首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Mechanisms of absorption of caseinophosphopeptide bound iron   总被引:3,自引:0,他引:3  
Binding iron (Fe) to the 1-25 caseinophosphopeptide obtained from enzyme hydrolysis of beta casein (beta CPP) improves Fe bioavailability in the rat. To assess the mechanisms involved in its absorption, a perfused, vascularized duodenal rat loop model was used in controls and in Fe-deficient (bleeding of 25% blood volume) rats. Inhibitors of oxidative phosphorylation [2-4 dinitrophenol (DNP)] and/or of endocytosis [phenylarsine oxide (PAO)] were added to the perfusion solution containing 50 microM Fe as beta CPP bound Fe (Fe-beta CPP) or gluconate (Fe Gluc). Fe-beta CPP enhanced Fe uptake, reduced mucosal storage, and improved net absorption both in controls and in deficient animals. DNP reduced uptake, mucosal storage, and net absorption by the same percentage in Fe-beta CPP and Fe Gluc perfused rats in both control and Fe-deficient animals. PAO decreased uptake, mucosal storage, and net absorption of Fe-beta CPP but not of Fe Gluc. At the end of the experiment Fe serum levels were increased only in Fe Gluc animals. These results confirm the improved bioavailability of beta CPP bound Fe. They suggest that at least part of its absorption can occur by a different pathway than usual Fe salts. Fe-beta CPP can be taken up by endocytosis and absorbed bound to amino acids or peptides.  相似文献   

2.
Reported is an attractive and environmentally friendly method for the synthesis of the title compounds in moderate yield using inexpensive 1,2,3,4,6-penta-O-acetyl-beta-D-gluco- and galactopyranoses as sugar donors, five different phenols as acceptors and H-beta zeolite as the catalyst. The yield (23-28%) of aryl 3,4,6-tri-O-acetyl-alpha-D-glycopyranosides obtained in this single-step procedure is considerably higher than that obtained using previously reported methods. Treatment of an orthoacetate, 3,4,6-tri-O-acetyl-[1,2-O-(1-p-fluorophenoxyethylidene)]-alpha-D-glucopyranose, with p-fluorophenol under the same solvent-free reaction conditions also led to the formation of the title compounds in similar yield and composition. X-ray crystallographic analysis of phenyl 3,4,6-tri-O-acetyl-alpha-D-glucopyranoside and p-fluorophenyl 3,4,6-tri-O-acetyl-alpha-D-glucopyranoside showed that the molecular packing is stabilized by C-H...O, C-H...pi and C-H...F interactions, in addition to regular hydrogen bonding patterns.  相似文献   

3.
Synthesis and properties of some cyclic AMP alkyl phosphotriesters   总被引:2,自引:0,他引:2  
Cyclic AMP was converted to its phosphotriesters according to the classical approach of phosphate activation with a sulfonyl chloride, followed by esterification with an alcohol. The methyl, ethyl, propyl, butyl and cetyl triesters were prepared, and some of their physical-chemical properties determined. Alkaline hydrolysis of these alkyl phosphotriesters resulted predominantly in ring opening. On the other hand, nucleophilic attack by thiourea led to the formation of cAMP as the main product. The conclusion can be drawn from these results that cAMP phosphotriesters could serve as suitable storage forms of cAMP, and cyclic triesters may be the best vehicle of transporting nucleotides through biological membranes.  相似文献   

4.
In neuronal growth cones, the advancing tips of elongating axons and dendrites, specific protein substrates appear to undergo cycles of posttranslational modification by covalent attachment and removal of long-chain fatty acids. We show here that ongoing fatty acylation can be inhibited selectively by long-chain homologues of the antibiotic tunicamycin, a known inhibitor of N-linked glycosylation. Tunicamycin directly inhibits transfer of palmitate to protein in a cell-free system, indicating that tunicamycin inhibition of protein palmitoylation reflects an action of the drug separate from its previously established effects on glycosylation. Tunicamycin treatment of differentiated PC12 cells or dissociated rat sensory neurons, under conditions in which protein palmitoylation is inhibited, produces a prompt cessation of neurite elongation and induces a collapse of neuronal growth cones. These growth cone responses are rapidly reversed by washout of the antibiotic, even in the absence of protein synthesis, or by addition of serum. Two additional lines of evidence suggest that the effects of tunicamycin on growth cones arise from its ability to inhibit protein long-chain acylation, rather than its previously established effects on protein glycosylation and synthesis. (a) The abilities of different tunicamycin homologues to induce growth cone collapse very systematically with the length of the fatty acyl side- chain of tunicamycin, in a manner predicted and observed for the inhibition of protein palmitoylation. Homologues with fatty acyl moieties shorter than palmitic acid (16 hydrocarbons), including potent inhibitors of glycosylation, are poor inhibitors of growth cone function. (b) The tunicamycin-induced impairment of growth cone function can be reversed by the addition of excess exogenous fatty acid, which reverses the inhibition of protein palmitoylation but has no effect on the inhibition of protein glycosylation. These results suggest an important role for dynamic protein acylation in growth cone- mediated extension of neuronal processes.  相似文献   

