首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using thrombin and trypsin as probes, we determined: first, that low-density lipoprotein (LDL) receptor binding determinants switch from apolipoprotein (apo) E to apo-B within the very-low-density lipoprotein (VLDL) Sf 20-60 region of the metabolic cascade from VLDL1 (Sf 100-400) of hypertriglyceridemic (HTG) human subjects to LDL. Second, two different conformations of apo-E exist in HTG-VLDL Sf greater than 60, one accessible (greater than or equal to 1 mol/mol of particle) and one inaccessible (1-2 mol/mol) to both thrombin and the LDL receptor; normal VLDL (Sf greater than 60) have only the inaccessible conformation and therefore do not bind to the LDL receptor. Third, thrombin degrades apo-B into large fragments, three of which have electrophoretic mobilities similar to B-48, B-74, and B-26; this, however, has no effect on apo-B-mediated receptor binding. Fibroblast studies showed that thrombin could abolish receptor uptake of HTG-VLDL1 and HTG-VLDL2 (Sf 60-100), had little or no effect on HTG-VLDL3 (Sf 20-60), and no effect on uptake of intermediate-density lipoprotein (IDL) or LDL. Trypsin abolished the binding of HTG-VLDL1 and HTG-VLDL2, reduced that of HTG-VLDL3, but had little to no effect on IDL or LDL binding. Immunochemical techniques revealed that thrombin cleaved some apo-E into the E-22 and E-12 fragments; after trypsin treatment no apo-E was detected in any HTG-lipoprotein. Normal VLDL subclasses contained less apo-E than the corresponding HTG-VLDL subclasses and it was not cleaved by thrombin. Apo-B immunoreactivities of VLDL subclasses were not significantly changed after treatment with thrombin, although thrombin cleaved some of the B-100 of each VLDL subclass, and all apo-B in IDL and LDL, into 4-6 major large fragments. Trypsin converted all of the apo-B of each lipoprotein into smaller fragments (Mr less than 100,000). We conclude that apo-E of the thrombin-accessible conformation mediates uptake of HTG-VLDL1 and HTG-VLDL2 but that apo-B alone is sufficient to mediate receptor binding of IDL and LDL; the switch from apo-E to apo-B as the primary or sufficient binding determinant occurs within the VLDL3 (Sf 20-60) region of the metabolic cascade, where receptor binding first appears in VLDL subclasses from normal subjects.  相似文献   

2.
Large triglyceride-rich very low density lipoproteins (VLDL) Sf 60-400 from hypertriglyceridemic (HTG) patients, but not VLDL from normal subjects, bind to the LDL receptor of human skin fibroblasts because they contain apolipoprotein E (apoE) of the correct conformation, accessible both to the LDL receptor and to specific proteolysis by alpha-thrombin. Trypsin treatment of HTG-VLDL Sf 60-400 causes extensive apoB hydrolysis (fragments less than 100,000 mol wt), total degradation of apoE, and thus complete loss of LDL receptor binding. The reincorporation of apoE (1 mol/mol VLDL) into trypsin-treated HTG-VLDL completely restored the ability of HTG-VLDL to interact with the LDL receptor, suggesting that apoE probably does not induce a conformational change in apoB which results in receptor recognition, nor is intact apoB necessary to maintain the appropriate conformation of apoE for LDL receptor binding. As a model of large triglyceride-rich VLDL Sf greater than 60, we fractionated Intralipid by the Lindgren method of cumulative flotation and prepared apoE-Intralipid complexes. Competitive binding studies demonstrated that apoE-Intralipid is at least as effective as LDL for uptake and degradation of 125I-labeled LDL. Control Intralipid complexes containing apoA-I instead of apoE do not compete with iodinated LDL. Since these TG-rich complexes contain no apoB, apoB is, therefore, not only not sufficient for receptor-mediated uptake of large particles, it is not necessary. ApoE of the correct conformation is not only necessary but is sufficient to mediate receptor binding of large triglyceride-rich particles to the LDL receptor.  相似文献   

