首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Key message

An efficient mannose selection system was established for transformation of Indica cultivar IR58025B . Different selection pressures were required to achieve optimum transformation frequency for different PMI selectable marker cassettes.

Abstract

This study was conducted to establish an efficient transformation system for Indica rice, cultivar IR58025B. Four combinations of two promoters, rice Actin 1 and maize Ubiquitin 1, and two manA genes, native gene from E. coli (PMI-01) and synthetic maize codon-optimized gene (PMI-09) were compared under various concentrations of mannose. Different selection pressures were required for different gene cassettes to achieve corresponding optimum transformation frequency (TF). Higher TFs as 54 and 53 % were obtained when 5 g/L mannose was used for selection of prActin-PMI-01 cassette and 7.5 g/L mannose used for selection of prActin-PMI-09, respectively. TFs as 67 and 56 % were obtained when 7.5 and 15 g/L mannose were used for selection of prUbi-PMI-01 and prUbi-PMI-09, respectively. We conclude that higher TFs can be achieved for different gene cassettes when an optimum selection pressure is applied. By investigating the PMI expression level in transgenic calli and leaves, we found there was a significant positive correlation between the protein expression level and the optimal selection pressure. Higher optimal selection pressure is required for those constructs which confer higher expression of PMI protein. The single copy rate of those transgenic events for prActin-PMI-01 cassette is lower than that for other three cassettes. We speculate some of low copy events with low protein expression levels might not have been able to survive in the mannose selection.  相似文献   

2.
Thiosemicarbazones have become one of the promising compounds as new clinical candidates due to their wide spectrum of pharmaceutical activities. The wide range of their biological activities depends generally on their related aldehyde or ketone groups. Here, we report the pharmacological activities of some thiosemicarbazones synthesized in this work. Benzophenone and derivatives were used with N(4)-phenyl-3-thiosemicarbazide to synthesize corresponding five thiosemicarbazones (1–5). Their structures were characterized by spectrometrical methods analysis IR, NMR 1H & 13C and MS. The compounds were then screened in vitro for their antiparasitic activity and toxicity on Trypanosoma brucei brucei and Artemia salina Leach respectively. The selectivity index of each compound was also determined. Four thiosemicarbazones such as 4, 2, 3 and 1 reveal interesting trypanocidal activities with their half inhibitory concentration (IC50) equal to 2.76, 2.83, 3.86 and 8.48 μM respectively, while compound 5 (IC50 = 12.16 μM) showed a moderate anti-trypanosomal activity on parasite. In toxicity test, except compound 1, which showed a half lethal concentration LC50 >281 μM, the others exerted toxic effect on larvae with LC50 of 5.56, 13.62, 14.55 and 42.50 μM respectively for thiosemicarbazones 4, 5, 3 and 2. In agreement to their selectivity index, which is greater than 1 (SI >1), these compounds clearly displayed significant selective pharmaceutical activities on the parasite tested. The thiosemicarbazones 2–5 that displayed significant anti-trypanosomal and cytoxicity activities are suggested to have anti-neoplastic and anti-cancer activities.  相似文献   

3.
Cu(I)-mediated [3+2]cycloaddition between azides and alkynes has evolved into a valuable bioconjugation tool in radiopharmaceutical chemistry. We have developed a simple, convenient and reliable radiosynthesis of 4-[18F]fluoro-N-methyl-N-(propyl-2-yn-1-yl)benzenesulfonamide ([ 18 F]F-SA) as a novel aromatic sulfonamide-based click chemistry building block. [ 18 F]F-SA could be prepared in a remotely controlled synthesis unit in 32 ± 5 % decay-corrected radiochemical yield in a total synthesis time of 80 min. The determined lipophilicity of [ 18 F]F-SA (logP = 1.7) allows handling of the radiotracer in aqueous solutions. The versatility of [ 18 F]F-SA as click chemistry building block was demonstrated by the labeling of a model peptide (phosphopeptide), protein (HSA), and oligonucleotide (L-RNA). The obtained radiochemical yields were 77 % (phosphopeptide), 55–60 % (HSA), and 25 % (L-RNA), respectively. Despite the recent emergence of a multitude of highly innovative novel bioconjugation methods for 18F labeling of biopolymers, Cu(I)-mediated click chemistry with [ 18 F]F-SA represents a reliable, robust and efficient radiolabeling technique for peptides, proteins, and oligonucleotides with the short-lived positron emitter 18F.  相似文献   

