首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The work studies role of different receptor types of serotonin (5-hydroxytryptamine; 5-HT) in the process of synaptic activity modulation with 5-HT of rat dorsolateral amygdala projection neurons. The selective antagonist of 5-HT1,2 receptors methylsergid maleate was shown to suppress the 5-HT inhibitory action on amplitude of the postsynaptic currents evoked by glutamate and GABA, whereas the antagonist of 5-HT3,4 receptors SDZ202-557 produced no effect on the above-mentioned 5-HT action. The obtained action indicates that the 5-HT modulatory effect on the projectional neuron synaptic inputs is mediated by 5-HT receptors of the 1 and 2 types.  相似文献   

2.
EPSP amplification and the precision of spike timing in hippocampal neurons   总被引:13,自引:0,他引:13  
Fricker D  Miles R 《Neuron》2000,28(2):559-569
The temporal precision with which EPSPs initiate action potentials in postsynaptic cells determines how activity spreads in neuronal networks. We found that small EPSPs evoked from just subthreshold potentials initiated firing with short latencies in most CA1 hippocampal inhibitory cells, while action potential timing in pyramidal cells was more variable due to plateau potentials that amplified and prolonged EPSPs. Action potential timing apparently depends on the balance of subthreshold intrinsic currents. In interneurons, outward currents dominate responses to somatically injected EPSP waveforms, while inward currents are larger than outward currents close to threshold in pyramidal cells. Suppressing outward potassium currents increases the variability in latency of synaptically induced firing in interneurons. These differences in precision of EPSP-spike coupling in inhibitory and pyramidal cells will enhance inhibitory control of the spread of excitation in the hippocampus.  相似文献   

3.
The kainate subtype of glutamate receptors has received considerable attention in recent years, and a wealth of knowledge has been obtained regarding the function of these receptors. Kainate receptors have been shown to mediate synaptic transmission in some brain regions, modulate presynaptic release of glutamate and gamma-aminobutyric acid (GABA), and mediate synaptic plasticity or the development of seizure activity. This article focuses on the function of kainate receptors in the amygdala, a brain region that plays a central role in emotional behavior and certain psychiatric illnesses. Evidence is reviewed indicating that postsynaptic kainate receptors containing the glutamate receptor 5 kainate receptor (GLUk5) subunit are present on interneurons and pyramidal cells in the basolateral amygdala and mediate a component of the synaptic responses of these neurons to glutamatergic input. In addition, GLUk5-containing kainate receptors are present on presynaptic terminals of GABAergic neurons, where they modulate the release of GABA in an agonist concentration-dependent, bidirectional manner. GLUk5-containing kainate receptors also mediate a longlasting synaptic facilitation induced by low-frequency stimulation in the external capsule to the basolateral nucleus pathway, and they appear to be partly responsible for the susceptibility of the amygdala to epileptogenesis. Taken together, these findings have suggested a prominent role of GLUk5-containing kainate receptors in the regulation of neuronal excitability in the amygdala.  相似文献   

4.
Cerebellar GABAergic inhibitory transmission between interneurons and Purkinje cells (PCs) undergoes a long-lasting enhancement following different stimulations, such as brief depolarization or activation of purinergic receptors of postsynaptic PCs. The underlying mechanisms, however, are not completely understood. Using a peak-scaled non-stationary fluctuation analysis, we therefore aimed at characterizing changes in the electrophysiological properties of GABAA receptors in PCs of rat cerebellar cortex during depolarization-induced “rebound potentiation (RP)” and purinoceptor-mediated long-term potentiation (PM-LTP), because both RP and PM-LTP likely depend on postsynaptic mechanisms. Stimulation-evoked inhibitory postsynaptic currents (eIPSCs) were recorded from PCs in neonatal rat cerebellar slices. Our analysis showed that postsynaptic membrane depolarization induced RP of eIPSCs in association with significant increase in the number of synaptic GABAA receptors without changing the channel conductance. By contrast, bath application of ATP induced PM-LTP of eIPSCs with a significant increase of the channel conductance of GABAA receptors without affecting the receptor number. Pretreatment with protein kinase A (PKA) inhibitors, H-89 and cAMPS-Rp, completely abolished the PM-LTP. The CaMKII inhibitor KN-62 reported to abolish RP did not alter PM-LTP. These results suggest that the signaling mechanism underlying PM-LTP could involve ATP-induced phosphorylation of synaptic GABAA receptors, thereby resulting in upregulation of the channel conductance by stimulating adenylyl cyclase-PKA signaling cascade, possibly via activation of P2Y11 purinoceptor. Thus, our findings reveal that postsynaptic GABAA receptors at the interneuron-PC inhibitory synapses are under the control of two distinct forms of long-term potentiation linked with different second messenger cascades.  相似文献   

