首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
To study the role of IGF-I receptor signaling on cell cycle events we utilized MCF-7 breast cancer cells. IGF-I at physiological concentrations increased the level of p21CIP/WAF mRNA after 4has well as protein after 8hby 10- and 6-fold, respectively, in MCF-7 cells. This IGF-1 effect was reduced by 50% in MCF-7-derived cells (SX13), which exhibit a 50% reduction in IGF-1R expression, demonstrating that IGF-1 receptor activation was involved in this process. Preincubation with the ERK1/2 inhibitor U0126 significantly reduced the IGF-1 effect on the amount of p21CIP/WAF protein in MCF-7 cells. These results were confirmed by the expression of a dominant negative construct for MEK-1 suggesting that the increase of the abundance of p21CIP/WAF in response to IGF-1 occurs via the ERK1/2 mitogen-activated protein kinase pathway. Using an antisense strategy, we demonstrated that abolition of p21CIP/WAF expression decreased by 2-fold the IGF-1 effect on cell proliferation in MCF-7. This latter result is explained by a delay in G1 to S cell cycle progression due partly to a reduction in the activation of some components of cell cycle including the induction of cyclin D1 expression in response to IGF-1. MCF-7 cells transiently overexpressing p21 showed increased basal and IGF-I-induced thymidine incorporation. Taken together, these results define p21CIP/WAF as a positive regulator in the cell proliferation induced by IGF-1 in MCF-7 cells.  相似文献   

3.
4.
张金玉  葛银林  张晓  侯琳  薛美兰 《生物磁学》2009,(15):2834-2837
目的:研究针对VEGF基因的siRNA(small interferenceRNA)对乳腺癌MCF-7细胞细胞周期的影响。方法:依据Promega公司在网上提供的设计软件,设计针对VEGF基因的siRNA,合成DNA模板,体外转录合成siRNA。脂质体转染法将合成的siRNA转染入MCF-7细胞,以未转染细胞以及错义序列siRNAscr转染细胞为对照。用细胞计数法检测siRNA对MCF-7细胞增殖的影响:流式细胞法检测细胞周期变化,RT—PCR法比较转染前后p21、CyclinDl表达水平的变化,Westemblot检测转染前后磷酸化ERK的表达。结果:细胞计数法结果显示,转染24h后siRNA明显抑制MCF-7细胞增殖,转染48h后,抑制效率稳定。siRNA转染后能有效地抑制MCF-7细胞的增殖,阻滞细胞周期于G0/G1期,S期细胞明显减少,G0/G1期细胞比例逐渐增多;p21mRNA表达显著上调,抑制CyclinD1mRNA及磷酸化ERK蛋白的表达。结论:体外转录合成的siRNA可能通过上调细胞周期蚤白激酶抑制剂p21的表达,下调CyclinDl及磷酸化ERK的表达,将细胞周期阻滞于G0/G1期,从而显著抑制MCF-7细胞的增殖。  相似文献   

5.
Carbachol (Cch), a muscarinic acetylcholine receptor (mAChR) agonist, increases intracellular-free Ca(2+) mobilization and induces mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) phosphorylation in MCF-7 human breast cancer cells. Pretreatment of cells with the selective phospholipase C (PLC) inhibitor U73122, or incubation of cells in a Ca(2+)-free medium did not alter Cch-stimulated MAPK/ERK phosphorylation. Phosphorylation of MAPK/ERK was mimicked by phorbol 12-myristate acetate (PMA), an activator of protein kinase C (PKC), but Cch-evoked MAPK/ERK activation was unaffected by down-regulation of PKC or by pretreatment of cells with GF109203X, a PKC inhibitor. However, Cch-stimulated MAPK/ERK phosphorylation was completely blocked by myristoylated PKC-zeta pseudosubstrate, a specific inhibitor of PKC-zeta, and high doses of staurosporine. Pretreatment of human breast cancer cells with wortmannin or LY294002, selective inhibitors of phosphoinositide 3-kinase (PI3K), diminished Cch-mediated MAPK/ERK phosphorylation. Similar results were observed when MCF-7 cells were pretreated with genistein, a non-selective inhibitor of tyrosine kinases, or with the specific Src tyrosine kinase inhibitor PP2. Moreover, in MCF-7 human breast cancer cells mAChR stimulation induced an increase of protein synthesis and cell proliferation, and these effects were prevented by PD098059, a specific inhibitor of the mitogen activated kinase kinase. In conclusion, analyses of mAChR downstream effectors reveal that PKC-zeta, PI3K, and Src family of tyrosine kinases, but not intracellular-free Ca(2+) mobilization or conventional and novel PKC activation, are key molecules in the signal cascade leading to MAPK/ERK activation. In addition, MAPK/ERK are involved in the regulation of growth and proliferation of MCF-7 human breast cancer cells.  相似文献   