3.
The beta-VLDL receptor pathway of murine P388D1 macrophages   总被引:1,自引:0,他引:1  
Very low density lipoproteins Sf 100-400 (VLDL1) from hypertriglyceridemic (HTG) subjects and chylomicrons cause receptor-mediated lipid engorgement in unstimulated macrophages in vitro via the beta-VLDL receptor pathway. We now report that the murine macrophage P388D1 cell line possesses the characteristics of the beta-VLDL receptor pathway observed previously in freshly isolated resident murine peritoneal macrophages or human monocyte-macrophages. HTG-VLDL1 isolated from the plasma of subjects with hypertriglyceridemia types 3, 4, and 5 interact with P388D1 macrophages in a high-affinity, curvilinear manner. beta-VLDL, HTG-VLDL1, chylomicrons, and thrombin-treated HTG-VLDL1 (which do not bind to the LDL receptor) compete efficiently and similarly for the uptake and degradation of HTG-VLDL1. LDL and acetyl LDL do not compete, indicating that uptake of HTG-VLDL1 is via neither the LDL receptor nor the acetyl LDL receptor. Binding of thrombin-treated HTG-VLDL1 to the beta-VLDL receptor indicates that the thrombin-accessible apoE, which is absolutely required for interaction of HTG-VLDL Sf greater than 60 with the LDL receptor, is not required for binding to the beta-VLDL receptor. The uptake and degradation of 125I-labeled HTG-VLDL1 is suppressed up to 80-90% by preincubation of the cells with sterols, acetyl LDL, or beta-VLDL, indicating that this process is not via the irrepressible chylomicron remnant (apoE) receptor. Chylomicrons, HTG-VLDL1, and thrombin-treated HTG-VLDL1-but not normal VLDL1, beta-VLDL, LDL, or acetyl LDL-produce massive triglyceride accumulation (10-20-fold mass increases in 4 hr) in P388D1 macrophages.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We found that LPL enhances the binding to HepG2 cells and fibroblasts of both VLDL and apoE free LDL. In the presence of 1.7 micrograms/ml of purified bovine LPL, the binding of LDL and VLDL was up to 60 fold increased as compared to the control binding. In addition, LPL enhances the binding in LDL-receptor negative fibroblasts to the same extent as it does in normal fibroblasts. The presence of 10 mM of EGTA could not prevent the LPL-mediated enhancement of the binding of both LDL and VLDL to fibroblasts, indicating that the binding is calcium independent. Furthermore, up- and down regulation of the LDL receptor did not influence the binding of these lipoproteins in the presence of LPL. Strikingly, we found that the enhancing effect of LPL on the binding of LDL and VLDL to HepG2 cells could be abolished by preincubation of the cells with heparinase, suggesting that heparan sulphate proteoglycans are involved in the LPL-mediated stimulation. We hypothesize that the enhancement of the cellular binding of LDL and VLDL in the presence of LPL is caused by an LPL-bridging between proteoglycans present on the plasma membrane and the lipoproteins, and that the LDL receptor and LRP are not involved.  相似文献   

5.
The relationship between the cholesteryl ester content of normal human very low density lipoprotein (VLDL) and its ability to bind to apolipoprotein E (apoE), heparin, and the low density lipoprotein (LDL) receptor have been compared. Plasma VLDL were separated by heparin affinity chromatography into two fractions: one with apoE and one without. Both fractions had the same cholesteryl ester content relative to apolipoprotein B (apoB). LDL, on the other hand, had a greater cholesteryl ester content. VLDL were modified by lipolysis to express the ability to bind apoE (Ishikawa, Y., Fielding, C. J., and Fielding, P. E. (1988) J. Biol. Chem. 263, 2744-2749). Lipolyzed VLDL with or without apoE were compared for their ability to bind to heparin or the up-regulated fibroblast LDL receptor. Lipolyzed VLDL bound with the same affinity to the receptor whether or not the particles contained apoE. ApoB, not apoE, appears then to be the important ligand for normal VLDL. On the other hand, modified VLDL without apoE, even though binding to the LDL receptor, did not bind to heparin. These data suggest that apoE mediates heparin binding in normal VLDL, that apoB mediates receptor binding, and that the cholesteryl ester content of VLDL is not a factor in the induction of the ability to bind apoE.  相似文献   

