首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been all round investigation of UV-irradiation influence in a wide dose range on the structural and functional properties of human blood lactate dehydrogenase (LDH) isoenzymes. The photoprotective action of biogenous amines on the functional activity of different enzyme isoforms was found. It has been established that the protective action of biogenous amines is caused by the formation of complex LDH--biogenous amine and by the acception of the active oxygen forms by the molecules of lactate dehydrogenase. Under the conditions of exogenous singlet oxygen generation in the presence of methylene blue, the inactivation of immobilized LDH tetramers and subunits was observed, that shows participation of this active intermediate in the processes of UV-modification of the enzyme in soluble and immobilized states. The scheme of processes of LDH molecules phototransformations in the presence of biogenous amines has been suggested.  相似文献   

2.
Sugar alcohols find applications in pharmaceuticals, oral and personal care products, and as intermediates in chemical synthesis. While industrial-scale production of these compounds has generally involved catalytic hydrogenation of sugars, microbial-based processes receive increasing attention. The past few years have seen a variety of interesting metabolic engineering efforts to improve the capabilities of bacteria and yeasts to overproduce xylitol, mannitol, and sorbitol. Examples include heterologous expression of yeast xylose reductase in Escherichia coli for the production of xylitol, coexpression of formate dehydrogenase, mannitol dehydrogenase, and a glucose facilitator protein in Corynebacterium glutamicum for mannitol production from fructose and formate, and overexpression of sorbitol-6-phosphate dehydrogenase in lactate dehydrogenase-deficient Lactobacillus plantarum to achieve nearly maximum theoretical yields of sorbitol from glucose.  相似文献   

3.
The aim of this work was to estimate the dynamics of blood physical and chemical parameters when blood specimens were processed by singlet oxygen in vitro. Our experiments were executed with whole blood specimens of healthy people (n = 10). Each specimen was divided into five separate portions of 5 mL. The first portion was a control (without any exposures). The second one was processed by an oxygen-ozone mixture (at ozone concentration of 500 μg/L, the third portion by oxygen, and the fourth and fifth ones were processed by a gas mixture with singlet oxygen (50 and 100% of generator power). In blood samples after processing we studied the activity of lactate dehydrogenase, aldehyde dehydrogenase and superoxide dismutase, erythrocyte and plasma levels of glucose and lactate, acid-base balance and the partial pressure of gases in blood. It was found out, that blood processing by singlet oxygen leads to optimization of energy, detoxication and antioxidant enzymes functioning with changes in plasma and erythrocyte level of glucose and lactate, normalization of blood gases level and acid-base balance. Our results show, that the effect of singlet oxygen on enzyme activity is more pronounced than exposure to an oxygen-ozone gas mixture.  相似文献   

4.
Growth of Mycobacterium phlei under low oxygen tension resulted in specific activities two to twenty times lower for formate dehydrogenase, malate dehydrogenase, beta-hydroxybutyrate dehydrogenase, lactate oxidase and NADH dehydrogenase than when cultures were grown under high aeration. An increase in fumarate reductase and succinate dehydrogenase occurred with M. phlei grown under low oxygen tension. Malate: vitamin K dehydrogenase and glucose-6-phosphate dehydrogenase activity were not significantly affected by the oxygen tension used to grow the bacteria, and neither culture contained a lactate dehydrogenase. With growth of M. phlei in conditions of low oxygen tension, cytochrome a was not detected, but cytochrome b was prominent in membranes and cytochrome c was present in the soluble fraction.  相似文献   

5.
Catalytic and some physicochemical properties of lactate dehydrogenase have been studied as affected by UV-irradiation. The degree of lactate dehydrogenase inactivation has been determined both at UV-irradiation of a free enzyme and of the enzyme in complex with NADH. It is shown that at pH 7.4 NADH makes a photosensitizing effect on the enzyme. Based on the analysis of changes in the absorption spectrum and molecular weight of lactate dehydrogenase caused by UV-irradiation it is supposed that this irradiation induces the process of unrolling-rolling up of the protein globule.  相似文献   

