首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a fluorescence-based mix and read method for the quantitative determination of receptor-ligand binding interactions. This method was used to determine IC(50) values for peptide ligands of two endogenous seven-transmembrane receptors that are expressed in cultured human cancer cells. Substance P, neurokinin A, and galanin were labeled with Cy5 and were shown to retain their native binding affinities. The cell-associated fluorescence was quantified using a fluorometric microvolume assay technology (FMAT) scanner that was designed to perform high-throughput screening assays in multiwell plates with no wash steps. The binding of fluorescently labeled substance P and neurokinin A was tested on the human astrocytoma cell line UC11 that expresses endogenous NK(1) receptor. Galanin binding was measured on endogenous galanin type 1 receptors in the Bowes neuroblastoma cell line. IC(50) values were determined for substance P, neurokinin A, and galanin and were found to correspond well with reported values from radioligand binding determinations. To demonstrate FMAT as instrumentation for high-throughput screening, it was utilized to successfully identify individual wells in a 96-well plate in which Cy5-substance P binding in UC11 cells was competed with unlabeled substance P. In addition, we developed a two-color multiplex assay in which cells individually expressing neuropeptide Y and substance P receptors were mixed in the same well. In this assay, the fluorescent ligands substance P and neuropeptide Y bound only to their respective cell types and binding was specifically competed. Therefore, two different seven-transmembrane receptor targets can be tested in one screen to minimize reagent consumption and increase throughput.  相似文献   

2.
The interactions of cell surface receptors with their ligands, crucial for initiating many immunological responses, are often stabilized by receptor dimerization/oligomerization, and by multimeric interactions between receptors on one cell with their ligands or cognate receptors on the apposing cell. Current techniques for studying receptor-ligand interactions, however, do not always allow receptors to move laterally to enable dimerization/ oligomerization, or to interact multimerically with ligands on cell surfaces. For these reasons detection of low- affinity receptor-ligand interactions has been difficult. Utilizing a novel chelator-lipid, nitrilotriacetic acid di-tetradecylamine (NTA-DTDA), we have developed a convenient liposome system for directly detecting low-affinity receptor-ligand interactions. Our studies using recombinant soluble forms of murine CD40 and B7.1, and murine and human CD4, each possessing a hexhistidine tag, showed that these proteins can be anchored or 'engrafted' directly onto fluorescently labelled liposomes via a metal-chelating linkage with NTA-DTDA, permitting them to undergo dimerization/oligomerization and multimeric binding with ligands on cells. Fluorescence- activated cell sorter (FACS) analyses demonstrated that while there is little if any binding of soluble forms of murine CD40 and B7.1, and murine and human CD4 to cells, engrafted liposomes bind specifically to cells expressing the appropriate cognate receptor, often giving a fluorescence 4-6-fold above control cells. Such liposomes could detect directly the low-affinity interaction of murine CD40 and B7.1 with CD154- and CD28-expressing cells, respectively, and the interaction of CD4 with MHC Class II, which has hitherto defied direct detection except through mutational analysis and mAb blocking studies.  相似文献   

3.
Receptor-ligand interactions play a crucial role in biological systems and their measurement forms an important part of modern pharmaceutical development. Numerous assay formats are available that can be used to screen and quantify receptor ligands. In this review, we give an overview over both radioactive and non-radioactive assay technologies with emphasis on the latter. While radioreceptor assays are fast, easy to use and reproducible, their major disadvantage is that they are hazardous to human health, produce radioactive waste, require special laboratory conditions and are thus rather expensive on a large scale. This has led to the development of non-radioactive assays based on optical methods like fluorescence polarization, fluorescence resonance energy transfer or surface plasmon resonance. In light of their application in high-throughput screening environments, there has been an emphasis on so called "mix-and-measure" assays that do not require separation of bound from free ligand. The advent of recombinant production of receptors has contributed to the increased availability of specific assays and some aspects of the expression of recombinant receptors will be reviewed. Applications of receptor-ligand binding assays described in this review will relate to screening and the quantification of pharmaceuticals in biological matrices.  相似文献   