6.
Binding of plasma low density lipoproteins to erythrocytes   总被引:2,自引:0,他引:2  
Low density lipoproteins (LDL) containing apolipoprotein B bind to intact, freshly isolated erythrocytes. The LDL-erythrocyte interaction is of low affinity, with a Kd of 1.1 x 10(-6) M. Binding is noncooperative. There are about 200 binding sites per cell and, within the limits of experimental uncertainty, these sites comprise a homogeneous class. Binding of LDL is a temperature-independent process. The maximum amount of LDL blood increases following proteolytic digestion of the cells with trypsin or chymotrypsin. The specificity of the binding sites for LDL is not absolute: high density lipoproteins and lipid vesicles composed of phosphatidylcholine or phosphatidylcholine/cholesterol (equimolar) complete with LDL for occupancy of 60% of the binding sites. Modification of 5--6 of the 9 apolipoprotein B arginine residues with 1,2-cyclohexanedione/borate or of 10--15 of the 20 lysine residues by reductive methylation does not alter the ability of LDL to bind to erythrocytes. Native LDL and methylated-LDL alter erythrocyte morphology. However, LDL in which the arginine residues are derivatized with 1,2-cyclohexanedione/borate do not induce the discocyte leads to echinocyte transformation. Chemically modified and native LDL exchange cholesterol with erythrocytes at equal rates and to nearly equal extents. Taken together, the data suggest that the binding sites for LDL on the erythrocyte membrane are distinct from the LDL receptors at the surface of other cells--e.g., fibroblasts and lymphocytes--which do not bind HDL and which do not recognize LDL with derivatized arginine or lysine residues. It is proposed that the biological function of the erythrocyte binding sites is to mediate the exchange of cholesterol between the cell membrane and lipoproteins.  相似文献   

7.
Apolipoprotein (apo) B-100, the protein constituent of low density lipoproteins (LDL), is the determinant responsible for LDL binding to the apoB,E(LDL) receptor on cells. The current study was designed to identify the region(s) of apoB-100 that interact with the apoB,E(LDL) receptor. Apolipoprotein B-100 was fragmented by thrombin digestion, and the isolated fragments (T2, T3, T4) were recombined with cholesterol-induced canine high density lipoproteins (HDLc). Before the recombination, the receptor binding activity of apoE of the HDLc was abolished by reductive methylation and extensive trypsin treatment. This treatment permitted almost complete replacement of the small residual apoE fragments by the large apoB fragments. Recombinant apoB particles were isolated by ultracentrifugation and tested for binding to receptors on cultured human fibroblasts. The recombinant particles had chemical and physical properties similar to those of native HDLc. Recombinants of both the whole thrombolytic digest and of isolated fragments displayed specific binding to the apoB,E (LDL) receptor. Anti-apoB,E(LDL) receptor antibodies abolished 90% of the binding, and there was almost no specific binding to receptor-negative fibroblasts or to cells in which the receptors had been down-regulated. The binding of apoB-100 recombinants to the receptor also demonstrated calcium dependency; in addition, the surface binding of the recombinants was released by polyanionic compounds. All these recombinants had binding affinities comparable to one another but less than that of native LDL. Although T2, T3 and T4 recombinants can all bind specifically to the apoB,E(LDL) receptor, it remains to be established whether their activity represents physiologically relevant binding. Nevertheless, the present findings illustrate the potential of the recombinant method using HDLc lipids to reconstitute biological activity.  相似文献   

