首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In testing the hypothesis that interleukin-4 receptor alpha-subunit (IL-4R alpha)-coupled signaling mediates altered airway smooth muscle (ASM) responsiveness in the atopic sensitized state, isolated rabbit tracheal ASM segments were passively sensitized with immunoglobulin E (IgE) immune complexes, both in the absence and presence of an IL-4R alpha blocking antibody (anti-IL-4R alpha Ab). Relative to control ASM, IgE-sensitized tissues exhibited enhanced isometric constrictor responses to administered ACh and attenuated relaxation responses to isoproterenol. These proasthmatic-like effects were prevented in IgE-sensitized ASM that were pretreated with anti-IL-4R alpha Ab. In complementary experiments, IgE-sensitized cultured human ASM cells exhibited upregulated expression of IL-13 mRNA and protein, whereas IL-4 expression was undetected. Moreover, extended studies demonstrated that 1) exogenous IL-13 administration to na?ve ASM elicited augmented contractility to ACh and impaired relaxation to isoproterenol, 2) these effects of IL-13 were prevented by pretreating the tissues with an IL-5 receptor blocking antibody, and 3) IL-13 administration induced upregulated mRNA expression and release of IL-5 protein from cultured ASM cells. Collectively, these findings provide new evidence demonstrating that the altered responsiveness of IgE-sensitized ASM is largely attributed to activation of an intrinsic Th2-type autocrine mechanism involving IL-13/IL-4R alpha-coupled release and action of IL-5 in the sensitized ASM itself.  相似文献   

2.
Cell adhesion molecules (CAMs) have been importantly implicated in the pathobiology of the airway responses in allergic asthma, including inflammatory cell recruitment into the lungs and altered bronchial responsiveness. To elucidate the mechanism of CAM-related mediation of altered airway responsiveness in the atopic asthmatic state, the expressions and actions of intercellular adhesion molecule-1 (ICAM-1) and its counterreceptor ligand lymphocyte function-associated antigen-1 (LFA-1; i.e., CD11a/CD18) were examined in isolated rabbit airway smooth muscle (ASM) tissues and cultured human ASM cells passively sensitized with sera from atopic asthmatic patients or nonatopic nonasthmatic (control) subjects. Relative to control tissues, the atopic asthmatic sensitized ASM exhibited significantly enhanced maximal contractility to acetylcholine and attenuated relaxation responses to isoproterenol. These proasthmatic changes in agonist responsiveness were ablated by pretreating the atopic sensitized tissues with a monoclonal blocking antibody (MAb) to either ICAM-1 or CD11a, whereas a MAb directed against the related beta(2)-integrin Mac-1 had no effect. Moreover, relative to control tissues, atopic asthmatic sensitized ASM cells displayed an autologously upregulated mRNA and cell surface expression of ICAM-1, whereas constitutive expression of CD11a was unaltered. Extended studies further demonstrated that 1) the enhanced expression and release of soluble ICAM-1 by atopic sensitized ASM cells was prevented when cells were pretreated with an interleukin (IL)-5-receptor-alpha blocking antibody and 2) administration of exogenous IL-5 to naive (nonsensitized) ASM cells induced a pronounced soluble ICAM-1 release from the cells. Collectively, these observations provide new evidence demonstrating that activation of the CAM counterreceptor ligands ICAM-1 and LFA-1, both of which are endogenously expressed in ASM cells, elicits autologously upregulated IL-5 release and associated changes in ICAM-1 expression and agonist responsiveness in atopic asthmatic sensitized ASM.  相似文献   