4.
Making sense of the diverse ligand recognition by NKG2D   总被引:7,自引:0,他引:7  
NKG2D recognizes multiple diverse ligands. Despite recent efforts in determining the crystal structures of NKG2D-ligand complexes, the principle governing this receptor-ligand recognition and hence the criteria for identifying unknown ligands of NKG2D remain central issues to be resolved. Here we compared the molecular recognition between NKG2D and three of the known ligands, UL16 binding protein (ULBP), MHC class I-like molecule, and retinoic acid early inducible gene as observed in the ligand-complexed crystal structures. The comparison shows that while the receptor uses a common interface region to bind the three diverse ligands, each ligand forms a distinct, but overlapping, set of hydrogen bonds, hydrophobic interactions, and salt bridges, illustrating the underlying principle of NKG2D-ligand recognition being the conservation in overall shape complementarity and binding energy while permitting variation in ligand sequence through induced fit recognition. To further test this hypothesis and to distinguish between diverse recognition and promiscuous ligand binding, four ULBP3 interface mutations, H21A, E76A, R82M, and D169A, were generated to each disrupt a single hydrogen bond or salt bridge. All mutant ULBP3 displayed reduced receptor binding, suggesting a specific, rather than promiscuous, receptor-ligand recognition. Mutants with severe loss of binding affect the receptor interactions that are mostly buried. Finally, a receptor-ligand recognition algorithm was developed to assist the identification of diverse NKG2D ligands based on evaluating the potential hydrogen bonds, hydrophobic interactions, and salt bridges at the receptor-ligand interface.  相似文献   

5.
Membrane receptor-ligand interactions mediate many cellular functions. Binding kinetics and downstream signaling triggered by these molecular interactions are likely affected by the mechanical environment in which binding and signaling take place. A recent study demonstrated that mechanical force can regulate antigen recognition by and triggering of the T-cell receptor (TCR). This was made possible by a new technology we developed and termed fluorescence biomembrane force probe (fBFP), which combines single-molecule force spectroscopy with fluorescence microscopy. Using an ultra-soft human red blood cell as the sensitive force sensor, a high-speed camera and real-time imaging tracking techniques, the fBFP is of ~1 pN (10-12 N), ~3 nm and ~0.5 msec in force, spatial and temporal resolution. With the fBFP, one can precisely measure single receptor-ligand binding kinetics under force regulation and simultaneously image binding-triggered intracellular calcium signaling on a single live cell. This new technology can be used to study other membrane receptor-ligand interaction and signaling in other cells under mechanical regulation.  相似文献   

6.
Human galanin is a 30 amino acid neuropeptide that elicits a range of biological activities by interaction with G protein-coupled receptors. We have generated a model of the human GALR1 galanin receptor subtype (hGALR1) based on the alpha carbon maps of frog rhodopsin and investigated the significance of potential contact residues suggested by the model using site-directed mutagenesis. Mutation of Phe186 within the second extracellular loop to Ala resulted in a 6-fold decrease in affinity for galanin, representing a change in free energy consistent with hydrophobic interaction. Our model suggests interaction between Phe186 of hGALR1 and Ala7 or Leu11 of galanin. Receptor subtype specificity was investigated by replacement of residues in hGALR1 with the corresponding residues in hGALR2 and use of the hGALR2-specific ligands hGalanin(2-30) and [D-Trp2]hGalanin(1-30). The His267Ile mutant receptor exhibited a pharmacological profile corresponding to that of hGALR1, suggesting that His267 is not involved in a receptor-ligand interaction. The mutation Phe115Ala resulted in a decreased binding affinity for hGalanin and for hGALR2-specific analogues, indicating Phe115 to be of structural importance to the ligand binding pocket of hGALR1 but not involved in direct ligand interaction. Analysis of Glu271Trp suggested that Glu271 of hGALR1 interacts with the N-terminus of galanin and that the Trp residue in the corresponding position in hGALR2 is involved in receptor subtype specificity of binding. Our model supports previous reports of Phe282 of hGALR1 interacting with Trp2 of galanin and His264 of hGALR1 interacting with Tyr9 of galanin.  相似文献   