5.
Shi Y  Nenadic Z  Xu X 《PloS one》2010,5(11):e15517
Efficient and dependable methods for detection and measurement of synaptic events are important for studies of synaptic physiology and neuronal circuit connectivity. As the published methods with detection algorithms based upon amplitude thresholding and fixed or scaled template comparisons are of limited utility for detection of signals with variable amplitudes and superimposed events that have complex waveforms, previous techniques are not applicable for detection of evoked synaptic events in photostimulation and other similar experimental situations. Here we report on a novel technique that combines the design of a bank of approximate matched filters with the detection and estimation theory to automatically detect and extract photostimluation-evoked excitatory postsynaptic currents (EPSCs) from individually recorded neurons in cortical circuit mapping experiments. The sensitivity and specificity of the method were evaluated on both simulated and experimental data, with its performance comparable to that of visual event detection performed by human operators. This new technique was applied to quantify and compare the EPSCs obtained from excitatory pyramidal cells and fast-spiking interneurons. In addition, our technique has been further applied to the detection and analysis of inhibitory postsynaptic current (IPSC) responses. Given the general purpose of our matched filtering and signal recognition algorithms, we expect that our technique can be appropriately modified and applied to detect and extract other types of electrophysiological and optical imaging signals.  相似文献   

6.
Linking synaptic plasticity with behavioral learning requires understanding how synaptic efficacy influences postsynaptic firing in neurons whose role in behavior is understood. Here, we examine plasticity at a candidate site of motor learning: vestibular nerve synapses onto neurons that mediate reflexive movements. Pairing nerve activity with changes in postsynaptic voltage induced bidirectional synaptic plasticity in vestibular nucleus projection neurons: long-term potentiation relied on calcium-permeable AMPA receptors and postsynaptic hyperpolarization, whereas long-term depression relied on NMDA receptors and postsynaptic depolarization. Remarkably, both forms of plasticity uniformly scaled synaptic currents evoked by pulse trains, and these changes in synaptic efficacy were translated into linear increases or decreases in postsynaptic firing responses. Synapses onto local inhibitory neurons were also plastic but expressed only long-term depression. Bidirectional, linear gain control of vestibular nerve synapses onto projection neurons provides a plausible mechanism for motor learning underlying adaptation of vestibular reflexes.  相似文献   

7.
We analyzed the properties of inhibitory synaptic transmission between neurons in low-density cultures of cortical cells. Miniature, spontaneous, and evoked inhibitory postsynaptic currents were studied using a whole-cell path-clamp technique at a holding potential of -80 mV. These postsynaptic currents were identified as GABA release-activated Cl- currents mediated by GABAA receptors. Fitting amplitude histograms of these currents with Gaussian curves and an autocorrelation technique revealed the presence of equidistant peaks corresponding to a mean quantum size of 10 pA.  相似文献   

8.
The developmental profile of the firing patterns and construction of synapse connection were studied in LTS interneurons of prefrontal cortex (PFC) in rats with age (from P7 to P30). We used whole cell patch-clamp recordings to characterize electrophysiological properties of LTS interneurons in PFC at different age stages, including the action potentials (APs), short-term plasticity (STP), evoked excitatory postsynaptic currents (eEPSCs), spontaneous excitatory postsynaptic currents (sEPSC), and spontaneous inhibitory postsynaptic current (sIPSC). The developmental profile of LTS interneurons in our research showed two phases changes. The early phase from P7–P11 to P16–P19 during which the development of individual LTS interneuron dominated and just some simple synaptic connections formed, the synaptic inputs from pyramidal cells play a promoting role for the maturation of LTS interneurons to some extent. This was based on the changes of APs, eEPSCs, and STP such as the curtailment of time course of APs, the increasing facilitation of STP before P16–P19 group. The late phase from P20–P23 to P > 27 during which the function of inhibitory cortex network enhanced and the characters of this inhibitory cortex network continually changed although in the oldest age group (P > 27) in our research. The frequency and amplitude of sIPSC showed continually changes, and at the same age group, the frequency ratios and amplitude ratios of sIPSC was higher than that of sEPSC. Our study showed a foundation to clarify mechanisms underlying the evolution in time of intrinsic neuronal membrane properties and their important roles in balancing the cortex network, providing an academic foundation for the pathological researching on some psychiatric and neurological disorders.  相似文献   