6.
To investigate the mechanism by which fibroblast growth factor 2 (FGF-2) inhibits apoptosis in the human small cell lung cancer cell line H446 subjected to serum starvation, apoptosis was evaluated by flow cytometry, Hoechst 33258 staining, caspase-3 activity, and DNA fragmentation. Survivin expression induced by FGF-2 and protein kinase Cα (PKCα) translocation was detected by subcellular frac-tionation and Western blot analysis. In addition, FGF-2-in-duced release of Smac from mitochondria to the cytoplasm was analyzed by Western blotting and immunofluorescence. FGF-2 reduced apoptosis induced by serum starvation and up-regulated survivin expression in H446 cells in a dose-dependent andtime-dependentmanner, andinhibitedcaspase-3 activity. FGF-2 also inhibited the release of Smac from mitochondria to the cytoplasm induced by serum starvation and increased PKCα translocation from the cytoplasm to the cell membrane. In addition, PKC inhibitor inhibited the expression of survivin. FGF-2 up-regulates the expression of survivin protein in H446 cells and blocks the release of Smac from mitochondria to the cytoplasm. PKCα regulated FGF-2-induced survivin expression. Thus, survivin, Smac, and PKCα might play important roles in the inhibition of apoptosis by FGF-2 in human small cell lung cancer cells.  相似文献   

7.
Abstract.   Objectives: Although thyroid cancer occurs much more frequently in females, the role of sex hormones in thyroid carcinogenesis is unknown. In this study, it has been investigated how 17β-oestradiol (E2) influenced proliferation and growth of thyroid cancer cells. Materials and Methods: Cell proliferation and its related molecules were examined in thyroid papillary carcinoma cells (KAT5), follicular thyroid carcinoma cells (FRO) and anaplastic carcinoma cells (ARO). Levels of oestrogen receptor (ER) α and β were regulated by their agonists (PPT and DPN), antagonists and siRNA. Results: E2 promoted cell proliferation. Such an effect was positively related to ERα but negatively to ERβ; PPT enhanced cell proliferation while DPN inhibited it. PPT increased Bcl-2 expression while DPN decreased it. DPN also elevated Bax expression. PPT elevated the level of phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2), suggesting a positive role of ERK1/2 in E2-induced cell proliferation. Knockdown of ERα significantly attenuated E2-mediated Bcl-2 and pERK1/2 expression. In contrast, knockdown of ERβ markedly enhanced them. Conclusions: Oestrogen stimulates proliferation of thyroid cancer cells, associated with increase in Bcl-2 and decrease in Bax levels in an ERK1/2-related pathway. Imbalance between ERα and ERβ may contribute to thyroid carcinogenesis.  相似文献   