4.
This study reports the biotransformation of methylphenylacetonitriles by Brazilian marine filamentous fungus Aspergillus sydowii CBMAI 934 under eco-friendly reaction conditions. The phenylacetonitrile 1, 2-methylphenylacetonitrile 2, 3-methylphenylacetonitrile 3, and 4-methylphenylacetonitrile 4 were quantitatively biotransformed into 2-hydroxyphenylacetic 1a, 2-methylphenylacetic acid 2a, 3-methylphenylacetic acid 3a, and 4-methylphenylacetic acid 4a by enzymatic processes using whole cell as biocatalyst. The marine fungus A. sydowii CBMAI 934 is thus a promising biocatalyst for the preparation of important carboxylic acids under mild conditions (pH 7.5 and 32 °C) from nitrile compounds.  相似文献   

5.

Key message

The study determined the tolerance of Aloe vera to high temperature, focusing on the expression of hsp70 , hsp100 and ubiquitin genes. These were highly expressed in plants acclimated at 35 °C prior to a heat shock of 45 °C.

Abstract

Aloe barbadensis Miller (Aloe vera), a CAM plant, was introduced into Chile in the semiarid IV and III Regions, which has summer diurnal temperature fluctuations of 25 to 40 °C and annual precipitation of 40 mm (dry years) to 170 mm (rainy years). The aim of this study was to investigate how Aloe vera responds to water and heat stress, focusing on the expression of heat shock genes (hsp70, hsp100) and ubiquitin, which not studied before in Aloe vera. The LT50 of Aloe vera was determined as 53.2 °C. To study gene expression by semi-quantitative RT-PCR, primers were designed against conserved regions of these genes. Sequencing the cDNA fragments for hsp70 and ubiquitin showed a high identity, over 95 %, with the genes from cereals. The protein sequence of hsp70 deduced from the sequence of the cDNA encloses partial domains for binding ATP and the substrate. The protein sequence of ubiquitin deduced from the cDNA encloses a domain for interaction with the enzymes E2, UCH and CUE. The expression increased with temperature and water deficit. Hsp70 expression at 40–45 °C increased 50 % over the controls, while the expression increased by 150 % over the controls under a water deficit of 50 % FC. The expression of all three genes was also studied under 2 h of acclimation at 35 or 40 °C prior to a heat shock at 45 °C. Under these conditions, the plants showed greater expression of all genes than when they were subjected to direct heat stress.  相似文献   

6.

Key message

Phytophthora infestans resistant somatic hybrids of S. × michoacanum (+) S. tuberosum and autofused 4 x S. × michoacanum were obtained. Our material is promising to introgress resistance from S. × michoacanum into cultivated potato background.

Abstract

Solanum × michoacanum (Bitter.) Rydb. (mch) is a wild diploid (2n = 2x = 24) potato species derived from spontaneous cross of S. bulbocastanum and S. pinnatisectum. This hybrid is a 1 EBN (endosperm balance number) species and can cross effectively only with other 1 EBN species. Plants of mch are resistant to Phytophthora infestans (Mont) de Bary. To introgress late blight resistance genes from mch into S. tuberosum (tbr), genepool somatic hybridization between mch and susceptible diploid potato clones (2n = 2x = 24) or potato cultivar Rywal (2n = 4x = 48) was performed. In total 18,775 calli were obtained from postfusion products from which 1,482 formed shoots. The Simple Sequence Repeat (SSR), Cleaved Amplified Polymorphic Sequences (CAPS) and Random Amplified Polymorphic DNA (RAPD) analyses confirmed hybrid nature of 228 plants and 116 autofused 4x mch. After evaluation of morphological features, flowering, pollen stainability, tuberization and ploidy level, 118 somatic hybrids and 116 autofused 4x mch were tested for late blight resistance using the detached leaf assay. After two seasons of testing three somatic hybrids and 109 4x mch were resistant. Resistant forms have adequate pollen stainability for use in crossing programme and are a promising material useful for introgression resistance from mch into the cultivated potato background.  相似文献   

7.

Key Message

The critical level for SO 2 susceptibility of Populus × canescens is approximately 1.2 μL L ?1 SO 2 . Both sulfite oxidation and sulfite reduction and assimilation contribute to SO 2 detoxification.