7.
Several analytical methods have been used to determine whether ligands bind to bovine beta-lactoglobulin (betaLG). The most common methods are based on fluorescence quenching. We have miniaturised this method from a quartz cell to a 96-well plate. The miniaturisation was evaluated using retinol. The binding constants between the two methods demonstrated a good correlation. The 96-well plate method is much faster and allows many references to be used in the same analysis. The miniaturised method was used to study the binding of three different ligands (4-HPR, arotinoid, warfarinyl palmitate) modelled to bind to betaLG. The binding data showed that all of these ligands bound to betaLG. The method was further used to demonstrate that reindeer betaLG could also bind the four ligands in the same way as bovine betaLG. Because one aim is to use bovine and reindeer betaLG as a binder molecule for aliments in e.g. functional food or for drugs, the influence of pH was also studied and demonstrated that short-term acidic conditions had only a slight effect on the binding properties.  相似文献   

8.
9.
Handl HL  Gillies RJ 《Life sciences》2005,77(4):361-371
The evaluation of receptor ligand interactions is important in the field of drug discovery and development. Currently these interactions are typically measured with cumbersome (low throughput) radiolabels. Higher throughput screens are available such as fluorescent measurements of G-protein coupled receptor-induced Ca2+ increases or fluorescence anisotropy, yet these have limited applicability and/or low signal to noise. Hence, there is a need to develop more widely applicable and more sensitive labels that can be used to monitor ligand-receptor interactions. Lanthanides provide an attractive alternative to the traditional labels used for monitoring ligand-receptor interactions. The incorporation of lanthanide labels into traditional assays used to assess receptor-ligand interactions can make these assays more affordable, less time consuming and amenable to automation. Lanthanides can be coupled to ligands and provide strong luminescent signals that can be detected using time-resolved fluorescence (TRF) methods. This approach takes advantage of the long fluorescence lifetime of the lanthanide and can detect less than one attomole of europium in a multiwell plate sample. This short review provides a basic introduction into lanthanides and TRF and describes some of the recent assays which have utilized lanthanides as labels to assess ligand-receptor interactions.  相似文献   

10.
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) was identified as a major receptor for oxidized low-density lipoprotein (oxLDL) in endothelial cells. LOX-1 critically mediates the endothelial dysfunction and the progression of atherosclerosis by oxLDL stimulation. It might be an important target for vascular endothelium. In order to obtain human LOX-1 and identify its mimic ligand for facilitating the study of LOX-1 function, a recombinant plasmid pPIC9K-His-hLOX-1 was structured and expressed human LOX-1 in Pichia pastoris GS115. Western blot analysis ensured the expressed recombinant human LOX-1 protein and a receptor-ligand binding assay showed that it had high binding affinity with oxLDL. With this receptor protein, a competitive fluorescence polarization-based high throughput screening method was established in a 384-well microplate to isolate the mimic ligands of human LOX-1. The evaluating parameter Z' value of 0.72 for this method showed that fluorescence polarization-based high throughput screening assay was robust and the results had a high reliability. By the fluorescence polarization-based high throughput screening assay, a total of 20,316 chemicals were screened, and 2 chemicals were identified that they have a high affinity with human LOX-1. Competitive uptake DiI-oxLDL assay by human LOX-1 transfected CHO-K1 cells further confirmed that two chemicals block the uptake of DiI-oxLDL. And the preliminary results indicated that isolated mimic ligands may act as a function of antagonist. The discovery of human LOX-1 mimic ligand would benefit to further study the function of LOX-1 and identify a novel avenue for prevention and treatment atherosclerosis.  相似文献   