8.
Choline kinase-α (Chk-α) and autophagy have gained much attention, as they relate to the drug-resistance of breast cancer. Here, we explored the potential connection between Chk-α and autophagy in the mechanisms driving to tamoxifen (TAM) resistance, in estrogen receptor positive (ER+) breast cancer cells (BCCs). Human BCC lines (MCF-7 and TAM-resistant MCF-7 (MCF-7/TAM) cells) were used. Chk-α expression and activity was suppressed by the transduction of shRNA (shChk-α) with lentivirus and treatment with CK37, a Chk-α inhibitor. MCF-7/TAM cells had higher Chk-α expression and phosphocholine levels than MCF-7 cells. A specific downregulation of Chk-α by the transduction of shChk-α exhibited a significant decrease in phosphocholine levels in MCF-7 and MCF-7/TAM cells. The autophagy-related protein, cleaved microtubule-associated protein light chain 3 (LC3) and autophagosome-like structures were significantly increased in shChk-α-transduced or CK37-treated MCF-7 and MCF-7/TAM cells. The downregulation of Chk-α attenuated the phosphorylation of AKT, ERK1/2, and mTOR in both MCF-7 and MCF-7/TAM cells. In MCF-7 cells, the downregulation of Chk-α resulted in an induction of autophagy, a decreased proliferation ability and an activation of caspase-3. In MCF-7/TAM cells, despite a significant decrease in proliferation ability and an increase in the percentage of cells in the G0/G1 phase of the cell cycle, the downregulation of Chk-α did not induced caspase-dependent cell death and further enhanced autophagy and G0/G1 phase arrest. An autophagy inhibitor, methyladenine (3-MA) induced death and attenuated the level of elevated LC3 in MCF-7/TAM cells. Elucidating the interplay between choline metabolism and autophagy will provide unique opportunities to identify new therapeutic targets and develop novel treatment strategies that preferentially target TAM-resistance.  相似文献   

9.
The calcium sensing receptor (CaR) is a G-protein-coupled receptor that is activated by extracellular calcium ([Ca2+]o). In MCF-7 human breast cancer cells, we previously reported that treatment with [Ca2+]o for 24 h leads to an over-expression of the Transient Receptor Potential Canonical 1 (TRPC1) cation channel and cell proliferation. Both involve the extracellular signal-regulated Kinases 1 & 2 (ERK1/2). MCF-7 also expressed epidermal growth factor receptor (EGFR) which is involved in cell proliferation through ERK1/2. Therefore, we investigated the cross-talk between CaR and EGFR in mediating ERK1/2 phosphorylation, TRPC1 over-expression and cell proliferation. Our data show that both high [Ca2+]o and EGF phosphorylate ERK1/2. Furthermore, inhibition of EGFR kinase and matrix metalloproteinases (MMPs) reduced the overall effects mediated by [Ca2+]o such as activation of ERK1/2, expression of TRPC1 and cell proliferation. They indicate the important role of the CaR-EGFR-ERK axis in transmitting mitogenic signals generated by high [Ca2+]o in MCF-7 cells.  相似文献   

10.
Hypothalamic neuropeptide Y (NPY) is an appetite stimulant in the brain. Although regulation of NPY expression has been reported to contribute to the appetite-suppressing effect of phenylpropanolamine (PPA), it is still unknown if protein kinase C (PKC) is involved in this effect. Rats were daily treated with PPA for 4 days. Changes in food intake, hypothalamic NPY, PKC, and proopiomelanocortin (POMC) mRNA levels were assessed and compared. Results showed that the NPY gene was down-regulated following PPA treatment, which was parallel with the decrease of feeding. Moreover, several isotypes of PKC mRNA level (α, βI, βII, γ, δ, η, λ, ε, and ζ) were changed. Among these, α, δ, and λ PKC were up-regulated along with POMC gene expression which coincided with down-regulation of the NPY gene. To further determine if PKCα was involved, infusions of antisense oligonucleotide into the cerebroventricle were performed at 1 h before daily PPA treatment in free-moving rats. Results showed that PKCα knock-down could modify both anorexia induced by PPA and the NPY mRNA levels. Moreover, PKCα knock-down could also modify superoxide dismutase (SOD) gene expression. It is suggested that PKCα participates in the regulation of PPA-mediated appetite suppression via the modulation of NPY and SOD gene expression.  相似文献   