6.
The temperature stability of the cytoplasmic enzyme of the glycolysis of lactate dehydrogenase from a pig muscle (isoenzyme M4) in a complex with the anion polyelectrolyte poly(styrenesulfonate) has been investigated by the methods of adiabatic differential scanning microcalorimetry, the own protein fluorescence, and circular dichroism. Calorimetric investigations of complex of lactate dehydrogenase with poly(styrenesulphonate) in 50 mM phosphate buffer at pH 7.0 have shown that the temperature of the transition and enthalpy of lactate dehydrogenase thermal denaturation sharply decreases with growing weight ratio poly(styrenesulphonate)/lactate dehydrogenase, though at 20 degrees C the enzyme activity of lactate dehydrogenase remains unchanged for several hours irrespective of the addition of poly(styrenesulphonate). The addition of phosphate ions to the solution enhances the resistance of lactate dehydrogenase to both thermal denaturation and inactivation by polyelectrolyte. The data obtained are interpreted from the viewpoint of a special role of two anion-binding centers in intersubunits contacts of lactate dehydrogenase, which enhance its resistance to both thermal denaturation and destruction by polyelectrolyte.  相似文献   

7.
Cardiovascular tissue injury in ischemia/reperfusion has been shown to be prevented by angiotensin-converting enzyme (ACE) inhibitors. However, the mechanism on endothelial cells has not been assessed in detail. Cultured human aortic endothelial cells (HAEC) were exposed to hypoxia with or without reoxygenation. Hypoxia enhanced apoptosis along with the activation of caspase-3. Reoxygenation increased lactate dehydrogenase release time-dependently, along with an increase of intracellular oxygen radicals. ACE inhibitor quinaprilat and bradykinin significantly lessened apoptosis and lactate dehydrogenase release with these effects being diminished by a kinin B2 receptor antagonist and a nitric oxide synthase inhibitor. In conclusion, hypoxia activated the suicide pathway leading to apoptosis of HAEC by enhancing caspase-3 activity, while subsequent reoxygenation induced necrosis by enhancing oxygen radical production. Quinaprilat could ameliorate both apoptosis and necrosis through the upregulation of constitutive endothelial nitric oxide synthase via an increase of bradykinin, with the resulting increase of nitric oxide.  相似文献   

8.
The temperature stability of the cytoplasmic enzyme of glycolysis, lactate dehydrogenase from pig muscle (isoenzyme M4) in complex with anionic polyelectrolyte poly(styrenesulfonate) has been investigated by the methods of adiabatic differential scanning microcalorimetry, own protein fluorescence, and circular dichroism. Calorimetric investigations of the complex of lactate dehydrogenase with poly(styrenesulfonate) in 50 mM phosphate buffer at pH 7.0 have shown that the temperature of the transition and enthalpy of lactate dehydrogenase thermal denaturation sharply decreases with growing weight ratio poly(styrenesulfonate)/lactate dehydrogenase, though at 20°C the enzyme activity of lactate dehydrogenase remains unchanged for several hours irrespective of the addition of poly(styrenesulfonate). The addition of phosphate ions to the solution enhances the resistance of lactate dehydrogenase to both thermal denaturation and inactivation by polyelectrolyte. The data obtained are interpreted from the viewpoint of a special role of two anion-binding centers in intersubunits contacts of lactate dehydrogenase, which enhance its resistance to both thermal denaturation and destruction by polyelectrolyte.  相似文献   