11.
J Ellis  I A Murray  W V Shaw 《Biochemistry》1991,30(44):10799-10805
Replacement by tyrosine or phenylalanine was used to assign the additive contributions of each of the three tryptophan residues of chloramphenicol acetyltransferase (CAT) to its intrinsic fluorescence on excitation at 295 nm. During the assessment of the fluorescence responses of the wild-type enzyme to the binding of ligands, it was found that the overlapping absorption spectra of chloramphenicol and tryptophan, with an attendant inner filter effect, required the use of a displacement technique involving an alternative substrate (the p-cyano analogue of chloramphenicol) without significant absorption at 295 nm. By the use of two-Trp, one-Trp, and Trp-less variants, in combination with this displacement technique, it was possible to demonstrate that Trp-86 and Trp-152 are involved in the fluorescence quenching associated with the binding of chloramphenicol, most likely via nonradiative energy transfer from these residues to the bound substrate. Trp-152 is mainly responsible for the fluorescence enhancement accompanying the binding of acetyl-CoA (and CoA) through proximity effects and solvent exclusion on substrate association.  相似文献   

12.
Virtual drug screening using protein-ligand docking techniques is a time-consuming process, which requires high computational power for binding affinity calculation. There are millions of chemical compounds available for docking. Eliminating compounds that are unlikely to exhibit high binding affinity from the screening set should speed-up the virtual drug screening procedure. We performed docking of 6353 ligands against twenty-one protein X-ray crystal structures. The docked ligands were ranked according to their calculated binding affinities, from which the top five hundred and the bottom five hundred were selected. We found that the volume and number of rotatable bonds of the top five hundred docked ligands are similar to those found in the crystal structures and corresponded with the volume of the binding sites. In contrast, the bottom five hundred set contains ligands that are either too large to enter the binding site, or too small to bind with high specificity and affinity to the binding site. A pre-docking filter that takes into account shapes and volumes of the binding sites as well as ligand volumes and flexibilities can filter out low binding affinity ligands from the screening sets. Thus, the virtual drug screening procedure speed is increased.  相似文献   

13.
The micropipette adhesion assay was developed in 1998 to measure two-dimensional (2D) receptor-ligand binding kinetics. The assay uses a human red blood cell (RBC) as adhesion sensor and presenting cell for one of the interacting molecules. It employs micromanipulation to bring the RBC into contact with another cell that expresses the other interacting molecule with precisely controlled area and time to enable bond formation. The adhesion event is detected as RBC elongation upon pulling the two cells apart. By controlling the density of the ligands immobilized on the RBC surface, the probability of adhesion is kept in mid-range between 0 and 1. The adhesion probability is estimated from the frequency of adhesion events in a sequence of repeated contact cycles between the two cells for a given contact time. Varying the contact time generates a binding curve. Fitting a probabilistic model for receptor-ligand reaction kinetics to the binding curve returns the 2D affinity and off-rate. The assay has been validated using interactions of Fcγ receptors with IgG Fc, selectins with glycoconjugate ligands, integrins with ligands, homotypical cadherin binding, T cell receptor and coreceptor with peptide-major histocompatibility complexes. The method has been used to quantify regulations of 2D kinetics by biophysical factors, such as the membrane microtopology, membrane anchor, molecular orientation and length, carrier stiffness, curvature, and impingement force, as well as biochemical factors, such as modulators of the cytoskeleton and membrane microenvironment where the interacting molecules reside and the surface organization of these molecules. The method has also been used to study the concurrent binding of dual receptor-ligand species, and trimolecular interactions using a modified model. The major advantage of the method is that it allows study of receptors in their native membrane environment. The results could be very different from those obtained using purified receptors. It also allows study of the receptor-ligand interactions in a sub-second timescale with temporal resolution well beyond the typical biochemical methods. To illustrate the micropipette adhesion frequency method, we show kinetics measurement of intercellular adhesion molecule 1 (ICAM-1) functionalized on RBCs binding to integrin α(L)β(2) on neutrophils with dimeric E-selectin in the solution to activate α(L)β(2).  相似文献   