11.
Protein kinase D1, PKD1, is a novel serine/threonine kinase whose altered expression and dysregulation in many tumors as well as its activation by several mitogens suggest that this protein could regulate proliferation and tumorigenesis. Nevertheless, the precise signaling pathways used are still unclear and the potential direct role of PKD1 in tumor development and progression has not been yet investigated. In order to clarify the role of PKD1 in cell proliferation and tumorigenesis, we studied the effects of PKD1 overexpression in a human adenocarcinoma breast cancer cell line, MCF-7 cells. We demonstrated that overexpression of PKD1 specifically promotes MCF-7 cell proliferation through accelerating G0/G1 to S phase transition of the cell cycle. Moreover, inhibition of endogenous PKD1 significantly reduced cell proliferation. Taken together, these results clearly strengthen the regulatory role of PKD1 in cell growth. We also demonstrated that overexpression of PKD1 specifically diminished serum- and anchorage-dependence for proliferation and survival in vitro and allowed MCF-7 cells to form tumors in vivo. Thus, all these data highlight the central role of PKD1 in biological processes which are hallmarks of malignant transformation. Analysis of two major signaling pathways implicated in MCF-7 cell proliferation showed that PKD1 overexpression significantly increased ERK1/2 phosphorylation state without affecting Akt phosphorylation. Moreover, PKD1 overexpression-stimulated cell proliferation and anchorage-independent growth were totally impaired by inhibition of the MEK/ERK kinase cascade. However, neither of these effects was affected by blocking the PI 3-kinase/Akt signaling pathway. Thus, the MEK/ERK signaling appears to be a determining pathway mediating the biological effects of PKD1 in MCF-7 cells. Taken together, all these data demonstrate that PKD1 overexpression increases the aggressiveness of MCF-7 breast cancer cells through enhancing their oncogenic properties and would, therefore, define PKD1 as a potentially new promising anti-tumor therapeutic target.  相似文献   

12.
We examined the signalling pathways responsible for the Ang II induction of growth in MCF-7 human breast cancer cells. Ang II in MCF-7 cells induced: (a) the translocation from the cytosol to membrane and nucleus of atypical protein kinase C-zeta (PKC-zeta) but not of PKC-alpha, -delta, - epsilon and -eta; (b) the expression of c-fos mRNA and protein; (c) the phosphorylation of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). All these effects were due to the activation of the Ang II type I receptor (AT1) since they were blocked by the AT1 antagonist losartan. The Ang II-stimulated ERK1/2 phosphorylation was blocked by (a) high doses of staurosporine, inhibitor of PKC-zeta, and by a synthetic myristoylated peptide with sequences based on the endogenous PKC-zeta pseudosubstrate region (zeta-PS); (b) PD098059, a mitogen-activated protein kinase kinase inhibitor (MAPKK/MEK); and, moreover, (c) the inhibitors of phosphoinositide 3-kinases (PI3K), LY294002 and wortmannin, thus indicating that PI3K may act upstream of ERK1/2. The Ang II-evoked c-fos induction was blocked only by high doses of staurosporine and by zeta-PS whilst PD098059, LY294002 and wortmannin were ineffective, thus indicating that c-fos induction is not due to ERK1/2 activity. When the epidermal growth factor-receptor (EGFR) tyrosine kinase activity was inhibited by the use of its inhibitor AG1478, Ang II was still able to induce ERK1/2 phosphorylation and c-fos expression, therefore proving that the transactivation of EGFR was not required for these Ang II effects in MCF-7 cells. The previously reported proliferation of MCF-7 cells induced by Ang II was blocked by PD098059 and by wortmannin in a dose-dependent manner, thereby indicating that in MCF-7 cells the PI3K and ERK pathways mediate the mitogenic signalling of AT1. Our results suggest that in MCF-7 cells Ang II activates multiple signalling pathways involving PKC-zeta, PI3K and MAPK; of these pathways only PKC-zeta appears responsible for the induction of c-fos.  相似文献   

13.
14.
Activation of V1 vasopressin (VP) receptors prevents serum deprivation-induced apoptosis in neuronal H32 cells, partially through mitogen-activated protein kinase (MAPK) mediated Bad phosphorylation. In this study, we investigated the role of protein kinases C (PKC) and B (PKB) mediating VP-induced antiapoptosis in H32 cells. Serum deprivation increased PKCδ but not PKCα or PKCβ activity, while VP increased PKCα and PKCβ without affecting PKCδ activity. Inhibition of PKCδ prevented caspase 3 activation, indicating that PKCδ mediates the pro-apoptotic actions of serum deprivation. Simultaneous inhibition of PKCα and β and MAPK abolished VP-induced Bad phosphorylation, but it only partially prevented caspase 3 inhibition. Complete abolition of the protective effect of VP on serum deprivation-induced caspase 3 activity required additional blockade of phosphoinositide 3 kinase (PI3K)/protein kinase B. The data demonstrate that VP exerts antiapoptosis through multiple pathways; while PKCα and β together with extracellular signal-regulated kinases/MAPK activation mediates Bad phosphorylation (inactivation), the full protective action of VP requires additional activation of PKB (PI3K/protein kinase B) pathway.  相似文献   

