首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron influx increases the translation of the Alzheimer amyloid precursor protein (APP) via an iron-responsive element (IRE) RNA stem loop in its 5′-untranslated region. Equal modulated interaction of the iron regulatory proteins (IRP1 and IRP2) with canonical IREs controls iron-dependent translation of the ferritin subunits. However, our immunoprecipitation RT-PCR and RNA binding experiments demonstrated that IRP1, but not IRP2, selectively bound the APP IRE in human neural cells. This selective IRP1 interaction pattern was evident in human brain and blood tissue from normal and Alzheimer disease patients. We computer-predicted an optimal novel RNA stem loop structure for the human, rhesus monkey, and mouse APP IREs with reference to the canonical ferritin IREs but also the IREs encoded by erythroid heme biosynthetic aminolevulinate synthase and Hif-2α mRNAs, which preferentially bind IRP1. Selective 2′-hydroxyl acylation analyzed by primer extension analysis was consistent with a 13-base single-stranded terminal loop and a conserved GC-rich stem. Biotinylated RNA probes deleted of the conserved CAGA motif in the terminal loop did not bind to IRP1 relative to wild type probes and could no longer base pair to form a predicted AGA triloop. An AGU pseudo-triloop is key for IRP1 binding to the canonical ferritin IREs. RNA probes encoding the APP IRE stem loop exhibited the same high affinity binding to rhIRP1 as occurs for the H-ferritin IRE (35 pm). Intracellular iron chelation increased binding of IRP1 to the APP IRE, decreasing intracellular APP expression in SH-SY5Y cells. Functionally, shRNA knockdown of IRP1 caused increased expression of neural APP consistent with IRP1-APP IRE-driven translation.  相似文献   

2.
3.
Regulation of ferritin and transferrin receptor mRNAs   总被引:45,自引:0,他引:45  
Iron regulates the synthesis of two proteins critical for iron metabolism, ferritin and the transferrin receptor, through novel mRNA/protein interactions. The mRNA regulatory sequence (iron-responsive element (IRE)) occurs in the 5'-untranslated region of all ferritin mRNAs and is repeated as five variations in the 3'-untranslated region of transferrin receptor mRNA. When iron is in excess, ferritin synthesis and iron storage increase. At the same time, transferrin receptor synthesis and iron uptake decrease. Location of the common IRE regulatory sequence in different noncoding regions of the two mRNAs may explain how iron can have opposite metabolic effects; when the IRE is in the 5'-untranslated region of ferritin mRNA, translation is enhanced by excess iron whereas the presence of the IREs in the 3'-untranslated region of the transferrin receptor mRNA leads to iron-dependent degradation. How and where iron actually acts is not yet known. A soluble 90-kDa regulatory protein which has been recently purified to homogeneity from liver and red cells specifically blocks translation of ferritin mRNA and binds IRE sequences but does not appear to be an iron-binding protein. The protein is the first specific eukaryotic mRNA regulator identified and confirms predictions 20 years old. Concerted regulation by iron of ferritin and transferrin receptor mRNAs may also define a more general strategy for using common mRNA sequences to coordinate the synthesis of metabolically related proteins.  相似文献   

4.
Ferritin, a cytoplasmic protein critical in iron metabolism, displays iron-dependent regulation of its biosynthetic rate with no corresponding changes in mRNA levels. An iron-responsive element (IRE) has been identified in the 5'-untranslated region (UTR) of the human ferritin heavy chain mRNA which, when placed in the 5'-UTR of heterologous reporter genes, confers iron-dependent translational regulation to the hybrid mRNAs. However, whereas the biosynthetic rate of ferritin in response to changes in iron status exhibits a 30-80-fold range, the apparent ranges observed for reporter gene constructs utilizing chloramphenicol acetyltransferase assays or human growth hormone radioimmunoassays have been much less. A deletion and reconstitution study was undertaken to address the possibility that regions of the ferritin gene and mRNA other than the IRE may be necessary for the production of the full range of iron regulation. Data are presented that demonstrate that the IRE alone is capable of conferring iron-dependent translational regulation of biosynthesis to downstream encoded proteins that is both qualitatively and quantitatively similar to that observed with expression of ferritin itself. Thus, the complete range of iron-dependent translational regulation conferred by the IRE occurs independently of the presence of the ferritin promoter, other regions of the ferritin 5'-UTR, the ferritin coding region, and the ferritin 3'-UTR. Additionally, experiments addressing the translatability in vivo of various ferritin construct mRNAs support the theory that the IRE functions as the binding site for a translational repressor.  相似文献   