Abstract

In the present study, uptake, susceptibility and metabolism of SO2 were analyzed in the deciduous tree species poplar (Populus × canescens). A particular focus was on the significance of sulfite oxidase (SO) for sulfite detoxification, as SO has been characterized as a safety valve for SO2 detoxification in herbaceous plants. For this purpose, poplar plants were exposed to different levels of SO2 (0.65, 0.8, 1.0, 1.2 μL L?1) and were characterized by visible injuries and at the physiological level. Gas exchange parameters (stomatal conductance for water vapor, CO2 assimilation, SO2 uptake) of the shoots were compared with metabolite levels (sulfate, thiols) and enzyme activities [SO, adenosine 5′-phosphosulfate reductase (APR)] in expanding leaves (80–90 % expanded). The critical dosage of SO2 that confers injury to the leaves was 1.2 μL L?1 SO2. The observed increase in sulfur containing compounds (sulfate and thiols) in the expanding leaves strongly correlated with total SO2 uptake of the plant shoot, whereas SO2 uptake rate was strongly correlated with stomatal conductance for water vapor. Furthermore, exposure to high concentration of SO2 revealed channeling of sulfite through assimilatory sulfate reduction that contributes in addition to SO-mediated sulfite oxidation to sulfite detoxification in expanding leaves of this woody plant species.  相似文献   

8.

Key message

PeVDE was expressed primarily in bamboo leaves, which was up-regulated under high light. The protein encoded by PeVDE had enzyme activity of catalyzing violaxanthin (V) to zeaxanthin (Z) through antheraxanthin (A) as assay shown in vitro.

Abstract

Violaxanthin de-epoxidase (VDE), a key enzyme of xanthophyll cycle, catalyzes conversion from violaxanthin (V) to zeaxanthin (Z) through antheraxanthin (A) to protect photosynthesis apparatus. A cDNA, PeVDE, encoding a VDE was isolated from bamboo (Phyllostachys edulis) by RT-PCR and RACE methods. PeVDE is 1,723 bp and contains an ORF encoding 451 amino acids, with a transit peptide of 103 amino acids. The mature protein is deduced to have 348 amino acids with a calculated molecular weight of 39.6 kDa and a theoretic isoelectric point of 4.5. Semi-quantitative RT-PCR assay indicated that the highest expression level of PeVDE was in leaf, which agreed with the accumulation pattern of PeVDE protein. Real time PCR results showed that PeVDE was up-regulated and reached the highest level after the treatment (1,200 μmo1 m?2 s?1) for 2 h, then decreased and kept at the level similar to that of 0.5 h after treatment for 8 h. To investigate the function of PeVDE, mature protein was heterologously expressed in Escherichia coli and the enzymatic activity assay was carried out using V as substrate. The pigments that formed in the reaction mixture were extracted and analyzed by HPLC method. Besides V, A and Z were detected in the reaction mixture, which indicated that the recombinant protein exhibited enzymatic activity of catalyzing V into Z through A. This study indicates that PeVDE functions through regulating the components of xanthophyll cycle, which might be one of the critical factors that contribute to the growth of bamboo under naturally varying light conditions.  相似文献   

9.
10.

Key message

QTL mapping in F 2 population [ V. luteola × V. marina subsp. oblonga ] revealed that the salt tolerance in V. marina subsp. oblonga is controlled by a single major QTL.

Abstract

The habitats of beach cowpea (Vigna marina) are sandy beaches in tropical and subtropical regions. As a species that grows closest to the sea, it has potential to be a gene source for breeding salt-tolerant crops. We reported here for the first time, quantitative trait loci (QTLs) mapping for salt tolerance in V. marina. A genetic linkage map was constructed from an F2 population of 120 plants derived from an interspecific cross between V. luteola and V. marina subsp. oblonga. The map comprised 150 SSR markers. The markers were clustered into 11 linkage groups spanning 777.6 cM in length with a mean distance between the adjacent markers of 5.59 cM. The F2:3 population was evaluated for salt tolerance under hydroponic conditions at the seedling and developmental stages. Segregation analysis indicated that salt tolerance in V. marina is controlled by a few genes. Multiple interval mapping consistently identified one major QTL which can explain about 50 % of phenotypic variance. The flanking markers may facilitate transfer of the salt tolerance allele from V. marina subsp. oblonga into related Vigna crops. The QTL for domestication-related traits from V. marina are also discussed.  相似文献   

11.
DFT calculations for the acid-catalyzed hydrolysis of several maleamic acid amide derivatives revealed that the reaction rate-limiting step is determined on the nature of the amine leaving group. Further, it was established that when the amine leaving group was a secondary amine, acyclovir or cefuroxime moiety the tetrahedral intermediate formation was the rate-limiting step such as in the cases of acyclovir ProD 1- ProD 4 and cefuroxime ProD 1- ProD 4. In addition, the linear correlation between the calculated and experimental rates provided a credible basis for designing prodrugs for masking bitter taste of the corresponding parental drugs which have the potential to release the parent drug in a sustained release fashion. For example, based on the DFT calculated rates the predicted t1/2 (a time needed for 50 % of the reactant to be hydrolyzed to products) for cefuroxime prodrugs, cefuroxime ProD 1- ProD 4, were 12 min, 18 min, 200 min and 123 min, respectively.
Figure
A representation Scheme showing the interconversion of cefuroxime prodrug to cefuroxime by a prodrug chemical approach  相似文献   

12.