9.
C T Livsey  S Vicini 《Neuron》1992,8(4):745-755
In the hilar region of the rat hippocampus, large spontaneous excitatory postsynaptic currents (sEPSCs) mediated by non-NMDA glutamate receptors are present in both excitatory spiny mossy cells and inhibitory aspiny hilar interneurons, making these neurons ideal candidates for a comparative study using the tight seal whole-cell recording technique. Although sEPSCs have similar amplitude distributions, the rise and decay times are significantly slower in spiny versus aspiny neurons. Similar kinetic differences are observed in synaptic currents evoked by mossy fiber stimulation. These results demonstrate a physiological difference between the excitatory drive to excitatory and inhibitory neurons in the hilus that certainly contributes to differences in synaptic strength and that may be applicable to other brain regions. Furthermore, since the development or modification of individual spines or groups of spines may affect synaptic strength, these results may be pivotal in establishing a role for spines in modulating synaptic activity.  相似文献   

10.
A single, maternally inherited, X-linked point mutation leading to an arginine to cysteine substitution at amino acid 451 (R451C) of Neuroligin 3 (NLGN3R451C) is a likely cause of autism in two brothers. Knockin mice expressing the Nlgn3R451C mutation in place of wild-type Nlgn3 demonstrate increased inhibitory synaptic strength in somatosensory cortex, resulting in an excitatory/inhibitory (E/I) imbalance that is potentially relevant for autism-associated behavioral deficits characteristic of these mice. We have replicated the increase in evoked inhibitory postsynaptic currents (eIPSCs) onto layer II/III cortical pyramidal neurons. We also find that increased frequency of spontaneous mIPSCs in Nlgn3R451C mice occurs in the absence of action potential-driven transmission. This suggests the E/I imbalance is due to changes at the synapse level, as opposed to the network level. Next, we use paired whole-cell recordings in an attempt to identify specific interneuron subtypes affected by the Nlgn3R451C mutation. Curiously, we observe no change in the amplitude of cell-to-cell, unitary IPSCs (uIPSCs) from parvalbumin-positive (PV) or somatostatin-positive (SOM) interneurons onto pyramidal neurons. We also observe no change in the number or density of PV and SOM interneurons in LII/III of somatosensory cortex. This effectively rules out a role for these particular interneurons in the increased inhibitory synaptic transmission, pointing to perhaps alternative interneuron subtypes. Lastly, impaired endocannabinoid signaling has been implicated in hippocampal synaptic dysfunction in Nlgn3R451C mice, but has not been investigated at cortical synapses. We find that bath application of the CB1 antagonist, AM 251 in WT mice eliminates the Nlgn3R451C increase in eIPSC amplitude and mIPSC frequency, indicating that increased inhibitory transmission in mutant mice is due, at least in part, to a loss of endocannabinoid signaling through CB1 receptors likely acting at interneurons other than PV or SOM.  相似文献   

11.
The entorhinal cortex plays an important role in temporal lobe processes including learning and memory, object recognition, and contextual information processing. The alteration of the strength of synaptic inputs to the lateral entorhinal cortex may therefore contribute substantially to sensory and mnemonic functions. The neuromodulatory transmitter dopamine exerts powerful effects on excitatory glutamatergic synaptic transmission in the entorhinal cortex. Interestingly, inputs from midbrain dopamine neurons appear to specifically target clusters of excitatory cells located in the superficial layers of the entorhinal cortex. We have previously demonstrated that dopamine facilitates synaptic transmission through the activation of D1-like receptors. This facilitation of synaptic transmission is dependent on both activation of classical D1-like-receptors, and upon activation of dopamine receptors linked to increases in phospholipase C, inositol triphosphate (IP3), and intracellular calcium. In the present study we combined electrophysiological recordings of evoked excitatory postsynaptic currents with imaging of intracellular calcium using the fluorescent indicator fluo-4 to monitor calcium transients evoked by dopamine in electrophysiologically identified putative fan and pyramidal cells of the lateral entorhinal cortex. Bath application of dopamine (1 μM), or the phosphatidylinositol (PI)-linked D1-like-receptor agonist SKF83959 (5 μM), induced reliable and reversible increases in fluo-4 fluorescence and excitatory postsynaptic currents in fan cells, but not in pyramidal cells. In contrast, application of the classical D1-like-receptor agonist SKF38393 (10 μM) did not result in significant increases in fluorescence. Blocking release of calcium from internal stores by loading cells with the IP3 receptor blocker heparin (1 mM) or the ryanodine receptor blocker dantrolene (20 μM) abolished both the calcium transients and the facilitation of evoked synaptic currents induced by dopamine. Dopamine also induced calcium transients in fan cells when calcium was excluded from the extracellular medium, further indicating that the calcium transients are linked to release from internal stores. These results indicate that following D1-like-receptor binding, dopamine selectively induces transient elevations in intracellular calcium via activation of IP3 and ryanodine receptors, and that these elevations are linked to the facilitation of synaptic responses in putative layer II entorhinal cortex fan cells.  相似文献   