3.
The airway responses to allergen exposure in allergic asthma are qualitatively similar to those elicited by specific viral respiratory pathogens, most notably rhinovirus (RV), suggesting that the altered airway responsiveness seen in allergic asthma and that elicited by viral respiratory tract infection may share a common underlying mechanism. To the extent that T helper cell type 2 (Th2) cytokines have been implicated in the pathogenesis of allergic asthma, this study examined the potential role(s) of Th2-type cytokines in mediating pro-asthmatic-like changes in airway smooth muscle (ASM) responsiveness after inoculation of naive ASM with human RV. Isolated rabbit ASM tissues and cultured human ASM cells were exposed to RV (serotype 16) for 24 h in the absence and presence of monoclonal blocking antibodies (MAbs) or antagonists directed against either the Th2-type cytokines interleukin (IL)-4 and IL-5, intercellular adhesion molecule (ICAM)-1 (the endogenous host receptor for most RVs), or the pleiotropic proinflammatory cytokine IL-1beta. Relative to control (vehicle-treated) tissues, RV-exposed ASM exhibited significantly enhanced isometric contractility to acetylcholine and impaired relaxation to isoproterenol. These pro-asthmatic-like changes in ASM responsiveness were ablated by pretreating the RV-exposed tissues with either IL-5-receptor-alpha blocking antibody or human recombinant IL-1-receptor antagonist, whereas IL-4 neutralizing antibody had no effect. Extended studies further demonstrated that inoculation of ASM cells with RV elicited 1) an increased mRNA expression and release of IL-5 protein, which was inhibited in the presence of anti-ICAM-1 MAb, and 2) an enhanced release of IL-1beta protein, which was inhibited in the presence of IL-5 receptor-alpha antibody. Collectively, these observations provide new evidence demonstrating that RV-induced changes in ASM responsiveness are largely attributed to ICAM-1-dependent activation of a cooperative autocrine signaling mechanism involving upregulated IL-5-mediated release of IL-1beta by the RV-exposed ASM itself.  相似文献   

4.
Chronic airway inflammation is one of the main features of asthma. Release of mediators from infiltrating inflammatory cells in the airway mucosa has been proposed to contribute directly or indirectly to changes in airway structure and function. The airway smooth muscle, which has been regarded as a contractile component of the airways responding to various mediators and neurotransmitters, has recently been recognised as a rich source of pro-inflammatory cytokines, chemokines and growth factors. In this review, we discuss the role of airway smooth muscle cells in the regulation and perpetuation of airway inflammation that contribute to the pathogenesis of asthma.  相似文献   

5.
Chronic airway inflammation is one of the main features of asthma. Release of mediators from infiltrating inflammatory cells in the airway mucosa has been proposed to contribute directly or indirectly to changes in airway structure and function. The airway smooth muscle, which has been regarded as a contractile component of the airways responding to various mediators and neurotransmitters, has recently been recognised as a rich source of pro-inflammatory cytokines, chemokines and growth factors. In this review, we discuss the role of airway smooth muscle cells in the regulation and perpetuation of airway inflammation that contribute to the pathogenesis of asthma.  相似文献   

6.
Smooth muscle relaxation has most often been studied in isometric mode. However, this only tells us about the stiffness properties of the bronchial wall and thus only about wall capacitative properties. It tells us little about airflow. To study the latter, which of course is the meaningful parameter in regulation of ventilation and in asthma, we studied isotonic shortening of bronchial smooth muscle (BSM) strips. Failure of BSM to relax could be another important factor in maintaining high airway resistance. To analyze relaxation curves, we developed an index of isotonic relaxation, t1/2(P, lCE), which is the half-time for relaxation that is independent of muscle load (P) and of initial contractile element length (lCE). This index was measured in curves of relaxation initiated at 2 s (normally cycling crossbridges) and at 10 s (latch-bridges). At 10 s no difference was seen for adjusted t1/2(P, lCE) between curves obtained from control and sensitized BSM, (8.38 +/- 0.92 s vs. 7.78 +/- 0.93 s, respectively). At 2 s the half-time was almost doubled in the sensitized BSM (6.98 +/- 0.01 s (control) vs. 12.74 +/- 2.5 s (sensitized)). Thus, changes in isotonic relaxation are only seen during early contraction. Using zero load clamps, we monitored the time course of velocity during relaxation and noted that it varied according to 3 phases. The first phase (phase i) immediately followed cessation of electrical field stimulation (EFS) at 10 s and showed almost the same velocity as during the latter 1/3 of shortening; the second phase (phase ii) was linear in shape and is associated with zero load velocity, we speculate it could stem from elastic recoil of the cells' internal resistor; and the third phase (phase iii) was convex downwards. The zero load velocities in phase iii showed a surprising spontaneous increase suggesting reactivation of the muscle. Measurements of intracellular calcium (Fura-2 study) and of phosphorylation of the 20 kDa myosin light chain showed simultaneous increments, indicating phase iii represented an active process. Studies are under way to determine what changes occur in these 3 phases in a sensitized muscle. And of course, in the context of this conference, just what role the plastic properties of the muscle play in relaxation requires serious consideration.  相似文献   

