首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary High Arctic meiofaunal distribution, standing stock, sediment chemistry and benthic respiratory activity (determined by sediment oxygen consumption using a shipboard technique) were studied in summer 1980 on the NE Svalbard shelf (northern Barents Sea) and along a transect into the Nansen Basin, over a depth range of 240–3920 m. Particulate sediment proteins, carbohydrates and adenylates were measured as additional measures of benthic biomass. To estimate the sedimentation potential of primary organic matter, sediment bound chloroplastic pigments (chlorophylls, pheopigments) were assayed. Pigment concentrations were found comparable to values in sediments from the boreal and temperate N-Atlantic. Meiofauna, which was abundant on the shelf, decreased in numbers and biomasses with increasing depth, as did sediment proteins, carbohydrates, adenylates and sediment oxygen consumption. Meiofaunal abundances and biomasses within the Nansen Basin were comparable with those observed in abyssal sediments of the North Atlantic. Nematodes clearly dominated in metazoan meiofauna. Protozoans were abundant in shelf sediments. Probably in response to the sedimentation of the plankton bloom, meiofauna abundance and biomass as well as sediment proteins, carbohydrates and adenylates were significantly correlated to the amount of sediment bound chloroplastic pigments, stressing the importance of food quantity to determine benthic stocks. Ninety-four percent of the variance in sediment oxygen consumption were caused by chloroplastic pigments. Benthic respiration, calculated per unit biomass, was 3–10 times lower than in the East Atlantic, suggesting low turnover rates in combination with a high standing stocks for the high Arctic benthos.  相似文献   

2.
Marine benthic communities are effective indicators of environmental change. Yet in the Arctic, there are few empirical tests of how sustained climatic change may influence community structure. Northern Svalbard is influenced by both warm Atlantic and cold Arctic water masses, providing an opportunity to assess potential effects of long-term environmental changes by examining spatial variation in community structure. We examined benthic macroinfaunal communities and sediment pigments under Atlantic and Arctic water masses on the northern shelf and fjords of Svalbard. We report on infaunal biomass, abundance, species composition, and diversity at 10 stations spanning 79°–81°N and ranging in depth from 200 to 500?m. Benthic biomass averaged 128?g?WW?m?2 (48–253?g?WW?m?2), mean density was 3,635?ind.?m?2 (780–7,660?ind.?m?2), and species richness varied from 45 to 136?taxa?stn.?1. Abundance-based community structure clustered stations in groups related to water mass characteristics, with Atlantic and Arctic shelf stations being well distinguished from each other. Dominant taxa were different in Atlantic- and Arctic-influenced locations. Faunal biomass was highest in the Atlantic-influenced fjords, followed by Arctic fjords and Arctic shelf stations, with Atlantic shelf stations having the lowest biomass. Species richness and diversity were inversely related to biomass. Patterns in faunal biomass were strongly correlated with sedimentary pigments (R 2?=?0.74 for chl a and R 2?=?0.77 for phaeopigments), with large differences in sedimentary pigment concentration among stations. These relationships suggest that benthic fauna on the northern Svalbard shelf are food limited and dependent on predictable, albeit episodic, delivery of organic matter from the water column.  相似文献   

3.
Along a west-to-east axis spanning the Galicia Bank region (Iberian margin) and the Mediterranean basin, a reduction in surface primary productivity and in seafloor flux of particulate organic carbon was mirrored in the in situ organic matter quantity and quality within the underlying deep-sea sediments at different water depths (1200, 1900 and 3000 m). Nematode standing stock (abundance and biomass) and genus and trophic composition were investigated to evaluate downward benthic-pelagic coupling. The longitudinal decline in seafloor particulate organic carbon flux was reflected by a reduction in benthic phytopigment concentrations and nematode standing stock. An exception was the station sampled at the Galicia Bank seamount, where despite the maximal particulate organic carbon flux estimate, we observed reduced pigment levels and nematode standing stock. The strong hydrodynamic forcing at this station was believed to be the main cause of the local decoupling between pelagic and benthic processes. Besides a longitudinal cline in nematode standing stock, we noticed a west-to-east gradient in nematode genus and feeding type composition (owing to an increasing importance of predatory/scavenging nematodes with longitude) governed by potential proxies for food availability (percentage of nitrogen, organic carbon, and total organic matter). Within-station variability in generic composition was elevated in sediments with lower phytopigment concentrations. Standing stock appeared to be regulated by sedimentation rates and benthic environmental variables, whereas genus composition covaried only with benthic environmental variables. The coupling between deep-sea nematode assemblages and surface water processes evidenced in the present study suggests that it is likely that climate change will affect the composition and function of deep-sea nematodes.  相似文献   