12.
Fast excitatory synaptic responses in basolateral amygdala (BLA) neurons are mainly mediated by ionotropic glutamate receptors of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) subtype. AMPA receptors containing an edited GluR2 subunit are calcium impermeable, whereas those that lack this subunit are calcium permeable and also inwardly rectifying. Here, we sought to determine the extent to which synapses in the rat BLA have AMPA receptors with GluR2 subunits. We assessed GluR2 protein expression in the BLA by immunocytochemistry with a GluR2 subunit-specific antiserum at the light and electron microscopic level; for comparison, a parallel examination was carried out in the hippocampus. We also recorded from amygdala brain slices to examine the voltage-dependent properties of AMPA receptor- mediated evoked synaptic currents in BLA principal neurons. At the light microscopic level, GluR2 immunoreactivity was localized to the perikarya and proximal dendrites of BLA neurons; dense labeling was also present over the pyramidal cell layer of hippocampal subfields CA1 and CA3. In electron micrographs from the BLA, most of the synapses were asymmetrical with pronounced postsynaptic densities (PSD). They contained clear, spherical vesicles apposed to the PSD and were predominantly onto spines (86%), indicating that they are mainly with BLA principal neurons. Only 11% of morphological synapses in the BLA were onto postsynaptic elements that showed GluR2 immunoreactivity, in contrast to hippocampal subfields CA1 and CA3 in which 76% and 71% of postsynaptic elements were labeled (p < 0.001). Synaptic staining in the BLA and hippocampus, when it occurred, was exclusively postsynaptic, and particularly heavy over the PSD. In whole-cell voltage clamp recordings, 72% of BLA principal neurons exhibited AMPA receptor-mediated synaptic currents evoked by external capsule stimulation that were inwardly rectifying. Although BLA principal neurons express perikaryal and proximal dendritic GluR2 immunoreactivity, few synapses onto these neurons express GluR2, and a preponderance of principal neurons have inwardly rectifying AMPA-mediated synaptic currents, suggesting that targeting of GluR2 to synapses is restricted. Many BLA synaptic AMPA receptors are likely to be calcium permeable and could play roles in synaptic plasticity, epileptogenesis and excitoxicity.  相似文献   

13.
Neuromodulation and the functional dynamics of piriform cortex.   总被引:4,自引:0,他引:4  
Acetylcholine and norepinephrine have a number of effects at the cellular level in the piriform cortex. Acetylcholine causes a depolarization of the membrane potential of pyramidal cells and interneurons, and suppresses the action potential frequency accommodation of pyramidal cells. Acetylcholine also has strong effects on synaptic transmission, suppressing both excitatory and inhibitory synaptic transmission. At the same time as it suppresses synaptic transmission, acetylcholine enhances synaptic modification, as demonstrated by experiments showing enhancement of long-term potentiation. Norepinephrine has similar effects. In this review, we discuss some of these different cellular effects and provide functional proposals for these individual effects in the context of the putative associative memory function of this structure.  相似文献   

14.
Schinder AF  Berninger B  Poo M 《Neuron》2000,25(1):151-163
The role of the target cell in neurotrophin-induced modifications of glutamatergic synaptic transmission was examined in cultured hippocampal neurons. Brain-derived neurotrophic factor (BDNF) induced rapid and persistent potentiation of evoked glutamate release when the postsynaptic neuron was glutamatergic, or excitatory (E-->E), but not when it was GABAergic, or inhibitory (E-->1). This target-specific action of BDNF was also found at divergent outputs of a single presynaptic neuron innervating both glutamatergic and GABAergic neurons, suggesting that individual terminals can be independently modified. Surprisingly, BDNF increased the frequency of miniature postsynaptic currents at both E-->E and E-->I, although it had no effect on evoked currents at E-->I. Finally, potentiation by neurotrophin-3 (NT-3) was also target specific. The selective effect at E-->E suggests that retrograde signaling by the postsynaptic target cell endows a localized presynaptic action of neurotrophins.  相似文献   