7.
8.
The molecular mechanisms by which bradykinin induces excessive airway obstruction in asthmatics remain unknown. Transforming growth factor (TGF)-beta has been involved in regulating airway inflammation and remodeling in asthma, although it is unknown whether TGF-beta can modulate bradykinin-associated bronchial hyperresponsiveness. To test whether TGF-beta directly modulates airway smooth muscle (ASM) responsiveness to bradykinin, isolated murine tracheal rings were used to assess whether TGF-beta alters ASM contractile responsiveness to bradykinin. Interestingly, we found TGF-beta-treated murine rings (12.5 ng/ml, 18 h) exhibited increased expression of bradykinin 2 (B(2)) receptors and became hyperreactive to bradykinin, as shown by increases in maximal contractile responses and receptor distribution. We investigated the effect of TGF-beta on bradykinin-evoked calcium signals since calcium is a key molecule regulating ASM excitation-contraction coupling. We reported that TGF-beta, in a dose- (0.5-10 ng/ml) and time- (2-24 h) dependent manner, increased mRNA and protein expression of the B(2) receptor in cultured human ASM cells. Maximal B(2) receptor protein expression that colocalized with CD44, a marker of membrane cell surface, occurred after 18 h of TGF-beta treatment and was further confirmed using fluorescence microscopy. TGF-beta (2.5 ng/ml, 18 h) also increased bradykinin-induced intracellular calcium mobilization in fura-2-loaded ASM cells. TGF-beta-mediated enhancement of calcium mobilization was not attenuated with indomethacin, a cyclooxygenase inhibitor. These data demonstrate for the first time that TGF-beta may play a role in mediating airway hyperresponsiveness to bradykinin seen in asthmatics by enhancing ASM contractile responsiveness to bradykinin, possibly as a result of increased B(2) receptor expression and signaling.  相似文献   

9.
Because both T lymphocyte and airway smooth muscle (ASM) cell activation are events fundamentally implicated in the pathobiology of asthma, this study tested the hypothesis that cooperative intercellular signaling between activated T cells and ASM cells mediates proasthmatic changes in ASM responsiveness. Contrasting the lack of effect of resting human T cells, anti-CD3-activated T cells were found to adhere to the surface of naive human ASM cells, increase ASM CD25 cell surface expression, and induce increased constrictor responsiveness to acetylcholine and impaired relaxation responsiveness to isoproterenol in isolated rabbit ASM tissues. Comparably, exposure of resting T cells to ASM cells prestimulated with IgE immune complexes reciprocally elicited T cell adhesion to ASM cells and up-regulated T cell expression of CD25. Extended studies demonstrated that: 1) ASM cells express mRNAs and proteins for the cell adhesion molecules (CAMs)/costimulatory molecules, CD40, CD40L, CD80, CD86, ICAM-1 (CD54), and LFA-1 (CD11a/CD18); 2) apart from LFA-1, ASM cell surface expression of the latter molecules is up-regulated in the presence of activated T cells; and 3) pretreatment of ASM cells and tissues with mAbs directed either against CD11a or the combination of CD40 and CD86 completely abrogated both the activated T cell-induced changes in expression of the above CAMs/costimulatory molecules in ASM cells and altered ASM tissue responsiveness. Collectively, these observations identify the presence of bi-directional cross-talk between activated T cells and ASM cells that involves coligation of specific CAMs/costimulatory molecules, and this cooperative intercellular signaling mediates the induction of proasthmatic-like changes in ASM responsiveness.  相似文献   

