首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A FISH with a probe for telomeric and rDNA repeats and immunofluorescence with ANA CREST and antibodies to nucleolae protein B23 were used to study the three-dimensional (3D) organization of fibroblast interphase nuclei in two shrew twin species, Sorex granarius and Sorex araneus, of the Cordon race. Karyotypes of these species are composed of nearly identical chromosomal arms and differ in the number of their metacentrics and the structures of their terminal chromosome regions. In the short arms of S. granarius, 32 of the acrocentrics have large telomeres that contain an average of 218 kb telomere repeats, which alternate with ribosomal repeats. These regions also contain active nucleolar organizing regions (NORs). In contrast, in active NORs in S. araneus are localized at the terminal regions of 8 chromosomal arms (Zhdanova et al., 2005; 2007b). Here, we show that associations of chromosomes by telomeres and the contact of a part of the telomere clusters with the inner nuclear membrane and nucleolus characterize the interphase nuclei of both Sorex granarius and Sorex araneus. We also reveal the partial colocalization of telomere and ribosomal clusters and the spatial proximity of centomeric and telomeric regions in the interphase nuclei of S. granarius. It appears that only ribosomal clusters containing a sufficient number of active ribosomal genes exhibit a connection with the nucleolus. Nucleolus disassembly during the fibroblastís transition to mitosis and the role of the B23 protein in this process have been studied.  相似文献   

2.
It is shown that the size, localization, and structure of telomeres in the Iberian shrew (Sorex granarius) are not characteristic of mammals. In this species, long telomeres of an average size of 213 kb are localized on the short arms of all 32 acrocentrics; ribosomal blocks and active nucleolus-organizing regions (NORs) were also discovered there. At the remaining chromosome ends the average size of telomeres is 3.8 kb. However, in a closely related species, Sorex araneus, all telomeres have size similar to that of human telomeres, i.e., 6.8–15.2 kb. Despite the fact that some long telomeres contain ribosomal repeats in addition to telomeric ones, the long telomeres have preserved asymmetry of G- and C-rich strands as in functional telomeres. It is probable that long telomeres were formed in meiosis at the stage of chromosome bouquet as a result of global reorganization of the chromosome ends. The provoking factors for such reorganization might be the fission of several metacentrics and the necessity of telomerization of the resulting acrocentrics.  相似文献   

3.
The telomere structure in the Iberian shrew Sorex granarius is characterized by unique, striking features, with short arms of acrocentric chromosomes carrying extremely long telomeres (up to 300 kb) with interspersed ribosomal DNA (rDNA) repeat blocks. In this work, we investigated the telomere physiology of S. granarius fibroblast cells and found that telomere repeats are transcribed on both strands and that there is no telomere-dependent senescence mechanism. Although telomerase activity is detectable throughout cell culture and appears to act on both short and long telomeres, we also discovered that signatures of a recombinogenic activity are omnipresent, including telomere-sister chromatid exchanges, formation of alternative lengthening of telomeres (ALT)-associated PML-like bodies, production of telomere circles, and a high frequency of telomeres carrying marks of a DNA damage response. Our results suggest that recombination participates in the maintenance of the very long telomeres in normal S. granarius fibroblasts. We discuss the possible interplay between the interspersed telomere and rDNA repeats in the stabilization of the very long telomeres in this organism.  相似文献   

4.
Previously, we described the unique feature of telomeric regions in Iberian shrew Sorex granarius: its telomeres have two ranges of size, very small (3.8 kb of telomeric repeats on average) and very large discontinuous telomeres (213 kb) interrupted with 18S rDNA. In this study, we have demonstrated extraordinary replication pattern of S. granarius large telomeres that have not been shown before in other studied mammal. Using the ReD-FISH procedure, we observed prolonged, through S period, large telomere replication. Furthermore, revealed ReD-FISH asymmetric signals were probably caused by partial replication of telomeres within an hour of 5-bromodeoxyuridine treatment due to the large size and special organization. We also found that in contrast to the telomeric halo from primary fibroblasts of bovine, mink, and common shrew, telomere halo of S. granarius consists of multiple loops bundled together, some of which contain rDNA. Here, we suggested several replicons firing possibly stochastic in each large telomere. Finally, we performed the TIF assay to reveal DNA damage responses at the telomeres, and along with TIF in nuclei, we found large bodies of telomeric DNA and ?-H2AX in the cytoplasm and on the surface of fibroblasts. We discuss the possibility of additional origin activation together with recombination-dependent replication pathways, mainly homologous recombination including BIR for replication fork stagnation overcoming and further S. granarius large telomere replication.  相似文献   