15.
Loss of estrogen-responsiveness and impaired E-cadherin expression/function has been linked to increased metastatic potential of breast cancer cells. In this study, we report that proliferation of breast cancer cells can resume following removal of a toxic stimulus causing severe impairment of cell adhesion and estrogen responsiveness. This type of response was induced by okadaic acid (OA) in MCF-7 cells, and was accompanied by an almost complete block of DNA synthesis, loss of cell-cell contact and cell detachment from culture dishes, loss of estrogen receptor (ER), progesterone receptor (PR) and E-cadherin, whereas only a weak, if any, inhibition of protein synthesis could be observed. These responses were detected in MCF-7 cells after a 1-day treatment with 50 nM OA, and could be reversed if OA-treated cells were recovered in a culture medium devoid of the toxin, so that rescued cells resumed growth 8-12 days after replating. By pulse-chase experiments, we found that protein synthesis was not significantly affected in rescued cells, whose DNA synthesis, instead, was almost completely blocked during the first days of MCF-7 cell rescue from OA treatment. We also analyzed E-cadherin, mitogen activated protein kinase isoforms ERK1 and ERK2, Bcl-2 and BAX proteins during the rescue of MCF-7 cells from OA-induced cell death, and found that their expression followed temporally defined patterns. Cellular levels of E-cadherin returned to control levels within the first days of the rescue, followed by ER, ERK1, and ERK2, and finally by Bcl-2 and BAX proteins. Under our experimental conditions, restoration of cell adhesion did not require a functional ER system, but recovery of a normal ER pool accompanied resumption of estrogen-dependent proliferation of OA-treated MCF-7 cells.  相似文献   

16.
Expression of tissue factor (TF), the cellular receptor of clotting factor VII/VIIa, is a feature of certain malignant tumours. The TF gene has been classified as an immediate early gene responsive to serum and cytokines. Thus, the regulation of TF gene expression seems to play a role in cell growth. Recently, we have shown that constitutive TF expression in MCF-7 breast cancer cells is modulated by such growth factors as EGF, TGFα, and IL-1. The present study deals with the immunocytochemically detectable cellular distribution of TF in human breast cancer cell lines MCF-7 and MaTu stimulated by EGF and TGFα. In MCF-7 cells growing logarithmically, stimulation led to a significant increase of TF mRNA after 2 h (in situ hybridization, Northern blot) and to maximum TF expression after 6 h (immunohistochemistry). When decorated by monoclonal antibodies, TF protein showed a pronounced localization at ruffled membrane areas, cell edges, and processes of spreading cells after 6 and 20 h. In more flattened cells TF was concentrated in peripheric lamellae and microspikes communicating with neighbouring cells. After epithelial colony pattern had established, TF was predominantly accumulated at the intercellular boundaries. The vary same distribution patterns as seen in MCF-7 cells were true for the stimulated MaTu cell line. The dynamics and cellular distribution patterns of stimulated TF expression support the hypothesis that TF could be of importance for morphogenic events associated with the growth and differentiation of breast cancer cells in culture.  相似文献   