5.
Summary Hydrophobie zeolite Y was used to adsorb detergents from protein solutions and within one minute the commonly used detergents sodium dodecyl sulfate, cetyl trimethyl ammonium bromide, and Triton X-100 at concentrations of 10 mg/ml were adsorbed to a level below their critical micelle concentrations. From the detergent depleted solutions 77 to 85 % of the proteins were recovered; the lower value was obtained with protein concentration below one mg/ml.  相似文献   

6.
The complex lipids of the naturally-occurring general-fatty-acid-auxotroph Butyrivibrio S2 [Hazlewood & Dawson (1979) J. Gen. Microbiol. 112, 15-27] grown with palmitic acid as sole fatty-acid supplement have been investigated and some have been isolated in a state of purity and analysed. The majority are phospholipids (84%) and many contain galactose. They typically possess few esterified long-chain fatty-acid residues (C16:0), but are rich in esterified butyric acid and C16-alkenyl groups. Most of the phosphorus-containing lipids, including the two major lipids of the organism, contain esterified diabolic acid, a long-chain vicinal dimethyl-substituted dicarboxylic acid [Klein, Hazlewood, Kemp & Dawson (1979) Biochem. J. 183, 691-700] in definite stoichiometric relationship to phosphorus. No phosphatidylglycerol was present, but its monobutyroyl ester was detected as a minor component. Galactofuranosyldiacylglycerol (plasmalogen) and its monobutyroyl ester, cetyl alcohol and diacylglycerol were also identified.  相似文献   

7.
Although Candida rugosa utilizes a nonuniversal serine codon (CUG) for leucine, it is possible to express lipase genes (LIP) in heterologous systems. After replacing the 19 CUG codons in LIP4 with serine codons by site-directed mutagenesis, a recombinant LIP4 was functionally overexpressed in Pichia pastoris in this study. This recombinant glycosylated lipase was secreted into the culture medium with a high purity of 100 mg/liter in a culture broth. Purified recombinant LIP4 had a molecular mass of 60 kDa, showing a range similar to that of lipase in a commercial preparation. Since LIP4 has only a glycosylation site at position Asn-351, this position may also be the major glycosylation site in C. rugosa lipases. Although the thermal stability of recombinant LIP4 significantly increased from 52 to 58 degrees C after glycosylation, there were no significant differences in the catalytic properties of recombinant glycosylated lipase from P. pastoris and the unglycosylated one from Escherichia coil. These two recombinant LIP4s showed higher esterase activities toward long-chain ester (C16 and C18) and exhibited higher lipase activities toward unsaturated and long-chain lipids. In addition, LIP4 does not show interfacial activation as compared with LIP1 toward lipid substrates of tributyrin and triolein. These observations demonstrated that LIP4 shows distinguished catalytic activities with LIP1 in spite of their high sequence homology.  相似文献   