5.
To study 3D organization of fibroblast interphase nuclei in two sibling shrew species, Sorex araneus from Cordon race and S. granarius, FISH with probe to telomeric and rDNA repeats, and immunofluorescence with ANA CREST and antibodies to nucleolus protein B23 were used. Karyotypes of studied species are composed of near identical chromosomal arms and differ by the number of metacentrics and the structure of terminal chromosome regions. The large telomeres containing on the average 218 kbp of telomere repeats characterize the short arms in all of 32 S. granarius acrocentrics. Telomere repeats in them alternate with nbosomal repeats. These regions also contain active NORs. In contrast, active NORs in S. araneus are localized at the terminal regions of 8 chromosomal arms (Zhdanova et al., 2005, 2007b). We have shown that telomere associations of chromosomes and contacts of a part of telomere clusters with inner nuclear membrane and nucleolus characterize interphase nuclei of both S. granarius and S. araneus. Moreover, the partial colocalization of telomere and ribosomal clusters, and spatial nearness of centomeric and telomeric regions were revealed in the interphase nuclei of S. granarius. Evidently, only those ribosomal clusters that contain a number of active ribosomal genes display connection with nucleolus. The stripping of nucleolus materials during transition of fibroblasts to mitosis and the role of B23 protein in this process has been studied.  相似文献   

6.
The shrews of the Sorex araneus group have undergone a spectacular chromosome evolution. The karyotype of Sorex granarius is generally considered ancestral to those of Sorex coronatus and S. araneus. However, a sequence of 777 base pairs of the cytochrome b gene of the mitochondrial DNA (mtDNA) produces a quite different picture: S. granarius is closely related to the populations of S. araneus from the Pyrenees and from the northwestern Alps, whereas S. coronatus and S. araneus from Italy and the southern Alps represent two well-separated lineages. It is suggested that mtDNA and chromosomal evolution are in this case largely independant processes. Whereas mtDNA haplotypes are closely linked to the geographical history of the populations, chromosomal mutations were probably transmitted from one population to another. Available data suggest that the impressive chromosome polymorphism of this group is quite a recent phenomenon.  相似文献   

7.
This paper summarizes a series of studies on chromosomal geography of the common shrew Sorex araneusL. in Siberia and the Southern Urals. Chromosomal races inhabiting the Southern Urals and the Western Siberian Plain sequentially replace each other in the latitudinal direction. In this region, karyotypes of each two adjacent races differ from each other by a single whole-arm reciprocal translocation. In the Eastern Siberian and Altai branches, the neighboring races differ mainly in the number or set of metacentric chromosomes. Analysis of the race distribution in the common shrew in the context of paleoecology of the glacial and postglacial period allowed us to reconstruct the sequence of events leading to the establishment of the present-day structure of the species S. araneus.  相似文献   

8.
Eukaryotic telomeres are specialized DNA-protein structures that are thought to ensure chromosomal stability and complete replication of the chromosome ends. All telomeres which have been studied consist of a tandem array of G-rich repeats which seem to be sufficient for telomere function. Originally, the human telomeric repeat (TTAGGG)n was assumed to be exclusively located at the very end of all human chromosomes. More recent evidence, however, suggests an extension into proterminal regions. Very little is known about the interstitial distribution of telomeric repeats. Here we present evidence for the presence of (TTAGGG)n repeats in internal loci on the long and short arms of different human chromosomes. In addition, we studied the genomic organization of these repeats in more detail and discuss possible functions of interstitial telomeric repeats in the human genome.  相似文献   