9.
The structures of NADP+ and magnesium isocitrate bound to the NADP(+)-dependent isocitrate dehydrogenase of Escherichia coli have been determined and refined at 2.5-A resolution. NADP+ is bound by the large domain of isocitrate dehydrogenase, a structure that has little similarity to the supersecondary structure of the nucleotide-binding domain of the lactate dehydrogenase-like family of nucleotide-binding proteins. The coenzyme-binding site confirms the fundamentally different evolution of the isocitrate dehydrogenase-like and the lactate dehydrogenase-like classes of nucleotide-binding proteins. In the magnesium-isocitrate complex, magnesium is coordinated to the alpha-carboxylate and alpha-hydroxyl oxygen of isocitrate in a manner suitable for stabilization of a negative charge on the hydroxyl oxygen during both the dehydrogenation and decarboxylation steps of the conversion of isocitrate to alpha-ketoglutarate. The metal ion is also coordinated by aspartate side chains 283' (of the second subunit of the dimer) and 307 and two water molecules in a roughly octahedral arrangement. On the basis of the geometry of the active site, the base functioning in the dehydrogenation step is most likely aspartate 283'. E. coli isocitrate dehydrogenase transfers a hydride stereospecifically to the A-side of NADP+, and models for a reactive ternary complex consistent with this stereospecificity are discussed.  相似文献   

10.
In this study, lactate dehydrogenase gene from Plasmodium vivax has been tried to subclone into an expression vector. Some of the Plasmodium falciparum lactate dehydrogenase mutant genes have also been tried to clone and subclone into a vector, but we failed to clone or subclone either of the genes. DNA visualisation in electrophoretic gels typically requires UV radiation and the fluorecent dye ethidium bromide. A crystal violet-stained gel was run instead of an ethidium bromide gel and so avoided the use of UV radiation. This enabled us to clone or subclone both Plasmodium vivax lactate dehydrogenase gene and Plasmodium falciparum lactate dehydrogenase mutant genes into any desired vector.  相似文献   

11.
12.
We measured 14 rowers and divided them into two groups according to age and years of training. Our goal has been to establish the influence of several years of programmed training on the structure of the body, oxygen carrying capacity and oxidation capacity of muscle cells, the chemical composition of blood and characteristics of pulse and lactate curves in rowers. As to the structure of the body, the two groups did not differ if we equalised them according to body height. Differences existed in the determinants of oxygen carrying capacity and oxidation capacity of muscle cells. Older rowers had lower pulse at rest, higher step test index, lower pulse immediately after the step test and in the last minute of the test on a bicycle ergometer and higher maximal oxygen pulse. While at rest, no significant differences between the groups were observed in most of the analysed substances in the blood serum. With the increase of age and training period an increase of the concentration of creatinin and activity of creatine kinase and lessening of the activity of alkaline phosphatase was noted. Length of training period lowers the levels of cholesterol and free fatty acids and increases the level of triglycerides in blood serum. An increase of the activity of creatine kinase and lactate dehydrogenase and the formation of a specific pattern of isoenzymes was observed. The pulse and lactate curve flattened and moved to the right.  相似文献   

13.
The physiology of lactate production by Lactobacillus delbreuckii NRRL B-445 in a continuous fermenter with partial cell recycle has been studied and compared with that observed in a conventional chemostat. Partial cell recycle was achieved using a hollow-fiber ultrafiltration cartridge. The biomass growth yield was reduced in the recycle fermenter while culture viability and the cellular content of polysaccharide, protein, carbon, and nitrogen remained constant, suggesting an enlarged specific rate of glucose consumption for nonanabolic (e.g., maintenance) functions. The volumetric productivity of lactate was enhanced in the recycle fermenter due to the complete utilization of glucose. The yield of lactate from biomass and the molar product ratio, lactate: ethanol plus acetate, decreased with increasing recycle ratio. Enhanced formation of ethanol and acetate occurred in the recycle fermenter although lactate remained the major product. The change in product profile was due to glucose limitation. The specific activity of lactate dehydrogenase remained constant during recycle fermentation. These physiological observations have implications for the future application of cell recycle to production processes.  相似文献   