4.
Studies of nematode assemblages in natural ecosystems can contribute to better understanding of the occurrence, relevance, and ecology of plant-parasitic and other soil nematodes. Nematode assemblages and environmental parameters (organic matter, water content (WC), bulk density (BD), total porosity (Po), soil respiration, and soil texture) were investigated in two seasons (rainy and dry) in two forest areas of the Zona da Mata, Pernambuco State. The aim of our research was to evaluate the heterogeneity between two locations and seasons in the Brazilian Atlantic Forest. Structure and composition of the nematode assemblages differed between areas and across time. Rhabditidae dominated the rainy season in both forest soils. Rarefaction curves (RC) suggest that sampling to detect more nematode taxa should be more intensive in the rainy season. The forest soils have complex, stable soil food webs with high connectance and decomposition channels dominated by bacteria. The predator–prey relationships were not affected by changes in soil properties that fluctuate with time.  相似文献   

5.
Nematode species are widely tolerant of environmental conditions and disperse passively. Therefore, the species richness distribution in this group might largely depend on the topological distribution of the habitats and main aerial and aquatic dispersal pathways connecting them. If so, the nematode species richness distributions may serve as null models for evaluating that of other groups more affected by environmental gradients. We investigated this hypothesis in lakes across an altitudinal gradient in the Pyrenees. We compared the altitudinal distribution, environmental tolerance, and species richness, of nematodes with that of three other invertebrate groups collected during the same sampling: oligochaetes, chironomids, and nonchironomid insects. We tested the altitudinal bias in distributions with t‐tests and the significance of narrow‐ranging altitudinal distributions with randomizations. We compared results between groups with Fisher's exact tests. We then explored the influence of environmental factors on species assemblages in all groups with redundancy analysis (RDA), using 28 environmental variables. And, finally, we analyzed species richness patterns across altitude with simple linear and quadratic regressions. Nematode species were rarely biased from random distributions (5% of species) in contrast with other groups (35%, 47%, and 50%, respectively). The altitudinal bias most often shifted toward low altitudes (85% of biased species). Nematodes showed a lower portion of narrow‐ranging species than any other group, and differed significantly from nonchironomid insects (10% and 43%, respectively). Environmental variables barely explained nematode assemblages (RDA adjusted R2 = 0.02), in contrast with other groups (0.13, 0.19 and 0.24). Despite these substantial differences in the response to environmental factors, species richness across altitude was unimodal, peaking at mid elevations, in all groups. This similarity indicates that the spatial distribution of lakes across altitude is a primary driver of invertebrate richness. Provided that nematodes are ubiquitous, their distribution offers potential null models to investigate species richness across environmental gradients in other ecosystem types and biogeographic regions.  相似文献   

6.
Less intensively managed semi-natural habitats, e.g., field and meadow margins like hedgerows, are thought to be crucial landscape components for maintaining biodiversity in highly disturbed and intensively managed agricultural landscapes. In this study, we focused on the effects of three meadow margin types on activity-density, species richness and species composition of carabid and staphylinid beetles recorded by pitfall traps in Central European landscapes dominated by intensively managed meadows. Carabid activity-density was significantly higher in meadows than in meadow margins and within meadow margins their activity-density increased from grassy meadow margins via shrubby ones to woody meadow margins. We found that recorded species richness of both carabid and staphylinid beetles was not significantly affected by habitat identity (meadow margin or neighbouring meadow) and meadow margin type. Recorded species composition of both investigated taxa was significantly affected by habitat identity and interaction between habitat identity and meadow margin type (i.e. it differed between particular meadow margin types). Assemblages inhabiting various meadow margin types were more dissimilar between each other than assemblages from neighbouring meadows. Meadow margins within grassland dominated landscapes maintain local species richness by hosting different species from those living in surrounding meadows. Dissimilarity of carabid and staphylinid assemblages from meadows neighbouring both sides of particular meadow margin did not differ between meadow margin types. Our results indicate that semi-natural habitats play an important role in maintaining biodiversity not only in agricultural landscapes dominated by arable fields, but also in those dominated by meadows.  相似文献   

