environment due to selection on a large number of additive loci. I first introduce a simplified version of the inbreeding history model to characterize mutation‐selection balance in a large, partially selfing source population under selection involving multiple nonidentical loci. I then use individual‐based simulations to study the eco‐evolutionary dynamics of founders establishing in the new habitat under a model of hard selection. The study explores how selfing rate shapes establishment probabilities of founders via effects on both inbreeding depression and adaptability to the new environment, and also distinguishes the effects of selfing on the initial fitness of founders from its effects on the long‐term adaptive response of the populations they found. A high rate of (but not complete) selfing is found to aid establishment over a wide range of parameters, even in the absence of mate limitation. The sensitivity of the results to assumptions about the nature of polygenic selection is discussed.  相似文献   

18.
The consequences of inbreeding in small isolated populations are well documented, yet populations are often managed in isolation to avoid irreversibly mixing genetic lineages and to maintain the historic integrity of each population. Three remaining populations of Whitaker's skink ( Cyclodina whitakeri ) in New Zealand, remnants of a once wider distribution, illustrate the conflict between this genetic goal (separate management of populations) with the more tangible and immediate threats of small population size and inbreeding. Middle and Castle Islands harbour populations of C. whitakeri and have been separated from each other and from the mainland for ∼10 000 years. The single mainland population at Pukerua Bay is extremely small, declining and deemed a high priority for management. We sequenced a 550 bp region of mitochondrial DNA (mtDNA,ND2) and genotyped animals from all three populations at 13 microsatellite loci. The population of C. whitakeri at Pukerua Bay showed marked differences from the island populations at both mtDNA (unique, fixed haplotype) and microsatellite loci ( F ST∼0.20), and private alleles were detected at a high frequency (24% of all alleles). However, we attribute this pattern to an historic genetic gradient coupled with rapid genetic drift. Further, animals in captivity show genetic signatures of both Pukerua Bay and island populations, despite the goal to maintain a pure Pukerua Bay stock. The mixed genetic stock in captivity provides an opportunity for the addition of skinks from Middle Island to evaluate the risks of further population hybridization, including the disruption of potential local adaptation, while mitigating the risks of inbreeding.  相似文献   

19.
New Zealand pohutukawa (Metrosideros excelsa), a member of the Myrtaceae, is a large, mass-flowering tree endemic to northern New Zealand coastlines. Mainland populations have been reduced to fragmented stands, and the original suite of bird pollinators has been largely replaced by introduced species. The native pollinator fauna on several offshore islands is largely intact and includes three species of the New Zealand honeyeaters (Meliphagidae) and native, solitary bees. We estimated multilocus outcrossing rates for three mainland and two island populations and found that they were among the lowest in the Myrtaceae (t(m) = 0.22-0.53). The shift in pollinators had no measurable effect on the mating system. Mass-flowering facilitates geitonogamous selfing, and inbreeding depression in seedling height was detectable at 6 mo of growth. F(s) [Wright's (1965) Fixation Index] was consistently higher than F(m) in all populations, indicating that selection may eliminate selfed offspring from populations prior to achieving reproductive maturity. Results suggest that increased selfing in mainland populations due to pollinator changes is not responsible for current patterns of poor regeneration of this species.  相似文献   

20.
The alpine bullhead ( Cottus poecilopus ) in Poland is highly polymorphic ( P for examined populations in the range of 0.0–0.45, mean P  = 0.11, P for species 0.64) in seven out of 11 loci studied ( Pgd-1, Mdh-1, Ck-1, Gpd-1, Gpd-2, Gpi-1, Gpi-2 ). However, they reveal very low heterozygosity (mean H o = 0.007, mean H e = 0.019), which may result from population subdivisions, small genetically effective size ( N e) of some populations and frequent inbreeding, the latter being probably mediated through polygyny. The index of genetic differentiation ( G ST) for the Polish metapopulation equals 0.48, which is relatively high. By far, the strongest are genetic differences between the Sudeten-Carpathian group and the Hańcza population. Gene flow between the Sudeten-Carpathian group and the Hańcza population is very limited and their divergence may have started as early as the last (Eemian) interglacial period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号