8.
1,2-Diacyl-3-acetyl-sn-glycerols (ac-TAG) are unusual triacylglycerols that constitute the major storage lipid in the seeds of Euonymus alatus (Burning Bush). These ac-TAGs have long-chain acyl groups esterified at both the sn-1 and sn-2 positions of glycerol. Cell-free extracts of developing seeds of E. alatus contain both long-chain acyl-CoA and acetyl-CoA sn-1,2-diacylglycerol acyltransferase (DGAT) activity. We have isolated a gene from developing seeds of Euonymus alatus that shows a very high sequence similarity to the members of the DGAT1 gene family (i.e. related to acyl-CoA:cholesterol acyltransferases). This Euonymus DGAT1 gene, when expressed in wild type yeast, results in a 5-fold enhancement of long-chain triacylglycerol (lc-TAG) accumulation, as well as the appearance of low levels of ac-TAG. Hydrogenated ac-TAG molecular species were identified by gas chromatography-mass spectrometry. Microsomes isolated from this transformed yeast show diacylglycerol:acetyl-CoA acetyltransferase activity, which is about 40-fold higher than that measured in microsomes prepared from yeast transformed with the empty vector or with the Arabidopsis thaliana DGAT1 gene. The specific activity of this microsomal acetyltransferase activity is of the same order of magnitude as the microsomal long-chain DGAT activities measured for yeast lines transformed with the empty vector or either the Arabidopsis or Euonymus DGAT1 genes. Despite this, ac-TAG accumulation in yeast transformed with the Euonymus DGAT1 gene was very low (0.26% of lc-TAG), whereas lc-TAG accumulation was enhanced. Possible reasons for this anomaly are discussed. Expression of the Euonymus DGAT1-like gene in yeast lines where endogenous TAG synthesis has been deleted confirmed that the gene product has both long-chain acyl- and acetyltransferase activity.  相似文献   

9.
Alkyl gallates are anticipated for their use as anti-bacterial and anti-viral agents. Although their pharmacological activities depend on their alkyl chain length, no mechanism has yet been clarified. As described herein, we investigated the membrane binding properties of a series of alkyl gallates using fluorescence measurement to elucidate their different pharmacological activities. Membrane binding of the alkyl gallates increased concomitantly with increasing alkyl chain length, except for cetyl gallate and stearyl gallate. Dynamic light scattering revealed that alkyl gallates with a long alkyl chain are prone to self-association in the solution. Membrane binding abilities of the alkyl gallates are correlated with anti-bacterial and anti-virus activities, as described in previous reports. The partition constants of the alkyl gallates to lipid membranes depend on the membrane components and the membrane phase. Self-association and lipid binding of the alkyl gallates might be primary biophysical factors associated with their pharmacological activities.  相似文献   

10.
An ion-chromatographic analysis for separation and quantitation of long-chain alkyl sulfates in both commercial samples of sodium dodecyl sulfate (SDS) (lauryl sodium sulfate) and protein solutions was developed. The separation was performed on a hydrophobic resin-based column utilizing tetrabutylammonium hydroxide as an ion-pair reagent and acetonitrile as an organic modifier. Sensitive and selective detection of alkyl sulfates was achieved with an anion suppressor and a conductivity detector. Gradient elution with acetonitrile was developed for the detection of a broad range of alkyl chain lengths (C-10--C-20) at high sensitivity. Because of the wide linear range of this method (0.2-700 micrograms/ml), trace levels of C-10, C-14, C-16, C-18, and C-20 alkyl sulfates can be accurately measured in the presence of high concentrations of C-12 alkyl sulfate (SDS). Thus the alkyl sulfate purity of commercial SDS solutions can be accurately and precisely determined without any sample treatment. For analysis of alkyl sulfates from protein solutions, sample treatment consisted of a one-step ion-pair extraction prior to chromatographic resolution and quantitation. Alkyl sulfates from 2-150 micrograms/ml were recovered in high yield from wide variety of protein solutions.  相似文献   

11.
G. Halperin  S. Gatt 《Steroids》1980,35(1):39-42
Seventeen cholesteryl alkyl ethers were synthesized through alcoholysis of cholesterol p-toluenesulfonate. This method was found superior to the etherification of sodium or potassium cholesterylate with alkyl halides or methanesulfonates, especially for the preparation of long-chain unsaturated alkyl ethers of [7(n)-3H]cholesterol of high specific activity.  相似文献   