7.
Intertidal meiobenthos of Hornsund—the southernmost fjord of Spitsbergen—was investigated between July and September 2005. Mean total meiofaunal densities ranged between 4.3 and 328 ind. 10 cm−2. Nematode assemblages were impoverished in terms of the number of genera when compared with those from the western Spitsbergen coast (11 vs. 25–28 genera in total, respectively). It is suggested that severe environmental conditions in the southern part of Spitsbergen overcome the adaptation skills of many nematode species and hamper the establishment of a diverse community. Comparatively high nematode numbers on a beach subject to heavy macroalgal wrack input contrast sharply with numerically poor communities in sparse-wrack beaches (up to 315 vs. 31 ind. 10 cm−2, respectively). It is suggested that the wrack input to the Arctic beach may substantially influence the richness and composition of the intertidal meiobenthic community. Nematode assemblages were dominated by extreme colonizers: Geomonhystera disjuncta and rhabditids. Their relatively high densities in beach sediments recorded at the beginning of July indicate their ability to recover rapidly after the winter period and to effective (re)colonization of the intertidal habitat just after the ice melt. Average concentration of rhabditids and monhysterids associated with macroalgal wrack deposited on the upper shore was as high as 52 × 103 individuals per gram of the substrate. It is hypothesized that nematodes can play a substantial role in the wrack decomposition in the Arctic intertidal.  相似文献   

8.
Correlations between a series of biogenic sediment compounds, commonly used in ecological studies, and a major component of the benthic infauna, the meiofauna, were studied on the continental margin off Southwest Africa (Angola) and in a central oceanic region of the Atlantic Ocean (Mid Oceanic Ridge). Biogenic sediment compounds chosen for this investigation (electron-transport-system activity, total adenylates and energy charge, particulate proteins, chloroplastic pigments) are obviously not suitable for a quick and rough estimation of meiofaunal abundances. Nevertheless, biogenic sediment compounds might reflect quite well the activity and biomass of the total benthic infauna, including all size classes (from bacteria to macrofaunal organisms) and/or the total particulate organic matter within the sediments. Furthermore, analyzing biogenic sediment compounds leads to a better understanding of environmental conditions and biological activities of benthic organisms. Consequently, despite their limitations, biochemical sediment parameters may be very useful in benthic ecological studies to obtain rapid information on the eco-status of the benthic system.  相似文献   

9.
10.
Although the debate about coral reef decline focuses on global disturbances (e.g., increasing temperatures and acidification), local stressors (nutrient runoff and overfishing) continue to affect reef health and resilience. The effectiveness of foraminiferal and hard-coral assemblages as indicators of changes in water quality was assessed on 27 inshore reefs along the Great Barrier Reef. Environmental variables (i.e., several water quality and sediment parameters) and the composition of both benthic foraminiferal and hard-coral assemblages differed significantly between four regions (Whitsunday, Burdekin, Fitzroy, and the Wet Tropics). Grain size and organic carbon and nitrogen content of sediments, and a composite water column parameter (based on turbidity and concentrations of particulate matter) explained a significant amount of variation in the data (tested by redundancy analyses) in both assemblages. Heterotrophic species of foraminifera were dominant in sediments with high organic content and in localities with low light availability, whereas symbiont-bearing mixotrophic species were dominant elsewhere. A similar suite of parameters explained 89% of the variation in the FORAM index (a Caribbean coral reef health indicator) and 61% in foraminiferal species richness. Coral richness was not related to environmental setting. Coral assemblages varied in response to environmental variables, but were strongly shaped by acute disturbances (e.g., cyclones, Acanthaster planci outbreaks, and bleaching), thus different coral assemblages may be found at sites with the same environmental conditions. Disturbances also affect foraminiferal assemblages, but they appeared to recover more rapidly than corals. Foraminiferal assemblages are effective bioindicators of turbidity/light regimes and organic enrichment of sediments on coral reefs.  相似文献   