8.
Very low (VLDL) and low density lipoproteins (LDL) were isolated from plasma of patients with the E3/3 phenotype which were divided into three groups based on their plasma triglyceride content: low (TG<200 mg/dl, TG(l)), intermediate (200<300 mg/dl, TG(i)300 mg/dl, TG(h)). The protein density (PD) on the VLDL and LDL surface was calculated from lipoprotein composition and protein location was studied by tryptophan fluorescence quenching by I(-) anions at 25 degrees C and 40 degrees C. A comparison of the TG(h) with the TG(l) group revealed a significant (<0.05) increase of the PD parameter as much as 21% for VLDL, but not for LDL where this parameter did not change for any group; generally, PD(LDL) values were 3.2-3.8-fold lower than PD(VLDL). In accordance with this difference, the tryptophan accessibility f in VLDL vs. LDL was lower at both temperatures. There were temperature-induced changes of the f parameter in opposite directions for these lipoproteins. The difference in f value gradually decreased for VLDL in the direction TG(l)TG(i)TG(h) while for LDL there was a U-shaped dependence for these groups. The Stern-Volmer quenching constant K(S-V) which is sensitive to both temperature and viscosity, did not change for VLDL, but K(S-V)(LDL) was 2-3-fold higher for the TG(i) group compared to the other two. The efficiencies of VLDL and LDL binding to the LDL receptor (LDLr) in vitro were compared by solid-phase assay free of steric hindrance observed in cell binding. The maximal number of binding sites did not change for either type of particles and between groups. The association constant K(a) and apolipoprotein (apo) E/apoB mole ratio values all increased significantly for VLDL, but not for LDL, in comparison of the TG(i+h) with the TG(l) group. Based on VLDL and LDL concentrations in serum and on the affinity constant values obtained in an in vitro assay, VLDL concentrations corresponding to 50% inhibition of LDL binding (IC(50)) were calculated in an assumption of the competition of both ligands for LDLr in vivo; the mean values of IC(50) decreased 2-fold when plasma TG exceeded 200 mg/dl. The functional dependences of K(a)(VLDL), IC(50) and apoE content in VLDL (both fractional and absolute) and in serum on TG content in the whole concentration range studied were fitted to a saturation model. For all five parameters, the mean half-maximum values TG(1/2) were in the range 52-103 mg/dl. The efficiency of protein-protein interactions is suggested to differ in normolipidemic vs. HTG-VLDL and apoE content and/or protein density on VLDL surface may be the primary determinant(s) of the increased binding of HTG-VLDL to the LDL receptor. ApoCs may compete with apoE for the binding to the VLDL lipid surface as plasma triglyceride content increases. The possible competition of VLDL with LDL for the catabolism site(s) in vivo, when plasma TG increases, could explain the atherogenic action of TG-rich lipoproteins. Moreover, the 'dual action' hypothesis on anti-atherogenic action of apoE-containing high density lipoproteins (HDL) in vivo is suggested: besides the well-known effect of HDL as cholesteryl ester catabolic outway, the formation of a transient complex of apoE-containing discs appearing at the site of VLDL TG hydrolysis by lipoprotein lipase with VLDL particles proposed in our preceding paper promotes the efficient uptake of TG-rich particles; in hypertriglyceridemia due to the diminished HDL content this uptake seems to be impaired which results in the increased accumulation of the remnants of TG-rich particles. This explains the observed increase in cholesterol and triglyceride content in VLDL and LDL, respectively, due to the CETP-mediated exchange of cholesteryl ester and triglyceride molecules between these particles.  相似文献   