14.
The mechanism of cryoprotection of proteins by solutes   总被引:27,自引:1,他引:26  
We have tested the capacity of 28 different compounds to protect lactate dehydrogenase from damage during freeze-thawing. These solutes come from very dissimilar chemical classes including sugars, polyols, amino acids, methylamines, and lyotropic salts. All the compounds tested, except NaCl, protected the enzyme, to varying degrees, from inactivation. The only characteristic that these compounds have in common, as a group, is that they have all been shown to be preferentially excluded from contact with the surface of proteins in aqueous solution. It has been demonstrated previously (via thermodynamic arguments) that this interaction of solutes with proteins leads to the stabilization of proteins in nonfrozen, aqueous systems. Conversely, those solutes, e.g., urea and guanidine HCl, that bind to proteins destabilize proteins in solution, and we have found that they also enhanced the inactivation of lactate dehydrogenase during freeze-thawing. Based on the results of our freeze-thawing experiments and a review of the theory of protein stabilization in nonfrozen, aqueous solution we propose that the cryoprotection afforded to isolated proteins by solutes can be accounted for by the fact that these solutes are preferentially excluded from contact with the protein's surface.  相似文献   

15.
The binding of pig skeletal muscle lactate dehydrogenase by F-actin has been studied using the sedimentation method in 10 mM Tris-acetate buffer, pH 6.0 at 20 degrees C. Adsorption capacity of F-actin is equal to (1 +/- 0.1) . 10(-5) moles of lactate dehydrogenase per 1 g of actin. NADH decreases the affinity of F-actin with respect to lactate dehydrogenase. The binding of lactate dehydrogenase by F-actin in diminishing the rate of enzymatic reduction of alpha-ketoglutarate. The microscopic dissociation constant for the complex of the enzyme with F-actin which is estimated from the dependence of the enzymatic reaction rate of F-actin concentration at saturating NADH concentrations is equal (3.0 +2- 0.5) . 10(-7) M. It has been shown that the bound enzyme is characterized by the greater value of Km and the lower value of Vmax in comparison to the free enzyme.  相似文献   

16.
Some lactate dehydrogenase modulator proteins have been isolated from the lactate dehydrogenase-free crude mitochondrial fraction of rabbit muscle, beef liver and chicken liver. It was shown that beef and chicken liver mitochondrial extracts exhibited activatory capacity in contrast to the inhibitory capacity of rabbit muscle mitochondrial extracts. All modulators can be precipitated by 80% ammonium sulphate saturation and show high anodic electrophoretic mobility and heat stability. Modulators have higher affinity for alkaline pI lactate dehydrogenase isoenzymes, independent of whether the M and H subunits are predominant. The inhibitor and the activator molecules compete for lactate dehydrogenase since their modulatory capacity was nullified when similar relative amounts were used. This study shows the existence of analogous proteins with an acidic pI in the different mitochondrial fractions which modify lactate dehydrogenase activity.  相似文献   

17.
Alkylation at N-1 of the NAD+ adenine ring with 3,4-epoxybutanoic acid, followed by chemical reduction to the alkali-stable NADH form and alkaline Dimroth rearrangement, gave the NADH derivative alkylated at the exocyclic adenine amino group. Enzymic reoxidation of the latter derivative gave nicotinamide-6-(2-hydroxy-3-carboxypropylamino)purine dinucleotide, a functionalized NAD+ analogue carrying an omega-carboxyalkyl side-chain at the exocyclic adenine amino group. Carbodiimide coupling of the latter derivative to high-molecular-weight water-soluble (polyethyleneimine, polylysine) and insoluble (aminohexyl-Sepharose) polymers gave the corresponding macromolecularized NAD+ analogues. These derivatives have been shown to be enzymically reducible. The polyethyleneimine and polylysine analogues showed a substantial degree of efficiency relative to free NAD+ with rabbit muscle lactate dehydrogenase (60 and 25% respectively) but a lower one with yeast alcohol dehydrogenase and Bacillus subtilis alanine dehydrogenase (2-7%). The polyethyleneimine derivative entrapped in cellulose triacetate fibres together with the lactate dehydrogenase was operationally stable during repetitive use.  相似文献   