15.
Chu CP  Bing YH  Liu QR  Qiu DL 《PloS one》2011,6(7):e22752

Background

Sensory stimuli evoke responses in cerebellar Purkinje cells (PCs) via the mossy fiber-granule cell pathway. However, the properties of synaptic responses evoked by tactile stimulation in cerebellar PCs are unknown. The present study investigated the synaptic responses of PCs in response to an air-puff stimulation on the ipsilateral whisker pad in urethane-anesthetized mice.

Methods and Main Results

Thirty-three PCs were recorded from 48 urethane-anesthetized adult (6–8-week-old) HA/ICR mice by somatic or dendritic patch-clamp recording and pharmacological methods. Tactile stimulation to the ipsilateral whisker pad was delivered by an air-puff through a 12-gauge stainless steel tube connected with a pressurized injection system. Under current-clamp conditions (I = 0), the air-puff stimulation evoked strong inhibitory postsynaptic potentials (IPSPs) in the somata of PCs. Application of SR95531, a specific GABAA receptor antagonist, blocked IPSPs and revealed stimulation-evoked simple spike firing. Under voltage-clamp conditions, tactile stimulation evoked a sequence of transient inward currents followed by strong outward currents in the somata and dendrites in PCs. Application of SR95531 blocked outward currents and revealed excitatory postsynaptic currents (EPSCs) in somata and a temporal summation of parallel fiber EPSCs in PC dendrites. We also demonstrated that PCs respond to both the onset and offset of the air-puff stimulation.

Conclusions

These findings indicated that tactile stimulation induced asynchronous parallel fiber excitatory inputs onto the dendrites of PCs, and failed to evoke strong EPSCs and spike firing in PCs, but induced the rapid activation of strong GABAA receptor-mediated inhibitory postsynaptic currents in the somata and dendrites of PCs in the cerebellar cortex Crus II in urethane-anesthetized mice.  相似文献   

16.
Brain-derived neurotrophic factor (BDNF) and adenosine are widely recognized as neuromodulators of glutamatergic transmission in the adult brain. Most BDNF actions upon excitatory plasticity phenomena are under control of adenosine A2A receptors (A2ARs). Concerning gamma-aminobutyric acid (GABA)-mediated transmission, the available information refers to the control of GABA transporters. We now focused on the influence of BDNF and the interplay with adenosine on phasic GABAergic transmission. To assess this, we evaluated evoked and spontaneous synaptic currents recorded from CA1 pyramidal cells in acute hippocampal slices from adult rat brains (6 to 10 weeks old). BDNF (10–100 ng/mL) increased miniature inhibitory postsynaptic current (mIPSC) frequency, but not amplitude, as well as increased the amplitude of inhibitory postsynaptic currents (IPSCs) evoked by afferent stimulation. The facilitatory action of BDNF upon GABAergic transmission was lost in the presence of a Trk inhibitor (K252a, 200 nM), but not upon p75NTR blockade (anti-p75NTR IgG, 50 μg/mL). Moreover, the facilitatory action of BDNF onto GABAergic transmission was also prevented upon A2AR antagonism (SCH 58261, 50 nM). We conclude that BDNF facilitates GABAergic signaling at the adult hippocampus via a presynaptic mechanism that depends on TrkB and adenosine A2AR activation.  相似文献   

17.
Glucagon-like peptide-1 (GLP-1) is a metabolic hormone that is secreted in a glucose-dependent manner and enhances insulin secretion. GLP-1 receptors are also found in the brain where their signalling affects neuronal activity. We have previously shown that the GLP-1 receptor agonists, GLP-1 and exendin-4 enhanced GABA-activated synaptic and tonic currents in rat hippocampal CA3 pyramidal neurons. The hippocampus is the centre for memory and learning and is important for cognition. Here we examined if exendin-4 similarly enhanced the GABA-activated currents in the presence of the benzodiazepine diazepam. In whole-cell recordings in rat brain slices, diazepam (1 μM), an allosteric positive modulator of GABAA receptors, alone enhanced the spontaneous inhibitory postsynaptic current (sIPSC) amplitude and frequency by a factor of 1.3 and 1.6, respectively, and doubled the tonic GABAA current normally recorded in the CA3 pyramidal cells. Importantly, in the presence of exendin-4 (10 nM) plus diazepam (1 μM), only the tonic but not the sIPSC currents transiently increased as compared to currents recorded in the presence of diazepam alone. The results suggest that exendin-4 potentiates a subpopulation of extrasynaptic GABAA receptors in the CA3 pyramidal neurons.  相似文献   