11.
12.
Current patterns of biodiversity distribution result from a combination of historical and contemporary processes. Here, we compiled checklists of amphibian species to assess the roles of long-term climate stability (Quaternary oscillations), contemporary environmental gradients and geographical distance as determinants of change in amphibian taxonomic and phylogenetic composition in the Brazilian Atlantic Forest. We calculated beta diversity as both variation in species composition (CBD) and phylogenetic differentiation (PBD) among the assemblages. In both cases, overall beta diversity was partitioned into two basic components: species replacement and difference in species richness. Our results suggest that the CBD and PBD of amphibians are determined by spatial turnover. Geographical distance, current environmental gradients and long-term climatic conditions were complementary predictors of the variation in CBD and PBD of amphibian species. Furthermore, the turnover components between sites from different regions and between sites within the stable region were greater than between sites within the unstable region. On the other hand, the proportion of beta-diversity due to species richness difference for both CBD and PBD was higher between sites in the unstable region than between sites in the stable region. The high turnover components from CBD and PBD between sites in unstable vs stable regions suggest that these distinct regions have different biogeographic histories. Sites in the stable region shared distinct clades that might have led to greater diversity, whereas sites in the unstable region shared close relatives. Taken together, these results indicate that speciation, environmental filtering and limited dispersal are complementary drivers of beta-diversity of amphibian assemblages in the Brazilian Atlantic Forest.  相似文献   

13.
A total of 228 bryozoan species are recorded within the EEZ of the Faroe Islands, 74 of which are new to the area. Analysis of the distribution of the species among six sectors, each characterized by different environmental conditions, showed three faunal assemblages. Variation of the total Faroese bryozoan fauna and of the bryozoan fauna of most sectors, demonstrated significant negative relationships with depth. In general, analysis of the biogeographic composition showed a strong predominance of boreal over arctic species. However, with respect to faunas of each sector, the Norwegian Basin is characterized by a predominance of arctic species and may be regarded as a part of the Arctic Eurasian sub-region of the Arctic biogeographic region. Comparison of the bryozoan species of each sector with the bryozoan faunas of the other 12 areas in the North Atlantic and the neighbouring Arctic regions showed that only the Faroese shelf fauna has significant similarity with part of them, and thus can be regarded as part of the Scandinavian province of the Norwegian high-boreal sub-region of the Atlantic boreal region. Three sectors, the Faroese–Iceland Ridge, the Faroese–Shetland Channel and Norwegian Basin, belong to a transitional zone between the Atlantic Boreal and the Arctic biogeographic regions. The deep south-western sector forms a separate faunal cluster when compared with both the other sectors within the Faroese area and with the faunas of other large geographic areas, and may be regarded as a separate biogeographic zone of the Boreal Atlantic region due to its high proportion of specific species.  相似文献   

14.
15.
《Marine Micropaleontology》2006,60(3):226-241
A diatom record from core MD992275 on the North Icelandic shelf reveals palaeoclimatic and palaeoceanographic changes during the time interval 9000 to 5600 cal. year BP. The study period includes the Holocene Climate Optimum (HCO), as widely known in the North Atlantic region. A comparison with data for the last 2000 years and with the present-day surface sediment diatom assemblages shows that there was considerably stronger influence of Atlantic water masses in the area during the HCO than in the late Holocene and today. The results of cluster analysis and principal component analysis divide the studied period into three intervals, each characterised by a specific diatom assemblage. The assemblages indicate changes in the interaction of the relatively warm Irminger Current (IC) and the cold East Greenland Current (EGC) and East Icelandic Current (EIC). The North Icelandic shelf was strongly affected by the IC during the interval 8000–6800 cal. year BP, which may be the warmest period of the Holocene. During the intervals 9000–8000 and 6800–5600 cal. year BP, the influence of the IC was relatively weak and that of the EGC and EIC increased correspondingly. The well-known 8200 cal. year BP cooling event, shown in many records from the North Atlantic, is reflected by a relatively strong influence of the EGC and EIC between about 8300 and 8100 cal. year BP in our record. However, the diatom assemblages show that the inferred circulation change did not bring the strength of the IC down to the levels seen at present and during the last two millennia.  相似文献   

16.
Demands on the resources of the deep-sea have increased in recent years. Consequently, the need to create and implement a comprehensive network of Marine Protected Areas (MPAs) to help manage and protect these resources has become a global political priority. Efforts are currently underway to implement MPA networks in the deep North East Atlantic. To ensure these networks are effective, it is essential that baseline information be available to inform the conservation planning process. Using empirical data, we calculated conservation targets for sessile benthic invertebrates in the deep North East Atlantic for consideration during the planning process. We assessed Species-Area Relationships across two depth bands (200–1100 m and 1100–1800 m) and nine substrata. Conservation targets were predicted for each substratum within each depth band using z-values obtained from fitting a power model to the Species-Area Relationships of observed and estimated species richness (Chao1). Results suggest an MPA network incorporating 10% of the North East Atlantic’s deep-sea area would protect approximately 58% and 49% of sessile benthic species for the depth bands 200–1100 m and 1100–1800 m, respectively. Species richness was shown to vary with substratum type indicating that, along with depth, substratum information needs to be incorporated into the conservation planning process to ensure the most effective MPA network is implemented in the deep North East Atlantic.  相似文献   