5.
6.
Iron homeostasis is tightly regulated, as cells work to conserve this essential but potentially toxic metal. The translation of many iron proteins is controlled by the binding of two cytoplasmic proteins, iron regulatory protein 1 and 2 (IRP1 and IRP2) to stem loop structures, known as iron-responsive elements (IREs), found in the untranslated regions of their mRNAs. In short, when iron is depleted, IRP1 or IRP2 bind IREs; this decreases the synthesis of proteins involved in iron storage and mitochondrial metabolism (e.g. ferritin and mitochondrial aconitase) and increases the synthesis of those involved in iron uptake (e.g. transferrin receptor). It is likely that more iron-containing proteins have IREs and that other IRPs may exist. One obvious place to search is in Complex I of the mitochondrial respiratory chain, which contains at least 6 iron-sulfur (Fe-S) subunits. Interestingly, in idiopathic Parkinson's disease, iron homeostasis is altered, and Complex I activity is diminished. These findings led us to investigate whether iron status affects the Fe-S subunits of Complex I. We found that the protein levels of the 75-kDa subunit of Complex I were modulated by levels of iron in the cell, whereas mRNA levels were minimally changed. Isolation of a clone of the 75-kDa Fe-S subunit with a more complete 5'-untranslated region sequence revealed a novel IRE-like stem loop sequence. RNA-protein gel shift assays demonstrated that a specific cytoplasmic protein bound the novel IRE and that the binding of the protein was affected by iron status. Western blot analysis and supershift assays showed that this cytosolic protein is neither IRP1 nor IRP2. In addition, ferritin IRE was able to compete for binding with this putative IRP. These results suggest that the 75-kDa Fe-S subunit of mitochondrial Complex I may be regulated by a novel IRE-IRP system.  相似文献   

7.
8.
We reported that iron influx drives the translational expression of the neuronal amyloid precursor protein (APP), which has a role in iron efflux. This is via a classic release of repressor interaction of APP mRNA with iron-regulatory protein-1 (IRP1) whereas IRP2 controls the mRNAs encoding the L- and H-subunits of the iron storage protein, ferritin. Here, we identified thirteen potent APP translation blockers that acted selectively towards the uniquely configured iron-responsive element (IRE) RNA stem loop in the 5′ untranslated region (UTR) of APP mRNA. These agents were 10-fold less inhibitory of 5′UTR sequences of the related prion protein (PrP) mRNA. Western blotting confirmed that the ‘ninth’ small molecule in the series selectively reduced neural APP production in SH-SY5Y cells at picomolar concentrations without affecting viability or the expression of α-synuclein and ferritin. APP blocker-9 (JTR-009), a benzimidazole, reduced the production of toxic Aβ in SH-SY5Y neuronal cells to a greater extent than other well tolerated APP 5′UTR-directed translation blockers, including posiphen, that were shown to limit amyloid burden in mouse models of Alzheimer''s disease (AD). RNA binding assays demonstrated that JTR-009 operated by preventing IRP1 from binding to the IRE in APP mRNA, while maintaining IRP1 interaction with the H-ferritin IRE RNA stem loop. Thus, JTR-009 constitutively repressed translation driven by APP 5′UTR sequences. Calcein staining showed that JTR-009 did not indirectly change iron uptake in neuronal cells suggesting a direct interaction with the APP 5′UTR. These studies provide key data to develop small molecules that selectively reduce neural APP and Aβ production at 10-fold lower concentrations than related previously characterized translation blockers. Our data evidenced a novel therapeutic strategy of potential impact for people with trisomy of the APP gene on chromosome 21, which is a phenotype long associated with Down syndrome (DS) that can also cause familial Alzheimer''s disease.  相似文献   

9.
Within the 5'-untranslated region of ferritin mRNAs, there is a conserved region of 28 nucleotides (nt) (the iron regulatory element (IRE)) that binds a protein (the IRE-binding protein (IRE-BP)) involved in the iron regulation of ferritin mRNA translation. We have examined the role of RNA secondary structure on the interaction of the IRE with the IRE-BP. First, the rat light ferritin IRE possesses a structure similar to that of the bullfrog heavy ferritin IRE (Wang, Y.-H., Sczekan, S. R., and Theil, E. C. (1990) Nucleic Acids Res. 18, 4463-4468). This includes an extended stem, interrupted at various points by bulge nucleotides and a 6-nt single-stranded loop (CAGUGU) at its top. Computer predictions and mapping results suggest the presence of a 3-nt (UGC) bulge 5 bases 5' of the loop in the rat IRE. Second, disruption of the base pairing in the upper stem alters IRE secondary structure and reduces the affinity with which the IRE-BP binds the IRE. Third, increasing the size of the loop or the distance between the UGC bulge and the loop reduces the IRE/IRE-BP interaction. Our results indicate that several aspects of IRE secondary structure are important for its high affinity binding to the IRE-BP.  相似文献   