10.
Transforming growth factor (TGF)-beta1 has been implicated in vascular healing responses after mechanical injury. Using cultured rat aortic smooth muscle cells (RASMC), we examined the hypothesis that production and secretion of thrombospondin (TSP) contributes to TGF-beta1-induced proliferation. We found that TGF-beta1 enhanced production and secretion of TSP, with peak levels of secreted TSP observed 24 h after treatment. RASMC treated with TGF-beta1 secreted a mitogenic activity that was transferable in conditioned media and partially inhibited by C6.7, a monoclonal anti-TSP antibody. Exogenous TSP stimulated a proliferative response, with maximal [(3)H]thymidine incorporation occurring 24 h earlier than maximal [(3)H]thymidine incorporation in response to TGF-beta1-treatment. Pretreatment with C6.7 or polyclonal anti-TSP neutralizing antibodies inhibited TGF-beta1-induced proliferation of RASMC. Proliferative responses to TGF-beta1 were also inhibited by pretreatment with an anti-beta(3) integrin monoclonal blocking antibody (F11), RGD peptides, and the anti-alpha(v)beta(3) disintegrin echistatin. Treatment with TSP and TGF-beta1 increased c-Jun NH(2)-terminal kinase (JNK)1 activity, with peak effects observed at 15 min and 4 h, respectively. Treatment with C6.7 or F11 inhibited TGF-beta-induced activation of JNK1. In summary, these studies support the hypothesis that TGF-beta-induced JNK1 activation and proliferation of RASMC require secretion of TSP and ligation of alpha(v)beta(3)-integrins.  相似文献   

11.
IL-12 is a central cytokine in the activation of inflammation and immunity and in the generation of Th1-type responses. Tumor-associated macrophages (TAM) from mouse and human tumors showed defective production of IL-12. Defective IL-12 production was associated with lack of p50/p65 NF-kappa B activation. TAM produced increased amounts of the immunosuppressive cytokine IL-10. Abs against IL-10 restored the defective capacity of TAM to produce IL-12. Our data suggest that during tumor growth an IL-10-dependent pathway of diversion of macrophage function can be activated into the tumor microenvironment and results in the promotion of the IL-10+ IL-12- phenotype of TAM. Blocking IL-10, as well as other immunosuppressive cytokines present in the tumor microenvironment, such as TGF-beta, may complement therapeutic strategies aimed at activating type I antitumor immune responses.  相似文献   

12.
Contractile agonists may stimulate mitogenic responses in airway smooth muscle by mechanisms that involve tyrosine kinases. The role of contractile agonist-evoked activation of tyrosine kinases in contractile signaling is not clear. We addressed this issue using cultured rat airway smooth muscle cells. In these cells, serotonin (5-HT, 1 microM) caused contraction (quantitated by a decrease in cell area), which was blocked by the tyrosine kinase inhibitor genistein (40 microM). Genistein and tyrphostin 23 (40 and 10 microM, respectively) significantly decreased 5-HT-evoked peak Ca(2+) responses, and the effect of genistein could be observed in the absence of extracellular Ca(2+). The specific inhibitor of mitogen-activated protein kinase kinase PD-98059 (30 microM) had no significant effect on peak Ca(2+) levels. Western analysis of cell extracts revealed that 5-HT caused a significant increase in tyrosine phosphorylation of proteins with molecular masses of approximately 70 kDa within 10 s of stimulation but no measurable tyrosine phosphorylation of the gamma isoform of phospholipase C (PLC-gamma). Tyrosine phosphorylation was inhibited by genistein. Furthermore, genistein (40 microM) significantly attenuated 5-HT-induced inositol phosphate production. We conclude that in airway smooth muscle contractile agonists acting on G protein-coupled receptors may activate tyrosine kinase(s), which in turn modulate calcium signaling by affecting, directly or indirectly, PLC-beta activity. It is unlikely that PLC-gamma or the mitogen-activated protein kinase pathway is involved in Ca(2+) signaling to 5-HT.  相似文献   