9.
Apolipoprotein E (apoE) plays a critical role in lipoprotein particle clearance from blood plasma through its interaction with the low density lipoprotein (LDL) receptor and other related receptors. Here, we studied a 58-residue peptide encompassing the receptor binding region of apoE. ApoE3-(126-183) was generated by cyanogen bromide cleavage of recombinant apoE3-(1-183), purified by reversed-phase high pressure liquid chromatography, and characterized by mass spectrometry. Far UV CD spectroscopy of the peptide showed that it is unstructured in aqueous solution. The addition of trifluoroethanol or dodecylphosphocholine induces the peptide to adopt an alpha-helical conformation. ApoE3-(126-183) efficiently transforms dimyristoylphosphatidylglycerol (DMPG) vesicles into peptide-lipid complexes. Analysis of apoE3-(126-183). DMPG complexes by electron microscopy revealed disc-shaped particles with an average diameter of 13 +/- 3 nm. Flotation equilibrium analysis yielded a particle molecular mass of 252 kDa. Far UV CD analysis of apoE3-(126-183).DMPG discs provided evidence that the peptide adopts a helical conformation. Competition binding experiments with (125)I-labeled low density lipoprotein (LDL) were conducted to assess the ability of apoE3-(126-183).DMPG complexes to bind to the LDL receptor. Both N-terminal apoE and the peptide, when complexed with DMPG, competed with (125)I-LDL for binding sites on the surface of cultured human skin fibroblasts. Under the conditions employed, apoE3-(126-183).DMPG complexes were similar to apoE3-(1-183).DMPG discs in their ability to bind to the receptor, demonstrating that the peptide represents a good model to study the interaction between apoE and the LDL receptor. Preliminary NMR results indicated that a high resolution structure of the apoE3-(126-183) peptide is obtainable.  相似文献   

10.
The presence of HOCl-modified epitopes inside and outside monocytes/macrophages and the presence of HOCl-modified apolipoprotein B in atherosclerotic lesions has initiated the present study to identify scavenger receptors that bind and internalize HOCl-low density lipoprotein (LDL). The uptake of HOCl-LDL by THP-1 macrophages was not saturable and led to cholesterol/cholesteryl ester accumulation. HOCl-LDL is not aggregated in culture medium, as measured by dynamic light scattering experiments, but internalization of HOCl-LDL could be inhibited in part by cytochalasin D, a microfilament disrupting agent. This indicates that HOCl-LDL is partially internalized by a pathway resembling phagocytosis-like internalization (in part by fluid-phase endocytosis) as measured with [14C]sucrose uptake. In contrast to uptake studies, binding of HOCl-LDL to THP-1 cells at 4 degrees C was specific and saturable, indicating that binding proteins and/or receptors are involved. Competition studies on THP-1 macrophages showed that HOCl-LDL does not compete for the uptake of acetylated LDL (a ligand to scavenger receptor class A) but strongly inhibits the uptake of copper-oxidized LDL (a ligand to CD36 and SR-BI). The binding specificity of HOCl-LDL to class B scavenger receptors could be demonstrated by Chinese hamster ovary cells overexpressing CD36 and SR-BI and specific blocking antibodies. The lipid moiety isolated from the HOCl-LDL particle did not compete for cell association of labeled HOCl-LDL to CD36 or SR-BI, suggesting that the protein moiety of HOCl-LDL is responsible for receptor recognition. Experiments with Chinese hamster ovary cells overexpressing scavenger receptor class A, type I, confirmed that LDL modified at physiologically relevant HOCl concentrations is not recognized by this receptor.  相似文献   

11.
The ligand binding domain of the low density lipoprotein (LDL) receptor contains seven imperfect repeats of a 40-amino acid cysteine-rich sequence. Each repeat contains clustered negative charges that have been postulated as ligand-binding sites. The adjacent region of the protein, the growth factor homology region, contains three cysteine-rich repeats (A-C) whose sequence differs from those in the ligand binding domain. To dissect the contribution of these different cysteine-rich repeats to ligand binding, we used oligonucleotide-directed mutagenesis to alter expressible cDNAs for the human LDL receptor which were then introduced into monkey COS cells by transfection. We measured the ability of the mutant receptors to bind LDL, which contains a single protein ligand for the receptor (apoB-100), and beta-migrating very low density lipoprotein (beta-VLDL), which contains apoB-100 plus multiple copies of another ligand (apoE). The results show that repeat 1 is not required for binding of either ligand. Repeats 2 plus 3 and repeats 6 plus 7 are required for maximal binding of LDL, but not beta-VLDL. Repeat 5 is required for binding of both ligands. Repeat A in the growth factor homology region is required for binding of LDL, but not beta-VLDL. Repeat B is not required for ligand binding. These results support a model for the LDL receptor in which various repeats play additive roles in ligand binding, each repeat making a separate contribution to the binding event.  相似文献   