9.
Isolation and characterization of a human telomere.   总被引:17,自引:6,他引:11       下载免费PDF全文
A method is described that allows cloning of human telomeres in S. cerevisiae by joining human telomeric restriction fragments to yeast artificial chromosome halves. The resulting chimeric yeast-human chromosomes propagate as true linear chromosomes, demonstrating that the human telomere structure is capable of functioning in yeast and suggesting that telomere functions are evolutionarily conserved between yeast and human. One cloned human telomere, yHT1, contains 4 kb of human genomic DNA sequence next to the tandemly repeating TTAGGG hexanucleotide. Genomic hybridizations using both cloned DNA and TTAGGG repeats have revealed a common structural organization of human telomeres. This 4 kb of genomic DNA sequence is present in most, but not all, human telomeres, suggesting that the region is not involved in crucial chromosome-specific functions. However, the extent of common features among the human telomeres and possible similarities in organization with yeast telomeres suggest that this region may play a role in general chromosome behavior such as telomere-telomere interactions. Unlike the simple telomeric TTAGGG repeats, our cloned human genomic DNA sequence does not cross-hybridize with rodent DNA. Thus, this clone allows the identifications of the terminal restriction fragments of specific human chromosomes in human-rodent hybrid cells.  相似文献   

10.
Using the data of karyological analysis, the phylogenetic relationships of Caucasian shrew Sorex satunini and the cryptic species of superspecies Sorex araneus were examined. In the population of Sorex satunini from the plain of North Ciscaucasia two deeply radiated cytochrome b genes (A and B) were identified. Genetic distance between haplotype A and B groups constituted 0.0675 ± 0.008, which is higher than any distance in superspecies S. araneus. Possible introgression of type B haplotypes from the populations of the evolutionary lineage S. subaraneus-S. araneus in Pleistocene and the time of the appearance of the chromosomal polymorphism of S. araneus is discussed. Our results show that the use of only one mitochondrial marker can lead to false conclusions on taxonomic diversity.  相似文献   

11.
Ku86 together with Ku70, DNA-PKcs, XRCC4 and DNA ligase IV forms a complex involved in repairing DNA double-strand breaks (DSB) in mammals. Yeast Ku has an essential role at the telomere; in particular, Ku deficiency leads to telomere shortening, loss of telomere clustering, loss of telomeric silencing and deregulation of the telomeric G-overhang. In mammals, Ku proteins associate to telomeric repeats; however, the possible role of Ku in regulating telomere length has not yet been addressed. We have measured telomere length in different cell types from wild-type and Ku86-deficient mice. In contrast to yeast, Ku86 deficiency does not result in telomere shortening or deregulation of the G-strand overhang. Interestingly, Ku86–/– cells show telomeric fusions with long telomeres (>81 kb) at the fusion point. These results indicate that mammalian Ku86 plays a fundamental role at the telomere by preventing telomeric fusions independently of the length of TTAGGG repeats and the integrity of the G-strand overhang.  相似文献   

12.
Telomeres are composed of TTAGGG repeats and located at the ends of chromosomes. Telomeres protect chromosomes from instability in mammals, including mice and humans. Repetitive TTAGGG sequences are also found at intrachromosomal sites, where they are named as interstitial telomeric sequences (ITSs). Aberrant ITSs are implicated in chromosomal instability and found in cancer cells. Interestingly, in pigs, vertebrate telomere sequences TTAGGG (vITSs) are also localized at the centromeric region of chromosome 6, in addition to the end of all chromosomes. Surprisingly, we found that botanic telomere sequences, TTTAGGG (bITSs), also localize with vITSs at the centromeric regions of pig chromosome 6 using telomere fluorescence in situ hybridization (FISH) and by comparisons between several species. Furthermore, the average lengths of vITSs are highly correlated with those of the terminal telomeres (TTS). Also, pig ITSs show a high incidence of telomere doublets, suggesting that pig ITSs might be unstable and dynamic. Together, our results show that pig cells maintain the conserved telomere sequences that are found at the ITSs from of plants and other vertebrates. Further understanding of the function and regulation of pig ITSs may provide new clues for evolution and chromosomal instability.  相似文献   