Key message

Association analyses accounting for population structure and relative kinship identified eight SSR markers ( p < 0.01) showing significant association ( R 2  = 18 %) with nine agronomic traits in foxtail millet.

Abstract

Association mapping is an efficient tool for identifying genes regulating complex traits. Although association mapping using genomic simple sequence repeat (SSR) markers has been successfully demonstrated in many agronomically important crops, very few reports are available on marker-trait association analysis in foxtail millet. In the present study, 184 foxtail millet accessions from diverse geographical locations were genotyped using 50 SSR markers representing the nine chromosomes of foxtail millet. The genetic diversity within these accessions was examined using a genetic distance-based and a general model-based clustering method. The model-based analysis using 50 SSR markers identified an underlying population structure comprising five sub-populations which corresponded well with distance-based groupings. The phenotyping of plants was carried out in the field for three consecutive years for 20 yield contributing agronomic traits. The linkage disequilibrium analysis considering population structure and relative kinship identified eight SSR markers (p < 0.01) on different chromosomes showing significant association (R 2 = 18 %) with nine agronomic traits. Four of these markers were associated with multiple traits. The integration of genetic and physical map information of eight SSR markers with their functional annotation revealed strong association of two markers encoding for phospholipid acyltransferase and ubiquitin carboxyl-terminal hydrolase located on the same chromosome (5) with flag leaf width and grain yield, respectively. Our findings on association mapping is the first report on Indian foxtail millet germplasm and this could be effectively applied in foxtail millet breeding to further uncover marker-trait associations with a large number of markers.  相似文献   

13.

Key message

This study demonstrates for the first time that resistance to different root lesion nematodes ( P. neglectus and P. penetrans ) is controlled by a common QTL. A major resistance QTL ( Rlnnp6H ) has been mapped to chromosome 6H using two independent barley populations.

Abstract

Root lesion nematodes (Pratylenchus spp.) are important pests in cereal production worldwide. We selected two doubled haploid populations of barley (Igri × Franka and Uschi × HHOR 3073) and infected them with Pratylenchus penetrans and Pratylenchus neglectus. Nematode multiplication rates were measured 7 or 10 weeks after infection. In both populations, continuous phenotypic variations for nematode multiplication rates were detected indicating a quantitative inheritance of resistance. In the Igri × Franka population, four P. penetrans resistance QTLs were mapped with 857 molecular markers on four linkage groups (2H, 5H, 6H and 7H). In the Uschi × HHOR 3073 population, eleven resistance QTLs (P. penetrans and P. neglectus) were mapped with 646 molecular markers on linkage groups 1H, 3H, 4H, 5H, 6H and 7H. A major resistance QTL named Rlnnp6H (LOD score 6.42–11.19) with a large phenotypic effect (27.5–36.6 %) for both pests was mapped in both populations to chromosome 6H. Another resistance QTL for both pests was mapped on linkage group 5H (Igri × Franka population). These data provide first evidence for common resistance mechanisms against different root lesion nematode species. The molecular markers are a powerful tool for the selection of resistant barley lines among segregating populations because resistance tests are time consuming and laborious.  相似文献   