12.
Freshly isolated rat hepatocytes bind the solely apolipoprotein B-containing human low density lipoprotein (LDL) with a high-affinity component. After 1 h of incubation less than 30% of the cell-associated human LDL is internalized and no evidence for any subsequent high-affinity degradation was obtained. Scatchard analysis of the binding data for human 125I-labeled LDL indicates that the high-affinity receptor for human LDL on rat hepatocytes possesses a Kd of 2.6 x 10(-8)M, while the binding is dependent on the extracellular Ca2+ concentration. Competition experiments indicate that both the apolipoprotein B-containing lipoproteins (human LDL and rat LDL) as well as the apolipoprotein E-containing lipoproteins (human HDL and rat HDL) do compete for the same surface receptor. It is concluded that hepatocytes freshly isolated from untreated rats do contain, in addition to the earlier described rat lipoprotein receptor which does not interact with human apolipoprotein B-containing LDL, a high-affinity receptor which interacts both with solely apolipoprotein B-containing human LDL and apolipoprotein E-containing lipoproteins.  相似文献   

13.
Human apolipoprotein (apo) B-100 is composed of 4536 amino acids. It is thought that the binding of apoB to the low density lipoprotein (LDL) receptor involves an interaction between basic amino acids of the ligand and acidic residues of the receptor. Three alternative models have been proposed to describe this interaction: 1) a single region of apoB is involved in receptor binding; 2) groups of basic amino acids from throughout the apoB primary structure act in concert in apoB receptor binding; and 3) apoB contains multiple independent binding regions. We have found that monoclonal antibodies (Mabs) specific for a region that spans a thrombin cleavage site at apoB residue 3249 (T2/T3 junction) totally blocked LDL binding to the LDL receptor. Mabs specific for epitopes outside this region had either no or partial ability to block LDL binding. In order to define the region of apoB directly involved in the interaction with the LDL receptor we have tested 22 different Mabs for their ability to bind to LDL already fixed to the receptor. A Mab specific for an epitope situated between residues 2835 and 2922 could bind to its epitope on LDL fixed to its receptor whereas a second epitope between residues 2980 and 3084 is inaccessible on receptor-bound LDL. A series of epitopes near residue 3500 of apoB is totally inaccessible, and another situated between residues 4027 and 4081 is poorly accessible on receptor-bound LDL. In contrast, an epitope that is situated between residues 4154 and 4189 is fully exposed. Mabs specific for epitopes upstream and downstream of the region 3000-4000 can bind to receptor-bound LDL with a stoichiometry close to unity. Our results strongly suggest that the unique region of apoB directly involved in the LDL-receptor interaction is that of the T2/T3 junction.  相似文献   

14.
Serine proteases coisolate with human very low density lipoproteins (VLDL) which degrade apolipoprotein E and cause hypertriglyceridemic VLDL to lose the ability to interact with the LDL receptor of human skin fibroblasts. We identified proteolytic fragments of apolipoprotein-E in isolated VLDL which can be produced by the action of thrombin on purified apoE. There are two major thrombin cleavage products: Mr ~ 22,000 (E-22) and Mr ~ 12,000 (E-12), the N- and C-terminal fragments, respectively, of apoE. We conclude that the structural integrity and the ability of VLDL to interact with cell receptors are a function of not only VLDL constituents but also of the extent to which VLDL apoprotein E has been degraded.  相似文献   