10.
11.
Iron regulatory protein (IRP) blocks ribosomal assembly by binding to an iron responsive element (IRE) located proximal (<60 nts) to the mRNA cap, thereby repressing translation. Constructs with IREs located 60–100 nts from the cap permit ribosomal assembly but the ribosomes pause at IRE/IRP complexes resulting in partial repression of translation. However, insect ferritin mRNAs have cap-distal IREs located 90–156 nts from the cap. Because iron can be toxic, it seems unlikely that insects would be unable to fully regulate ferritin synthesis at the level of translation. Calpodes ferritin consists of two subunits, S and G. In vitro translation of Calpodes ferritin and IRP1 from fat body mRNA yields only G subunits suggesting that IRP1 more efficiently represses translation of the S subunit than the G. When repression is removed by the addition of IRE competitor RNA, the synthesis of both subunits is greatly increased. S and G ferritin mRNAs have identical IREs in similar far cap-distal positions. While both ferritin mRNAs are predicted to have stem-loops between the IRE and the RNA cap, in general insect S mRNAs have more cap-proximal RNA structure than G mRNAs. Therefore, we examined the effect of upstream secondary structure on ribosomal assembly onto S ferritin mRNA constructs using sucrose gradient analysis of translation initiation complexes. We found no evidence for ribosomal assembly on wild type Calpodes S ferritin mRNA in the presence of IRP1 while constructs lacking the wild type secondary structure showed ribosomal pausing. Constructs with wild type secondary structure preceded by an unstructured upstream leader assemble ribosomes in the presence or absence of IRP1. Sequence and RNA folding analyses of other insect ferritins with cap-distal IREs failed to identify any common sequences or IRE-like structures that might bind to IRP1 with lower affinity or to another RNA binding protein. We propose that stem-loops upstream from the IRE act like pleats that shorten the effective distance between the IRE and cap and allow full translational repression by IRP1. In this way some cap-distal IREs may function like cap-proximal ones.  相似文献   

12.
13.
14.
The regulation of the synthesis of ferritin and erythroid 5-aminolevulinate synthase in mammalian cells is mediated by the interaction of the iron regulatory factor (IRF) with a specific recognition site, the iron responsive element (IRE), in the 5' untranslated regions (UTRs) of the respective mRNAs. A new modular expression system was designed to allow reconstruction of this regulatory system in Saccharomyces cerevisiae. This comprised two components: a constitutively expressed reporter gene (luc; encoding luciferase) preceded by a 5' UTR including an IRE sequence, and an inducibly expressed cDNA encoding human IRF. Induction of the latter led to the in vivo synthesis of IRF, which in turn showed IRE-binding activity and also repressed translation of the luc mRNA bearing an IRE-containing 5' UTR. The upper stem-loop region of an IRE, with no further IRE-specific flanking sequences, sufficed for recognition and repression by IRF. Translational regulation of IRE-bearing mRNAs could also be demonstrated in cell-free yeast extracts. This work defines a minimal system for IRF/IRE translational regulation in yeast that requires no additional mammalian-specific components, thus providing direct proof that IRF functions as a translational repressor in vivo. It should be a useful tool as the basis for more detailed studies of eukaryotic translational regulation.  相似文献   

15.
16.
17.
Ferritin mRNAs are the first eukaryotic mRNAs for which a conserved, translational regulatory sequence has been identified. The sequence of twenty-eight nucleotides, called the IRE (iron regulatory element), is found in the 5'-noncoding region and is required for enhanced translation of ferritin mRNA by excess cellular iron; regulation occurs at initiation. The prediction of secondary structure in the IRE is a hairpin loop. We now report an analysis of the IRE structure in solution studied in natural ferritin mRNAs [H and H'(M) subunits] by primer extension, after modification or cleavage by dimethyl sulfate, RNAases T1 and V1, and the chemical nuclease 1, 10-phenanthroline-copper (OPCu) which cleaves single-stranded and bulged regions of RNA. Overall, the structure in solution of the ferritin mRNA regulatory region is a hairpin loop, with magnesium-sensitive features, in which half the stem is provided by the IRE and half by flanking regions; only secondary structure is conserved in the flanking regions. Predicted bulges or internal loops along the stem were clearly detected by OPCu but were missed by the more bulky probe RNAase T1, indicating the efficacy of OPCu in probing subtle features of RNA structure. Magnesium-dependent deviations from the predicted structure were observed in the stem between the hairpin loop and the bulge at C6. The location of the IRE in relation to the initiator AUG or the cap is variable in different ferritin mRNAs. However, the number of nucleotides in the base-paired flanking regions of known ferritin mRNAs is proportional to the distance of the IRE from the cap and places the secondary/tertiary structure 8-10 nucleotides from the cap where interference with initiation is likely.  相似文献   

18.
19.
20.
N K Gray  M W Hentze 《The EMBO journal》1994,13(16):3882-3891
Translation of ferritin and erythroid 5-aminolevulinate synthase (eALAS) mRNAs is regulated by iron via mRNA-protein interactions between iron-responsive elements (IREs) and iron regulatory protein (IRP). In iron-depleted cells, IRP binds to single IREs located in the 5' untranslated regions of ferritin and eALAS mRNAs and represses translation initiation. The molecular mechanism underlying this translational repression was investigated using reconstituted, IRE-IRP-regulated, cell-free translation systems. The IRE-IRP interaction is shown to prevent the association of the 43S translation pre-initiation complex (including the small ribosomal subunit) with the mRNA. Studies with the spliceosomal protein U1A and mRNAs which harbour specific binding sites for this protein in place of an IRE furthermore reveal that the 5' termini of mRNAs are generally sensitive to repressor protein-mediated inhibition of 43S pre-initiation complex binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号