13.
Changes of telomere lengths in human intracranial tumours   总被引:3,自引:0,他引:3  
The termini of human chromosomes comprise stretches of G-rich repeats that are about 5–20 kilobase (kb) in length. The size of the telomeres can be determined by hybridization with probes specific for these (ttaggg)n sequences after digestion of chromosomal DNA with appropriate restriction enzymes and electrophoretic separation of the fragments. Here, probing with the 32P-labelled synthetic (TTAGGG)3 oligonucleotide revealed length changes of the telomeres occurring in intracranial tumours. Among 60 samples analysed, 41.7% showed telomere elongation, and 21.7% telomere reduction, whereas 36.7% of the tumours exhibited equal lengths compared with the patients' peripheral blood leukocytes. Most of the elongated glioma telomeres exceeded in length those of untransformed astrocytes derived from human fetal tissue.  相似文献   

14.
The presence of conserved telomeric repeats represented by the hexamer (TTAGGG)n at the chromosomal termini is necessary for the correct functioning and stability of chromosomes. A number of the genomes of mammals, including human, are known to contain interstitial telomeric sequences located far from the chromosomal termini. It is assumed that these repeats mark the regions of fusions or other rear-rangements of ancestral chromosomes. Exact localization of all interstitial telomeric sequences in the genome could significantly advance the understanding of the mechanisms of karyotype evolution and speciation. In this context, software was developed to search for degenerate interstitial telomeric repeats in complete sequences of mammalian chromosomes. The evolutionary significance of such repeats was demonstrated by the example of human chromosome 2. The results are available at http://www.bionet.nsc.ru/labs/theorylabmain/orlov/telomere/.  相似文献   

15.
The organisation of dinoflagellate chromosomes is exceptional among eukaryotes. Their genomes are the largest in the Eukarya domain, chromosomes lack histones and may exist in liquid crystalline state. Therefore, the study of the structural and functional properties of dinoflagellate chromosomes is of high interest. In this work, we have analysed the telomeres and telomerase in two Dinoflagellata species, Karenia papilionacea and Crypthecodinium cohnii. Active telomerase, synthesising exclusively Arabidopsis-type telomere sequences, was detected in cell extracts. The terminal position of TTTAGGG repeats was determined by in situ hybridisation and BAL31 digestion methods and provides evidence for the linear characteristic of dinoflagellate chromosomes. The length of telomeric tracts, 25–80 kb, is the largest among unicellular eukaryotic organisms to date. Both the presence of long arrays of perfect telomeric repeats at the ends of dinoflagellate chromosomes and the existence of active telomerase as the primary tool for their high-fidelity maintenance demonstrate the general importance of these structures throughout eukaryotes. We conclude that whilst chromosomes of dinoflagellates are unique in many aspects of their structure and composition, their telomere maintenance follows the most common scenario.  相似文献   

16.
The review considers data on the composition, organization, and functional significance of terminal regions in mammalian chromosomes, including telomeres and subtelomeric regions. Because of specific structure, features of DNA replication, and characteristic localization in somatic and meiotic cells, these regions are hot spots for many events associated with genome functioning in mammals. Instability of these regions is of special interest. Evidence suggesting that instability of chromosomal regions containing telomeric DNA is a factor of chromosome evolution is discussed. The association of size and structure of telomeric regions with replicative aging and cell immortalization is considered. The review deals in detail with classical and alternative mechanisms of telomere size control, the significance of changes in telomeric region length in ontogeny, oncotransformation, and evolution. The issues related to telomere destabilization and the role of this process in chromosome rearrangement formation and chromosome evolution are discussed. The origin of telomere repeats in interstitial chromosome sites, including regions of evolutionary fusions-fissions is given special consideration. The possible role of ribosomal repeats and mechanisms similar to ALT (alternative lengthening of telomeres) in telomere reorganization in some taxa are discussed.  相似文献   