15.
Beta very low density lipoprotein (VLDL) was isolated from a patient with hepatic lipase deficiency. The particles were found to contain apolipoprotein B-100 (apoB) and apolipoprotein E (apoE) and were rich in cholesterol and cholesteryl ester relative to VLDL with pre beta electrophoretic mobility. These particles were active in displacing human low density lipoprotein (LDL) from the fibroblast apoB,E receptor and produced a marked stimulation of acyl-CoA:cholesterol acyltransferase. Treatment of intact beta-VLDL with trypsin abolished its ability to displace LDL from fibroblasts. Incubation of trypsin treated beta-VLDL with fibroblasts resulted in a significant stimulation of acyl-CoA:cholesterol acyltransferase activity. beta-VLDL isolated from a patient with Type III hyperlipoproteinemia and an apoE2/E2 phenotype had a higher cholesteryl ester/triglyceride ratio than the beta-VLDL of hepatic lipase deficiency and contained apoB48. It displaced LDL from fibroblasts to a small but significant extent. The Type III beta-VLDL stimulated acyl-CoA:cholesterol acyltransferase to a level similar to that of trypsin-treated beta-VLDL isolated from the hepatic lipase-deficient patient. These results demonstrate that the cholesterol-rich beta-VLDL particles present in patients with hepatic lipase deficiency are capable of interacting with fibroblasts via the apoB,E receptor and that this interaction is completely due to trypsin-sensitive components of the beta-VLDL. These particles were very effective in stimulating fibroblast acyl-CoA:cholesterol acyltransferase. This stimulation was due to both trypsin-sensitive and trypsin-insensitive components.  相似文献   

16.
17.
Apolipoprotein E7 (apoE7) (apoE3 E244K/E245K) is a naturally occurring mutant in humans that is associated with increased plasma lipid levels and accelerated atherosclerosis. It is reported to display defective binding to low density lipoprotein (LDL) receptors, high affinity binding for heparin, and like apoE4, preferential association with very low density lipoproteins (VLDL). There are two potential explanations for the preference of apoE7 for VLDL: lysine mutations, which occur in the major lipid-binding region (residues 244-272) of the carboxy-terminal domain of apoE7, could either directly determine the lipoprotein-binding preference or could interact with negatively charged residues in the amino-terminal domain, resulting in a domain interaction similar to that in apoE4 (interaction of Arg-61 with Glu-255), which is responsible for the apoE4 VLDL preference. To distinguish between these possibilities, we determined the binding preferences of recombinant apoE7 and two amino-terminal domain mutants, apoE7 (E49Q/E50Q) and apoE7 (D65N/E66Q), to VLDL-like emulsion particles. ApoE7 and both mutants displayed a higher preference for the emulsion particles than did apoE3, indicating that the carboxy-terminal lysine mutations in apoE7 are directly responsible for its preference for VLDL. Supporting this conclusion, the carboxy-terminal domain 12-kDa fragment of apoE7 (residues 192;-299) displayed a higher preference for VLDL emulsions than did the wild-type fragment. In addition, lipid-free apoE7 had a higher affinity for heparin than did apoE. However, when apoE7 was complexed with dimyristoylphosphatidylcholine or VLDL emulsions, the affinity difference was eliminated. In contrast to previous studies, we found that apoE7 does not bind defectively to the LDL receptor, as determined in both cell culture and solid-phase assays.We conclude that the two additional lysine residues in the carboxy-terminal domain of apoE7 directly alter its lipid- and heparin-binding affinities. These characteristics of apoE7 could contribute to its association with increased plasma lipid levels and atherosclerosis.  相似文献   