18.
G R Anderson  B K Farkas 《Biochemistry》1988,27(6):2187-2193
Anoxic stress is a common physiological stress, but one with unusual and significant consequences. Anoxic stress results in efficient induction of gene amplification and also plays a controlling role in the production of angiogenesis factor by macrophages. Within tumor masses, cancer cells continue to proliferate under oxygen tensions substantially lower than seen in normal tissues. The molecular basis of the anoxic stress response has not been well characterized. The major anoxic stress protein in subconfluent cell cultures is a 34-kilodalton polypeptide which has been variously reported to be either a new isozyme of lactate dehydrogenase (LDH) or the conventional muscle-type lactate dehydrogenase. This protein is of particular interest since it is also found expressed at high levels in many human cancers and has been demonstrated to be an effective serum cancer marker. We have developed an affinity chromatography procedure for purification of the anoxic stress protein p34 which effectively separates this protein from LDH-5 as well as other standard LDH isozymes. Anoxic stress protein p34 was found to specifically interact with flavins and the cellular alarmone guanosine(5')tetraphospho(5')guanosine, and also to interact with certain nucleic acids. The properties of this protein suggest that its overall role in the anoxic stress response may be in the coordination of a number of cellular systems.  相似文献   

19.
ABSTRACT: BACKGROUND: The integration of biotechnology into chemical manufacturing has been recognized as a key technology to build a sustainable society. However, the practical applications of biocatalytic chemical conversions are often restricted due to their complexities involving the unpredictability of product yield and the troublesome controls in fermentation processes. One of the possible strategies to overcome these limitations is to eliminate the use of living microorganisms and to use only enzymes involved in the metabolic pathway. Use of recombinant mesophiles producing thermophilic enzymes at high temperature results in denaturation of indigenous proteins and elimination of undesired side reactions; consequently, highly selective and stable biocatalytic modules can be readily prepared. By rationally combining those modules together, artificial synthetic pathways specialized for chemical manufacturing could be designed and constructed. RESULTS: A chimeric Embden-Meyerhof (EM) pathway with balanced consumption and regeneration of ATP and ADP was constructed by using nine recombinant E. coli strains overproducing either one of the seven glycolytic enzymes of Thermus thermophilus, the cofactor-independent phosphoglycerate mutase of Pyrococcus horikoshii, or the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase of Thermococcus kodakarensis. By coupling this pathway with the Thermus malate/lactate dehydrogenase, a stoichiometric amount of lactate was produced from glucose with an overall ATP turnover number of 31. CONCLUSIONS: In this study, a novel and simple technology for flexible design of a bespoke metabolic pathway was developed. The concept has been testified via a non-ATP-forming chimeric EM pathway. We designated this technology as "synthetic metabolic engineering". Our technology is, in principle, applicable to all thermophilic enzymes as long as they can be functionally expressed in the host, and thus would be potentially applicable to the biocatalytic manufacture of any chemicals or materials on demand.  相似文献   

20.
Encapsulation devices are often hindered by the inability to achieve sufficient oxygen levels for sustaining long-term cell survival both in vivo and in vitro. We have investigated the use of synthetic oxygen carriers in alginate gels to improve metabolic activity and viability of HepG2 cells over time. Perfluorocarbons (PFCs), specifically perfluorotributylamine (PFTBA) and perfluorooctylbromide (PFOB), were emulsified with alginate and used to encapsulate HepG2 cells in a spherical geometry. Cellular state was assessed using the MTT assay and Live/Dead stain as well as through analysis of both lactate and lactate dehydrogenase (LDH) levels which are indirect indicators of oxygen availability. Addition of 1% surfactant resulted in stable emulsions with evenly dispersed PFC droplets of the order of 1-2 microm in diameter, with no influence on cell viability. Both PFCs evaluated were effective in increasing cellular metabolic activity over alginate-only gels. The presence of 10% PFOB significantly increased cellular growth rate by 10% and reduced both intracellular LDH and extracellular lactate levels by 20-40%, improving glucose utilization efficiency. The characteristic drop in cellular metabolic activity upon encapsulation was eliminated with addition of 10% PFC and viability was better maintained throughout the bead, with a significant decrease in necrotic core size. Results were consistent under a physiologically relevant 5% oxygen environment. The incorporation of PFC synthetic oxygen carriers into encapsulation matrices has been successfully applied to improve cell function and viability with implication for a variety of tissue engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号