14.
Density functional theory (DFT) calculations at B3LYP/6-31 G (d,p) and B3LYP/6-311?+?G(d,p) levels for the substituted pyridine-catalyzed isomerization of monomethyl maleate revealed that isomerization proceeds via four steps, with the rate-limiting step being proton transfer from the substituted pyridinium ion to the C=C double bond in INT1. In addition, it was found that the isomerization rate (maleate to fumarate) is solvent dependent. Polar solvents, such as water, tend to accelerate the isomerization rate, whereas apolar solvents, such as chloroform, act to slow down the reaction. A linear correlation was obtained between the isomerization activation energy and the dielectric constant of the solvent. Furthermore, linearity was achieved when the activation energy was plotted against the pK a value of the catalyst. Substituted-pyridine derivatives with high pK a values were able to catalyze isomerization more efficiently than those with low pK a values. The calculated relative rates for prodrugs 16 were: 1 (406.7), 2 (7.6?×?106), 3 (1.0), 4 (20.7), 5 (13.5) and 6 (2.2?×?103). This result indicates that isomerizations of prodrugs 1 and 35 are expected to be slow and that of prodrugs 2 and 6 are expected to be relatively fast. Hence, prodrugs 2 and 35 have the potential to be utilized as prodrugs for the slow release of monomethylfumarate in the treatment of psoriasis and multiple sclerosis.
Figure
Substituted pyridine-catalyzed isomerization of monomethylmaleate (prodrug, cis-isomer) to monomethylfumerate (parental drug, trans-isomer)  相似文献   

15.

Key message

Our study shows that the expression of AtCBF3 and AtCOR15A improved the chilling tolerance in transgenic eggplant.

Abstract

In an attempt to improve chilling tolerance of eggplant (Solanum melongena L) plants, Arabidopsis C-repeat binding factor 3 (AtCBF3) and cold-regulated 15A (AtCOR15A) genes both driven by an Arabidopsis RESPONSIVE TO DESSICATION 29A promoter (AtRD29A) were transferred into the plants of eggplant cultivar Sanyueqie. Two independent homozygous transgenic lines were tested for their cold tolerance. The leaves of the transgenic plants in both lines withered much slower and slighter than the wild-type plants after exposure to cold stress treatment at 2 ± 1 °C. The gene expression of AtCBF3 and AtCOR15A was significantly increased as well as the proline content and the levels of catalase and peroxidase activities, while the relative electrical conductivity and the malondialdehyde content were remarkably decreased in the transgenic plants compared with the wild type at 4 ± 0.5 °C. The results showed that the expression of the exogenous AtCBF3 and AtCOR15A could promote the cold adaptation process to protect eggplant plants from chilling stress.  相似文献   

16.
Exploring novel chemotherapeutic agents is a great challenge in cancer medicine. To that end, 2-substituted benzimidazole copper(II) complex, [Cu(BMA)Cl2]·(CH3OH) (1) [BMA = N,N′-bis(benzimidazol-2-yl-methyl)amine], was synthesized and its cytotoxicity was characterized. The interaction between complex 1 and calf thymus DNA was detected by spectroscopy methods. The binding constant (K b = 1.24 × 10M?1) and the apparent binding constant (K app = 6.67 × 10M?1) of 1 indicated its moderate DNA affinity. Complex 1 induced single strand breaks of pUC19 plasmid DNA in the presence of H2O2 through an oxidative pathway. Cytotoxicity studies proved that complex 1 could inhibit the proliferation of human cervical carcinoma cell line HeLa in both time- and dose-dependent manners. The results of nuclei staining by Hoechst 33342 and alkaline single-cell gel electrophoresis proved that complex 1 caused cellular DNA damage in HeLa cells. Furthermore, treatment of HeLa cells with 1 resulted in S-phase arrest, loss of mitochondrial potential, and up-regulation of caspase-3 and -9 in HeLa cells, suggesting that complex 1 was capable of inducing apoptosis in cancer cells through the intrinsic mitochondrial pathway.  相似文献   

17.

Key message

This is the first reported proteomic analysis to study the dormancy breaking of Magnolia sieboldii seeds. Our results provide a fundamental reference for further studies on the regulation of protein expression during seed germination.

Abstract

Magnolia sieboldii K. Koch is an ornamental tree. The deep dormancy of its seeds hinders its cultivation for economic purposes. The biochemical basis of the regulation of seed germination remains poorly understood. The present study aimed to identify differentially expressed proteins in germinated seeds of M. sieboldii using polyethylene glycol fractionation. In total, 59 differentially expressed protein spots from two-dimensional gel maps were detected, 33 of which were identified by mass spectrometry. They were assigned to eight functional classes on the basis of their putative biological functions: photosynthesis (3 %), chaperonin/heat shock protein (9 %), protein and amino acid synthesis (9 %), stress/defense (18 %), cytoskeleton structure (3 %), metabolism (18 %), hormone and polyamine (9 %) and storage proteins (31 %). Among the other functions, the effects of plant hormones on seed germination may be one of the most important functions in plant growth. Gibberellins and ethylene positively regulate seed germination. The activities of several hormone-associated proteins possibly influencing seed germination were increased. The characterization of these proteins will be of great help in identifying the molecular mechanism underlying seed germination.  相似文献   

18.