13.
14.
Chronic obstructive pulmonary disease (COPD) is an inflammatory disease, characterized by a progressive decline in lung function. Airway smooth muscle (ASM) mass may be increased in COPD, contributing to airflow limitation and proinflammatory cytokine production. Cigarette smoke (CS), the major risk factor of COPD, causes ASM cell proliferation, as well as interleukin-8 (IL-8)-induced neutrophilia. In various cell types, transforming growth factor-β-activated kinase 1 (TAK1) plays a crucial role in MAP kinase and NF-κB activation, as well as IL-8 release induced by IL-1β, TNF-α, and lipopolysaccharide. The role of TAK1 in CS-induced IL-8 release is not known. The aim of this study was to investigate the role of TAK1 in CS-induced NF-κB and MAP kinase signaling and IL-8 release by human ASM cells. Stimulation of these cells with CS extract (CSE) increased IL-8 release and ERK-1/2 phosphorylation, as well as Iκ-Bα degradation and p65 NF-κB subunit phosphorylation. CSE-induced ERK-1/2 phosphorylation and Iκ-Bα degradation were both inhibited by pretreatment with the specific TAK1 inhibitor LL-Z-1640-2 (5Z-7-oxozeaenol; 100 nM). Similarly, expression of dominant-negative TAK1 inhibited CSE-induced ERK-1/2 phosphorylation. In addition, inhibitors of TAK1 and the NF-κB (SC-514; 50 μM) and ERK-1/2 (U-0126; 3 μM) signaling inhibited the CSE-induced IL-8 release by ASM cells. These data indicate that TAK1 plays a major role in CSE-induced ERK-1/2 and NF-κB signaling and in IL-8 release by human ASM cells. Furthermore, they identify TAK1 as a novel target for the inhibition of CS-induced inflammatory responses involved in the development and progression of COPD.  相似文献   

15.
16.
The hypothesis was tested that endogenous leukotriene (LT) production in the lung causes desensitisation of airway smooth muscle to LT. The synthesis of LTB4, C4, D4 and E4 by human lung tissue, obtained at thoracotomies, after stimulation with Ca-ionophore was assessed by HPLC. Functional studies of small airway smooth muscle from the same tissue specimens were carried out using LTC4 and methacholine as the contracting agents. Generation of LTB4, C4, D4 and E4 was 453 +/- 82, 84 +/- 15, 71 +/- 27 and 40 +/- 16 pmol/g fresh tissue respectively (mean +/- S.E.M., n = 10). All airway smooth muscle preparations responded to LTC4 in a concentration dependent way with a -log EC20 of 8.56 +/- 0.13, a -log EC50 of 7.95 +/- 0.08 and a Tmax of 82 +/- 11 mg force/mg tissue weight, corresponding to 79 +/- 4% of the maximal response to methacholine (mean +/- S.E.M.; 27 preparations from 10 patients). No correlations were found between any of the functional parameters (-logEC20, -logEC50, Tmax to LTC4 and methacholine) and the amounts of LT's generated by the lung tissue. Furthermore airway smooth muscle contractility was not significantly reduced after repeated exposure of bronchiolar strips to LTC4 in vitro. These findings suggest that the responsiveness of human peripheral airway smooth muscle to LT is not related to the capacity of the lung tissue to synthetize LT.  相似文献   

17.
Vascular smooth muscle cell (SMC) apoptosis contributes to physiological and pathological vascular remodeling. Autocrine fibroblast growth factor (FGF) signaling promotes survival in SMC in vitro. Interruption of autocrine FGF signaling results in apoptosis that can be rescued by other growth factors such as PDGF (platelet-derived growth factor) or EGF (epidermal growth factor). Such heterologous growth factor rescue is prevented by pharmacological inhibition of MAPK, implicating signaling through Ras in mediating survival. This study was designed to test the hypothesis that signaling through Ras is both necessary and sufficient to mediate SMC survival in vitro. Recombinant adenoviruses encoding dominant-negative (Ras(N17)) and constitutively active (Ras(L61)) mutants of Ras were used. Ras(N17) blocks growth factor-mediated MAPK activation and can itself induce SMC apoptosis. Ras(N17) is synergistic with inhibition of autocrine FGF signaling in triggering apoptosis and prevents heterologous growth factor rescue. Conversely, Ras(L61) prevents apoptosis resulting from inhibition of autocrine FGF signaling. Rescue by Ras(L61) can be partially prevented by pharmacological inhibition of MEK or phosphatidylinositol 3-kinase, two downstream effectors of Ras. These results suggest that Ras signaling is both necessary and sufficient to mediate survival in SMC in vitro. Further work is required to determine how these signaling events are regulated in the context of vascular remodeling in vivo.  相似文献   