17.
《Marine Micropaleontology》2001,41(1-2):73-96
Canonical correspondence analysis of diatoms from surface sediment samples and oceanographic environmental variables shows that summer and winter sea-surface temperatures, water depth and winter sea-surface salinity are the main environmental factors affecting diatom distribution around Iceland. Of these, summer sea-surface temperature is the most important. Five diatom assemblages are distinguished and the distribution of these assemblages is clearly correlated with oceanic current patterns in the region. The sea-ice diatom assemblage is limited to the area where the East Greenland Current (Polar Water) has its strongest influence, and the cold diatom assemblage is basically controlled by the less cold East Icelandic Current (Modified Polar Water). The mixing diatom assemblage results from the interaction between the cold East Greenland and East Icelandic Currents and the warm Irminger Current. The warm diatom assemblage is located in the area dominated by the Irminger Current and may be used as an indicator of warm-water masses (Atlantic Water). The coastal diatom assemblage is the only one strongly influenced by both water depth and summer water temperatures.  相似文献   

18.
Due to conservation needs, reliable rapid-assessment methods for mapping of biodiversity are needed. One approach is to use surrogates, i.e. quantities that correlate strongly with the number of species, but are easier to obtain. The purpose of this paper is to test two polychaete surrogates, one for higher taxa and one for indicator groups, that will facilitate prediction of species richness in marine soft-bottom communities. Soft sediment is an important habitat which covers most of the ocean bottom. Data on polychaetes from the North Atlantic were used since polychaetes are often numerically dominant in the benthic assemblages, both with regard to the number of species and their abundance. In the polychaete assemblages along the Norwegian coast, richness at the genus, family and order level were significantly, linearly correlated to total species richness (r 0.92). Polychaetes in the order Terebellida were found to be a good indicator of polychaete species richness and to a lesser extent also of whole benthic assemblages. The group Terebellida is potentially well suited as an indicator group, since it contains long-lived, large species that are easy to sort from the sediment and it is well defined taxonomically. Although promising as proxies for species richness in marine biodiversity studies, the use of lower taxonomic resolution and indicator groups requires further investigations in more local areas where there are conservation issues.  相似文献   

19.
Marine benthic macrofauna communities are considered a good indicator of subtle environmental long-term changes in an ecosystem. In 1997/1998 and 2006, soft-bottom fauna of an Arctic glacial fjord Kongsfjorden was extensively sampled and major communities were identified along the fjord axis, which were related to the diminishing influence of glacial activity. Spatial patterns in community structure and species diversity were significantly different in the central basin of Kongsfjorden between periods while there was no change in the inner part of the fjord. In 1997/98, three faunal associations were distinguished with significant differences in species richness and diversity (H′) while in 2006 only two faunal associations were identified and there were no differences any more between the two formerly distinct associations in the central fjord. The increased input of Atlantic water due to a stronger West Spitsbergen Current may be the reason for unification of previous clear faunal division. The faunal association in the inner, well separated glacial part of the fjord, characterized by strong glacier influence, was protected from Atlantic water inflow and, hence, the macrobenthic fauna essentially remained unaffected. Reduced abundance of species typical for glacial bays in the central part of the fjord in 2006 may result from the decreasing effect of Blomstrandbreen glacier, strong increase of input of Atlantic water into the fjord and increased temperature of West Spitsbergen Current. Higher values of POC in 2006 than in 1998 are likely the effect of increased primary production resulting from warmer water temperatures.  相似文献   

20.
Species of Fucus are among the dominant seaweeds along Northern Hemisphere shores, but taxonomic designations often are confounded by significant intraspecific morphological variability. We analyzed intra- and inter-specific phylogenetic relationships within the genus (275 individuals representing 16 taxa) using two regions of the mitochondrion: a variable intergenic spacer and a conserved portion of the 23S subunit. Bayesian ML and MP analyses verified a shallow phylogeny with two major lineages (previously reported) and resolved some intra-lineage relationships. Significant species-level paraphyly/polyphyly was observed within lineages 1A and 2. Despite higher species richness in the North Atlantic, a North Pacific origin of the genus is supported by a gradient of decreasing haplotype and nucleotide diversities in F. distichus from the North Pacific to the East Atlantic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号