18.
Kainate receptor agonists are powerful convulsants and excitotoxins. It has been a lot of controversy around functions of these receptors in the brain. It is shown in this article that kainate enhances evoked GABAergic IPSC (phasic currents) in CA1 interneurons in concentration-dependent manner. The phenomenon is likely to be due to kainate-mediated lowering of the threshold for action potential generation in interneuron axons and increased number of terminals responding to the same stimulus strength. Kainate application also induced an enhancement in tonic GABAergic conductance. This phenomenon can be attributed to massive extracellular GABA accumulation caused by interneuron firing in the presence of kainate. Extracellular GABA also shunts synaptic currents by activating tonic conductance as well as desensitizing synaptic GABAA receptors. Thus, the enhancement of the evoked IPSCs by 1 microM kainate was complicated by early and transient decrease. The kainate receptor-mediated enhancement of GABAergic tonic and phasic signalling to interneurons can contribute to the depression of GABAergic transmission to pyramidal neurons. The consequence of this phenomenon may play a major role in the epileptogenic action of this agent.  相似文献   

19.
The number of postsynaptic gamma-aminobutyric acid type A (GABAA) receptors is a fundamental determinant of the variability of inhibitory synaptic responses in the central nervous system. In rat visual cortex, [3H]SR-95531 binding assays revealed that brain-derived neurotrophic factor (BDNF), one of the neurotrophins, induced a rapid increase in the total number of cell surface GABAA receptors, through the activation of Trk B receptor tyrosine kinases. We also demonstrated that BDNF rapidly induced a sustained potentiation of GABAA receptor-mediated currents, using nystatin-perforated patch clamp recordings, in visual cortical layer 5 pyramidal neurons freshly isolated from P14 rats. The potentiation was caused by the activation of Trk B receptor tyrosine kinase and phospholipase C-gamma. In addition, intracellular Ca2+ was important for the potentiation of GABAA responses induced by BDNF. The selective increase in mean miniature inhibitory postsynaptic (mIPSC) current amplitude without effects on mIPSC time courses supports the idea that BDNF rapidly induces an increase in the total number of cell surface functional GABAA receptors in visual cortical pyramidal neurons. These results suggest that BDNF could alter the number of cell surface GABAA receptors in a region-specific manner.  相似文献   

20.
In cultured pyramidal neurons of the rat brain cortex, we recorded (in the whole-cell configuration) postsynaptic currents (PSC) evoked by direct electrical microstimulation of an axon of the interneuron adjacent to the pyramidal cell. Application of 5 M bicuculline rapidly, entirely, and reversibly blocked these currents. Linear changes in the holding potential on the membrane of the postsynaptic cell resulted in linear changes in the amplitude of averaged currents. The currents underwent reversion when the holding potential was –16 mV, which was close to the reversal potential for Cl- ions at their respective concentrations in the extra- and intracellular solutions. We conclude that the recorded currents are inhibitory PSC (IPSC) mediated by GABA release. The amplitudes of the recorded currents varied from a measurable minimum (8 pA) to more than 150 pA at a holding potential on the postsynaptic cell membrane of –80 mV. Times to peak of the high- and low-amplitude currents showed no significant differences, being about 6.4 msec on average. Decays of the current could be satisfactorily approximated by a monoexponential function with a mean time constant of 17 msec. The time constants of IPSC decay were distributed accordingly to the Gaussian law. In some cases, the amplitude distributions of IPSC were unimodal ((with a rightward asymmetry), but in most cases they were clearly polymodal. The amplitude distribution can be described by the sum of several Gaussian distributions; the distance between modes of the Gaussians was 25 ± 6 pA, on average. The obtained estimates of the amplitude of monoquantal GABA-induced IPSC in neurons of the brain cortex allow us to conclude that in various CNS regions the dimension of the vesicles in GABA-ergic synapses formed by inhibitory interneurons is identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号