17.
We report here the results of a telomere length analysis in four male Chinese hamsters by quantitative fluorescence in situ hybridization (Q-FISH). We were able to measure telomere length of 64 (73%) of 88 Chinese hamster telomeres. We could not measure telomere length in chromosome 10 or in the short arms of chromosomes 5, 6, 7 and 8 because of the overlaps between the interstitial and terminal telomeric signals. Our analysis in the 73% of Chinese hamster telomeres indicate that their average length is approximately 38 kb. Therefore, Chinese hamster telomeres are comparable in length to mouse telomeres, but are much longer than human telomeres. Similar to previous Q-FISH studies on human and mouse chromosomes, our results indicate that individual Chinese hamster chromosomes may have specific telomere lengths, suggesting that chromosome-specific factors may be involved in telomere length regulation.  相似文献   

18.
The Eurasian common shrew (Sorex araneus L.) is characterized by spectacular chromosomal variation, both autosomal variation of the Robertsonian type and an XX/XY(1)Y(2) system of sex determination. It is an important mammalian model of chromosomal and genome evolution as it is one of the few species with a complete genome sequence. Here we generate a high-precision cytological recombination map for the species, the third such map produced in mammals, following those for humans and house mice. We prepared synaptonemal complex (SC) spreads of meiotic chromosomes from 638 spermatocytes of 22 males of nine different Robertsonian karyotypes, identifying each autosome arm by differential DAPI staining. Altogether we mapped 13,983 recombination sites along 7095 individual autosomes, using immunolocalization of MLH1, a mismatch repair protein marking recombination sites. We estimated the total recombination length of the shrew genome as 1145 cM. The majority of bivalents showed a high recombination frequency near the telomeres and a low frequency near the centromeres. The distances between MLH1 foci were consistent with crossover interference both within chromosome arms and across the centromere in metacentric bivalents. The pattern of recombination along a chromosome arm was a function of its length, interference, and centromere and telomere effects. The specific DNA sequence must also be important because chromosome arms of the same length differed substantially in their recombination pattern. These features of recombination show great similarity with humans and mice and suggest generality among mammals. However, contrary to a widespread perception, the metacentric bivalent tu usually lacked an MLH1 focus on one of its chromosome arms, arguing against a minimum requirement of one chiasma per chromosome arm for correct segregation. With regard to autosomal chromosomal variation, the chromosomes showing Robertsonian polymorphism display MLH1 foci that become increasingly distal when comparing acrocentric homozygotes, heterozygotes, and metacentric homozygotes. Within the sex trivalent XY(1)Y(2), the autosomal part of the complex behaves similarly to other autosomes.  相似文献   

19.
Results of chromosome G-banding were used to identify two new karyotypic races of the common shrew (Sorex araneus L.) in the European part of Russia. The chromosomal diagnosis of race St. Petersburg included five metacentrics (hk, ip, jl, mq, and nr) and two acrocentrics (g and o) (2Na = 20); the diagnosis of race West Dvina included six metacentrics (gm, hk, ip, jl, no, and qr) (2Na = 18). The phylogenetic significance of the chromosomal markers gm, hk, and ip is considered and the possibility of reticulate evolution in the species S. araneus is discussed.  相似文献   

20.
The review considers data on the composition, organization, and functional significance of terminal regions in mammalian chromosomes, including telomeres and subtelomeric regions. Because of specific structure, features of DNA replication, and characteristic localization in somatic and meiotic cells, these regions are hot spots for many events associated with genome functioning in mammals. Instability of these regions is of special interest. Evidence suggesting that instability of chromosomal regions containing telomeric DNA is a factor of chromosome evolution is discussed. The association of size and structure of telomeric regions with replicative aging and cell immortalization is considered. The review deals in detail with classical and alternative mechanisms of telomere size control, the significance of changes in telomeric region length in ontogeny, oncotransformation, and evolution. The issues related to telomere destabilization and the role of this process in chromosome rearrangement formation and chromosome evolution are discussed. The origin of telomere repeats in interstitial chromosome sites, including regions of evolutionary fusions-fissions is given special consideration. The possible role of ribosomal repeats and mechanisms similar to ALT (alternative lengthening of telomeres) in telomere reorganization in some taxa are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号