18.
Expression of both basic fibroblast growth factor (bFGF) and FGF receptors (FGFR) by vascular smooth muscle cells suggests that autocrine FGF signaling mechanisms may have important functions. Inhibition of smooth muscle cell bFGF expression provokes apoptosis, suggesting that endogenous bFGF generates an anti-apoptotic signal. The purpose of this study was to determine whether the survival function of endogenous bFGF requires signaling through FGFR. A recombinant adenovirus encoding a truncated murine FGFR-1 lacking the kinase domain (DN-FGFR) efficiently expressed the transgene in cultured rat aortic smooth muscle cells. The truncated receptor acted in a dominant negative fashion to effectively prevent receptor-mediated signaling, assessed by phosphorylation of p42/p44 MAP kinase. Expression of DN-FGFR provoked apoptosis of SMC in a dose-dependent fashion that was insensitive to recombinant bFGF but could be rescued by platelet derived growth factor or epidermal growth factor. Heterologous growth factor rescue was inhibited by PD98059, an inhibitor of MEK (MAP kinase-kinase). These data demonstrate that inhibition of FGF receptor activation results in apoptosis and suggest that an intact autocrine FGF signaling loop is required for vascular smooth muscle cell survival in vitro. These findings also implicate the Ras/Raf/MEK /MAP kinase cascade in generating or sustaining the survival signal. The functional significance of an autocrine FGF signaling loop in non-transformed cells has important implications for cardiovascular development, remodeling and disease. J. Cell. Physiol. 177:58–67, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
It has been reported that sensitization of animals to allergens increases both early shortening velocity and myosin light-chain kinase of their airway smooth muscle without increasing force generated by these muscles. Since early shortening sets muscle length for the duration of a contraction, these responses might be expected to produce greater airway obstruction. Here, it is explained how the more rapid early shortening without increased force production is predicted by the 2-stage process of activation followed by contraction posited by the crossbridge theory of contraction when the rate, but not the extent, of activation is increased. The experimental results are reproduced by a simple model in which activation rate is increased 1.6-fold without any other changes in contractile parameters. These results reinforce suggestions that sensitized animals are a model for reactive airway disease.  相似文献   

20.
Angiotensin II (AII) increases production of reactive oxygen species from NAD(P)H oxidase, a response that contributes to vascular hypertrophy. Here we show in cultured vascular smooth muscle cells that S-glutathiolation of the redox-sensitive Cys(118) on the small GTPase, Ras, plays a critical role in AII-induced hypertrophic signaling. AII simultaneously increased the Ras activity and the S-glutathiolation of Ras (GSS-Ras) detected by biotin-labeled GSH or mass spectrometry. Both the increase in activity and GSS-Ras was labile under reducing conditions, suggesting the essential nature of this thiol modification to Ras activation. Overexpression of catalase, a dominant-negative p47(phox), or glutaredoxin-1 decreased GSS-Ras, Ras activation, p38, and Akt phosphorylation and the induction of protein synthesis by AII. Furthermore, expression of a Cys(118) mutant Ras decreased AII-mediated p38 and Akt phosphorylation as well as protein synthesis. These results show that H(2)O(2) from NAD(P)H oxidase forms GSS-Ras on Cys(118) and increases its activity leading to p38 and Akt phosphorylation, which contributes to the induction of protein synthesis. This study suggests that GSS-Ras is a redox-sensitive signaling switch that participates in the cellular response to AII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号