18.
Apolipoprotein E (apoE) is the primary recognition signal on triglyceride-rich lipoproteins responsible for interacting with low density lipoprotein (LDL) receptors and LDL receptor-related protein (LRP). It has been shown that lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) promote receptor-mediated uptake and degradation of very low density lipoproteins (VLDL) and remnant particles, possibly by directly binding to lipoprotein receptors. In this study we have investigated the requirement for apoE in lipase-stimulated VLDL degradation. We compared binding and degradation of normal and apoE-depleted human VLDL and apoE knockout mouse VLDL in human foreskin fibroblasts. Surface binding at 37 degrees C of apoE knockout VLDL was greater than that of normal VLDL by 3- and 40-fold, respectively, in the presence of LPL and HTGL. In spite of the greater stimulation of surface binding, lipase-stimulated degradation of apoE knockout mouse VLDL was significantly lower than that of normal VLDL (30, 30, and 80%, respectively, for control, LPL, and HTGL treatments). In the presence of LPL and HTGL, surface binding of apoE-depleted human VLDL was, respectively, 40 and 200% of normal VLDL whereas degradation was, respectively, 25 and 50% of normal VLDL. LPL and HTGL stimulated degradation of normal VLDL in a dose-dependent manner and by a LDL receptor-mediated pathway. Maximum stimulation (4-fold) was seen in the presence LPL (1 microgram/ml) or HTGL (3 microgram/ml) in lovastatin-treated cells. On the other hand, degradation of apoE-depleted VLDL was not significantly increased by the presence of lipases even in lovastatin-treated cells. Surface binding of apoE-depleted VLDL to metabolically inactive cells at 4 degrees C was higher in control and HTGL-treated cells, but unchanged in the presence of LPL. Degradation of prebound apoE-depleted VLDL was only 35% as efficient as that of normal VLDL. Surface binding of apoE knockout or apoE-depleted VLDL was to heparin sulfate proteoglycans because it was completely abolished by heparinase treatment. However, apoE appears to be a primary determinant for receptor-mediated VLDL degradation.Our studies suggest that overexpression of LPL or HTGL may not protect against lipoprotein accumulation seen in apoE deficiency.  相似文献   

19.
Abnormal low density lipoprotein metabolism in apolipoprotein E deficiency   总被引:2,自引:0,他引:2  
Apolipoprotein(apo) E deficiency is an inherited disease characterized by type III hyperlipoproteinemia and less than 1% normal plasma apoE concentration. The role of apoE in LDL metabolism was investigated by quantitating the metabolism of radiolabeled normal and apoE-deficient LDL in both normal and apoE-deficient subjects. ApoE deficiency resulted in an accumulation of plasma IDL, and a decreased synthesis of LDL consistent with a block in the conversion of IDL to LDL. The LDL isolated from the apoE-deficient patient was similar to normal LDL in hydrated density, size, and composition. However, the apoE-deficient LDL was kinetically abnormal with delayed catabolism in both normal subjects and the apoE-deficient patient. In addition, the catabolism of normal LDL in the apoE-deficient subject was increased. These results were interpreted as indicating that apoE is necessary for the conversion of IDL to LDL and the formation of kinetically normal LDL. The rapid catabolism of normal LDL in the apoE-deficient patient suggests an up-regulation of the hepatic LDL receptor pathway. Based on these results, apoE is proposed to play an important role in the conversion of IDL to LDL, the formation of kinetically normal LDL, and the regulation of LDL receptor function.  相似文献   

20.
Monoclonal antibody (Mab) 1D7 is specific for human apolipoprotein (apo) E and blocks binding of lipid-associated apoE to the low density lipoprotein (LDL) receptor. We report here that 1D7 can also block the binding of apoE-free LDL to the LDL receptor. The inhibition of LDL-receptor binding is not due to immunological cross-reactivity between the anti-apoE Mab and apoB, the ligand responsible for the interaction of LDL with the LDL receptor: 1) Mab 1D7 did not react with apoE-depleted LDL; 2) the LDL receptor binding inhibitory activity of 1D7 immunoglobulin G (IgG) preparations could be dissociated from the anti-apoE activity; 3) the inhibition was maintained when the fibroblasts were preincubated with the 1D7 IgG, extensively washed, and only then exposed to 125I-labeled LDL. Rather, it appears that 1D7 recognizes mouse apoE, that mouse apoE-1D7 immune complexes contaminate 1D7 IgG preparations and that the contaminating mouse apoE can compete with 125I-labeled LDL for the LDL receptor. We have demonstrated mouse apoE in IgG preparations of 1D7 but not in those of other anti-apoE Mabs that do not influence LDL-receptor binding. Precipitation of 1D7 IgG with NH4SO4 eliminates both apoE and the capacity of 1D7 to block LDL receptor binding. Finally, mouse apoE can be isolated by immunoaffinity chromatography of mouse serum on immobilized 1D7 Mab. As this is probably not a unique case, the observation has important implications for the use of Mabs as structural probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号