Key message

Eucalyptus and Acacia species were surprisingly similar with respect to variations in δ 13 C, δ 15 N. Both genera respond with speciation and associated changes in leaf structure to drought.

Abstract

Stable carbon and nitrogen isotope ratios (δ13C and δ15N) in leaves of eucalypts (Corymbia and Eucalyptus) and Acacia (and some additional Fabaceae) species were investigated together with specific leaf area (SLA), leaf nitrogen (N) and leaf phosphorous (P) concentration along a north–south transect through Western Australia covering winter- and summer-dominated rainfall between 100 and 1,200 mm annually. We investigated 62 eucalypts and 78 woody Fabaceae species, mainly of the genus Acacia. Leaf δ13C values of Eucalyptus and Acacia species generally increased linearly with latitude from ?29.5 ± 1.3 ‰ in the summer-dominated rainfall zone (15°S–18°S) to about ?25.7 ± 1.1 ‰ in the winter-dominated rainfall zone (29°S–31°S). δ15N increased initially with southern latitudes (0.5 ± 1.6 ‰ at 15°S; 5.8 ± 3.3 ‰ at 24–29°S) but decreased again further South (4.6 ± 3.5 ‰ at 31°S). The variation in δ13C and δ15N was probably due to speciation of Eucalyptus and Acacia into very local populations. There were no species that were distributed over the whole sampling area. The variation in leaf traits was larger between species than within species. Average nitrogen concentrations were 11.9 ± 1.05 mg g?1 in Eucalyptus, and were 18.7 ± 4.1 mg g?1 in Acacia. Even though the average nitrogen concentration was higher in Acacia than Eucalyptus, δ15N gave no clear indication for N2 fixation in Acacia. In a multiple regression, latitude (as a surrogate for rainfall seasonality), mean rainfall, leaf nitrogen concentration, specific leaf area and nitrogen fixation were significant and explained 69 % of the variation of δ13C, but only 36 % of the variation of δ15N. Higher nitrogen and phosphorus concentration could give Acacia an advantage over Eucalyptus in arid regions of undefined rainfall seasonality.  相似文献   

19.
Two dibenzo-α-pyrones, botrallin (1) and TMC-264 (2) were preparatively separated from crude ethyl acetate extract of the endophytic fungus Hyalodendriella sp. Ponipodef12, which was isolated from the hybrid ‘Neva’ of Populus deltoides Marsh × P. nigra L. using a combination of high-speed counter-current chromatography (HSCCC) and semi-preparative HPLC. Botrallin (1) with 74.73 % of purity and TMC-264 (2) with 82.29 % of purity were obtained through HSCCC by employing a solvent system containing n-hexane–ethyl acetate–methanol–water at a volume ratio of 1.2:1.0:0.9:1.0. It was the first time for TMC-264 (2) to be isolated from this fungus. TMC-264 (2) showed strong antimicrobial and antinematodal activity, and botrallin (1) exhibited moderate inhibitory activity on acetylcholinesterase.  相似文献   

20.

Key message

This study established an efficient method of regenerating plants of Ficus lyrata and producing purple-leaved F. lyrata plants through genetic transformation using a VvMybA1 gene of grapevine.

Abstract

Ficus lyrata, a species with unique violin- or guitar-shaped leaves, was regenerated from leaf-derived calli cultured on Murashige and Skoog (MS) basal medium supplemented with 4.5 μM N-phenyl-N’-1, 2, 3-thiadiazol-5-yl urea (TDZ) and 0.5 μM α-naphthalene acetic acid (NAA). Leaf discs were inoculated with Agrobacterium tumefaciens strain EHA 105 harboring a binary vector DEAT that contains the VvMybA1 gene and neomycin phosphotransferase (npt II) gene and subsequently cultured on the established regeneration medium supplemented with 100 mg l?1 kanamycin. Results showed that 87.5 % of the leaf discs produced kanamycin-resistant callus, and 68.8 % of them produced adventitious shoots. Transgenic plants with three leaf colors including green, green-purple, and purple were produced. Regular and quantitative real-time PCR analyses confirmed the integration of transgenes into the host genome. Semi-quantitative RT-PCR analysis indicated that the VvMybA1 gene was responsible for the purple-colored phenotype. Purple-leaved plants with strong color stability grew vigorously in a greenhouse. This study illustrated the feasibility of using a genetically engineered VvMybA1 gene for drastic modification of leaf color of an important woody ornamental plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号