12.
Amelt solidification technique has been developed to obtain sustained-release waxy beads of flurbiprofen. Low glass transition temperature (t g) and shear-induced crystallization of flurbiprofen made it a suitable candidate for melt solidification technique. The process involved emulsification and solidification of flurbiprofen-cetyl alcohol melt at significantly low temperature (5°C). The effect of variables, namely, the amount of cetyl alcohol and the speed of agitation, was studied using 32 factorial design. The technique and the beads were evaluated on the basis of process and desired yield, surface topography, Fourier-transform infrared (FT-IR), differential scanning calorimetry (DSC), particle size distribution, crushing strength, and drug release. Average values for process and desired yields were 97% wt/wt and 26% wt/wt, respectively. No interaction was observed between drug and excipient. Multiple regression analysis was carried out, and response surfaces were obtained. A curvilinear relationship was observed between percentage of desired yield and the amount of cetyl alcohol. Linear decrease in crushing strength was observed with increase in the amount of cetyl alcohol. Drug released from the beads followed zero order kinetics. Burst release was shown to a greater extent in beads containing a lower amount of cetyl alcohol. Response surfaces of time required for certain percentage of drug (t D%) showed that after critical concentration of about 20% of cetyl alcohol (400 mg/batch), no significant release retardant effect was observed.  相似文献   

13.
Glycosidase-catalysed synthesis of alkyl glycosides   总被引:4,自引:0,他引:4  
Glycosidases catalyse the synthesis of anomerically pure alkyl glycosides in one step. In contrast, chemical synthesis of anomerically pure glycosides is circuitous and expensive. Two methodologies are used in enzymatic glycosylation: thermodynamically controlled reversed hydrolysis and kinetically controlled transglycosylation. The advantages and limitations of both approaches are delineated. Glycosidases exhibit broad specificity with regard to the aglycon: in addition to simple alcohols, hydroxy amino acids, nucleosides, ergot alkaloids and cardiac genins are glycosylated. Non-alcohol acceptors such as oximes and thiols also function as substrates whereas pyranoid glycals act as non-natural donors. Glycosidases exhibit absolute selectivity with regard to the stereochemistry at the anomeric centre and show a high degree of chemoselectivity for different hydroxyl groups, e.g., the order of reactivity is primary>secondary alcohols>phenols; tertiary alcohols are unreactive. Chiral primary alcohols are poorly discriminated, but the enantioselectivity towards a hydroxyl group that is directly attached to a (pro)chiral carbon atom is often high. The synthetic utility of glycosidases would be considerably improved if methods could be found for maintaining their catalytic activity in non-aqueous media.  相似文献   

14.
Polyclonal antibody bound Sepharose 4B support has been exploited for the immobilization of bitter gourd peroxidase directly from ammonium sulphate precipitated proteins. Immunoaffinity immobilized bitter gourd peroxidase exhibited high yield of immobilization. IgG-Sepharose 4B bound bitter gourd peroxidase showed a higher stability against heat, chaotropic agents (urea and guanidinium chloride), detergents (cetyl trimethyl ammonium bromide and Surf Excel), proteolytic enzyme (trypsin) and water-miscible organic solvents (propanol, THF and dioxane). The activity of immobilized bitter gourd peroxidase was significantly enhanced in the presence of cetyl trimethyl ammonium bromide and after treatment with trypsin as compared to soluble enzyme.  相似文献   

15.
Dietary long-chain alcohols and alkyl glycerols, including polyunsaturated compounds, are incorporated into the alkyl and alk-1-enyl moieties of the ionic alkoxylipids of rat liver, whereas polyunsaturated fatty acids are not.  相似文献   

16.
The biochemical properties of several alkyl phosphotriesters of cyclic AMP were studied with respect to their interactions with beef heart protein kinase and cyclic nucleotide phosphodiesterase. Ethyl and propyl triesters did not enhance the phosphorylation of histone by protein kinase and methyl, ethyl, propyl and butyl triesters were poor competitors for the cyclic AMP binding site of the enzyme. However, these alkyl phosphotriesters were effective inhibitors of cyclic nucleotide phosphodiesterase with the Ki's arrayed in the following order: methyl > ethyl > propyl > butyl > cetyl triester. Metabolic studies with mice indicated that intraperitoneal injection of low doses of propyl triester for one week significantly increased cyclic AMP concentration.  相似文献   