17.
BRCA1-induced apoptosis involves inactivation of ERK1/2 activities   总被引:7,自引:0,他引:7  
Mutation in the BRCA1 gene is associated with an increased risk of breast and ovarian cancer. Recent studies have shown that the BRCA1 gene product may be important in mediating responses to DNA damage and genomic instability. Previous studies have indicated that overexpression of BRCA1 can induce apoptosis or cell cycle arrest at the G(2)/M border in various cell types. Although the activation of JNK kinase has been implicated in BRCA1-induced apoptosis, the role of other members of the mitogen-activated protein kinase family in mediating the cellular response to BRCA1 has not yet been examined. In this study, we monitored the activities of three members of the MAPK family (ERK1/2, JNK, p38) in MCF-7 breast cancer cells and U2OS osteosarcoma cells after their exposure to a recombinant adenovirus expressing wild type BRCA1 (Ad.BRCA1). Overexpression of BRCA1 in MCF-7 cells resulted in arrest at the G(2)/M border; however, BRCA1 expression in U2OS cells induced apoptosis. Although BRCA1 induced JNK activation in both cell lines, there were marked differences in ERK1/2 activation in response to BRCA1 expression in these two cell lines. BRCA1-induced apoptosis in U2OS cells was associated with no activation of ERK1/2. In contrast, BRCA1 expression in MCF-7 cells resulted in the activation of both ERK1/2 and JNK. To directly assess the role of ERK1/2 in determining the cellular response to BRCA1, we used dominant negative mutants of MEK1 as well as MEK1/2 inhibitor PD98059. Our results indicate that inhibition of ERK1/2 activation resulted in increased apoptosis after BRCA1 expression in MCF-7 cells. Furthermore, BRCA1-induced apoptosis involved activation of JNK, induction of Fas-L/Fas interaction, and activation of caspases 8 and 9. The studies presented in this report indicate that the response to BRCA1 expression is determined by the regulation of both the JNK and ERK1/2 signaling pathways in cells.  相似文献   

18.
This study examined the premise that the atherogenic lipoprotein, beta-migrating very low density lipoprotein (betaVLDL), might activate the mitogen-activated protein (MAP) kinases ERK1/ERK2, thereby contributing to the induction of smooth muscle cell proliferation in atherosclerosis. The data show that betaVLDL activates rabbit smooth muscle cell ERK1/ERK2. Interestingly, ERK1/ERK2 activation is mediated by G protein-coupled receptors that transactivate the epidermal growth factor (EGF) receptor. betaVLDL-induced MAP kinase activation depends on Ras and Src activity as well as protein kinase C. The inhibition of lysosomal degradation of betaVLDL has no effect on ERK1/ERK2 activation. The contribution of betaVLDL-induced activation of ERK1/ERK2 to smooth muscle cell proliferation was also explored. betaVLDL induces expression of egr-1 and c-fos mRNA. Despite its ability to stimulate early gene expression, betaVLDL alone is unable to inspire quiescent cells into S phase. When added in conjunction with EGF, however, stimulation of [(3)H]thymidine incorporation into DNA and an increase in histone gene expression are observed. Moreover, betaVLDL plus EGF synergistically induce cyclin D1 expression and down-regulate p27(KIP1) expression. The addition of either betaVLDL or EGF stimulates a robust activation of ERK1/ERK2, but the addition of both agents simultaneously sustains the activation for a longer time period. Inhibition of MAP kinase kinase, pertussis toxin-sensitive G proteins, the EGF receptor, or protein kinase C blocks betaVLDL plus EGF-induced proliferation, demonstrating that activation of the betaVLDL-induced signaling pathway results in smooth muscle cell proliferation.  相似文献   

19.
20.
The mechanism of glucose deprivation-induced activation of Lyn kinase (Lyn), c-Jun N-terminal kinase 1 (JNK1) and increased expression of basic fibroblast growth factor (bFGF) and c-Myc was investigated in MCF-7/ADR adriamycin-resistant human breast carcinoma cells. Glucose deprivation significantly increased steady state levels of oxidized glutathione content (GSSG) and intracellular prooxidants (presumably hydroperoxides) as well as caused the activation of Lyn, JNK1, and the accumulation of bFGF and c-Myc mRNA. The suppression of GSSG accumulation and prooxidant production by treatment with the thiol antioxidant, N-acetylcysteine, also suppressed all the increases in kinase activation and gene expression observed during glucose deprivation. In addition, glucose deprivation was shown to induce oxidative stress in IMR90 SV40 transformed human fibroblasts, indicating that this phenomena is not limited to the MCF-7/ADR cell line. These and previous observations from our laboratory show that glucose deprivation-induced oxidative stress in MCF-7/ADR cells activates signal transduction involving Lyn, JNK1, and mitogen activated protein kinases (ERK1/ERK2) which results in increased bFGF and c-Myc mRNA accumulation. These results provide support for the hypothesis that alterations in intracellular oxidation/reduction reactions link changes in glycolytic metabolism to signal transduction and gene expression in these human tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号