17.
Sphingolipids having a long-chain sphingoid base backbone are primarily located in the yeast’s plasma membrane. They are found in various types of foods, and although they are not essential food ingredients, they play an important role as bioactive molecules in preventing certain human diseases. Today, due to its high nutritional value, brewer’s yeast is increasingly being used in the food and pharmaceutical industry. The aim of this study was to evaluate the potential of S. uvarum, a by-product of the brewing industry, as an economically feasible source of sphingolipids. For that purpose, the growth phase dependence on sphingolipid production in S. uvarum as well as the effect of zeolite addition to the growth medium was investigated. The experiments were designed to explore the dependence of growth phase on sphingolipids metabolism, by comparing initial (starter) culture of brewer’s yeast (laboratory propagated, designated as zero yeast generation, serving here as control), and surplus brewer’s yeast (a residue produced after 5 successive beer fermentations), by-product of beer fermentation, with and without the addition of zeolite. HPLC analysis of individual molecular species of sphingoid bases obtained by acid hydrolysis of complex sphingolipids from S. uvarum yeast produced the following results: about 65% of total sphingoid bases represents C18 phytosphingosine, about 32% represents unknown long-chain base, and about 1.5–2% represents C18 DL-erythro-sphinganine. In the case of C18 phytosphingosine, production was about 11.5-fold higher during exponential phase compared with the other growth phases. For C18 DL-erythro-sphinganine, production was highest during the lag and acceleration phase of growth. In most cases, zeolite addition (1%) to the growth medium resulted in an increase up to 2.5-fold in the sphingoid bases level.  相似文献   

18.
An acidic pentasaccharide repeating unit corresponding to the O-antigenic polysaccharide of enterohaemorrhagic Escherichia coli O113 as its p-methoxyphenyl glycoside has been synthesized in a convergent manner by adopting a [3+2] block glycosylation strategy. During the synthetic endeavor a one-pot reaction condition for stereoselective glycosylation and protecting group manipulation has been applied. All glycosylation steps are highly stereoselective with good to excellent yield.  相似文献   

19.
Sulfonated hierarchical H-USY zeolite was prepared and characterized by X-ray diffraction, N2 physisorption, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectroscopy, temperature-programmed desorption of ammonia, and acid–base titration. It was proved that sulfonic group was successfully anchored onto the hierarchical H-USY zeolite. The acidity of the hierarchical H-USY was remarkably improved. Sulfonated hierarchical H-USY zeolite was efficient for the hydrolysis of hemicellulose and cellulose. The yield of TRS for hydrolysis of hemicellulose reached 78.0% at 140 °C for 9 h. For hydrolysis of α-cellulose, 60.8% conversion with 22.4% yield of glucose was obtained. Even for microcrystalline cellulose, 43.7% conversion with 15.1% yield of glucose can be obtained. These results are much higher than those obtained over hierarchical H-USY zeolite, indicating that both the acidity and the pore structure determine the activity of zeolite as catalyst in the hydrolysis of biomass.  相似文献   

20.
The HERG (human ether-à-go-go-related gene) protein, which underlies the cardiac repolarizing current I(Kr), is the unintended target for many pharmaceutical agents. Inadvertent block of I(Kr), known as the acquired long QT syndrome (aLQTS), is a leading cause for drug withdrawal by the United States Food and Drug Administration. Hence, an improved understanding of the regulatory factors that protect most individuals from aLQTS is essential for advancing clinical therapeutics in broad areas, from cancer chemotherapy to antipsychotics and antidepressants. Here, we show that the K(+) channel regulatory protein KCR1, which markedly reduces I(Kr) drug sensitivity, protects HERG through glucosyltransferase function. KCR1 and the yeast alpha-1,2-glucosyltransferase ALG10 exhibit sequence homology, and like KCR1, ALG10 diminished HERG block by dofetilide. Inhibition of cellular glycosylation pathways with tunicamycin abrogated the effects of KCR1, as did expression in Lec1 cells (deficient in glycosylation). Moreover, KCR1 complemented the growth defect of an alg10-deficient yeast strain and enhanced glycosylation of an Alg10 substrate in yeast. HERG itself is not the target for KCR1-mediated glycosylation because the dofetilide response of glycosylation-deficient HERG(N598Q) was still modulated by KCR1. Nonetheless, our data indicate that the alpha-1,2-glucosyltransferase function is a key component of the molecular pathway whereby KCR1 diminishes I(Kr) drug response. Incorporation of in vitro data into a computational model indicated that KCR1 expression is protective against arrhythmias. These findings reveal a potential new avenue for targeted prevention of aLQTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号