14.
Even though a rough sketch of the human genome is now available and the number of newly discovered genes, which carry the potential of being biologically and medically relevant is currently greater than ever, only a small proportion has been assigned a biological function. Therefore, enormous attention is now increasingly being drawn towards functional genomics, i.e. the functional characterization of these newly identified sequences. In order to elucidate the role of a particular gene product within its cellular context, we have screened high-density protein filter arrays for protein-protein interactions on the basis of a 'Far-Western' based approach. The methodology described herein easily allows the identification and isolation of cDNAs of proteins, which interact with specific ligands (interacting proteins, antibodies and DNA/RNA sequences), and represents an alternative to tedious conventional protein interaction analyses. Far-Western screening in the context of a whole-genome expression analysis not only facilitates the assignment of biological functions to specific, newly identified protein and DNA sequences, but also is useful in studies that assess the binding capacity of mutant proteins to their interaction partner and in the identification of domains and amino acids involved in known protein-protein interactions. Taken together, we describe an approach that allows the easy and reproducible identification of protein ligands on the basis of a whole-genome expression analysis.  相似文献   

15.
Notch family members were first identified as cell adhesion molecules by cell aggregation assays in Drosophila studies. However, they are generally recognized as signaling molecules, and it was unclear if their adhesion function was restricted to Drosophila. We previously demonstrated that a mouse Notch ligand, Delta-like 1 (Dll1) functioned as a cell adhesion molecule. We here investigated whether this adhesion function was conserved in the diversified mammalian Notch ligands consisted of two families, Delta-like (Dll1, Dll3 and Dll4) and Jagged (Jag1 and Jag2). The forced expression of mouse Dll1, Dll4, Jag1, and Jag2, but not Dll3, on stromal cells induced the rapid and enhanced adhesion of cultured mast cells (MCs). This was attributed to the binding of Notch1 and Notch2 on MCs to each Notch ligand on the stromal cells themselves, and not the activation of Notch signaling. Notch receptor-ligand binding strongly supported the tethering of MCs to stromal cells, the first step of cell adhesion. However, the Jag2-mediated adhesion of MCs was weaker and unlike other ligands appeared to require additional factor(s) in addition to the receptor-ligand binding. Taken together, these results demonstrated that the function of cell adhesion was conserved in mammalian as well as Drosophila Notch family members. Since Notch receptor-ligand interaction plays important roles in a broad spectrum of biological processes ranging from embryogenesis to disorders, our finding will provide a new perspective on these issues from the aspect of cell adhesion.  相似文献   

16.
Galanin receptor type 2 (GALR2) is a class A G-protein-coupled receptor (GPCR), and it has been reported that orthosteric ligands and positive allosteric modulators (PAMs) of GALR2 could potentially be used to treat epilepsy. So far, the X-ray structure of this receptor has not been resolved, and knowledge of the 3D structure of GALR2 may prove informative in attempts to design novel ligands and to explore the mechanism for the allosteric modulation of this receptor. In this study, homology modeling was used to obtain several GALR2 models using known templates. ProSA-web Z-scores and Ramachandran plots as well as pre-screening against a test dataset of known compounds were all utilized to select the best model of GALR2. Molecular dockings of galanin (a peptide) and a nonpeptide ligand were carried out to choose the (GALR2 model)–galanin complex that showed the closest agreement with the corresponding experimental data. Finally, a 50-ns MD simulation was performed to study the interactions between the GALR2 model and the synthetic and endogenous ligands. The results from docking and MD simulation showed that, besides the reported residues, Tyr1604.60, Ile1053.32, Ala2747.35, and Tyr163ECL2 also appear to play important roles in the binding of galanin. The potential allosteric binding pockets in the GALR2 model were then investigated via MD simulation. The results indicated that the mechanism for the allosteric modulation caused by PAMs is the binding of the PAM at pocket III, which is formed by galanin, ECL2, TM2, TM3, and ECL1; this results in the disruption of the Na+-binding site and/or the Na+ ion pathway, leading to GALR2 agonism.  相似文献   

17.
Binding of bacteria to beta 1 chain integrin receptors results in either bacterial adherence or uptake by cultured cells (Isberg, 1991). In this report we show that Staphylococcus aureus coated with high affinity ligands for the beta 1 chain integrin family can be internalized efficiently, whereas bacteria coated with low affinity ligands are poorly internalized. Overproduction of the alpha 5 beta 1 integrin increased the efficiency of bacterial internalization, indicating that the uptake efficiency is directly related to the level of expression of the receptor. By using latex beads or S. aureus coated with mAbs directed against the alpha 5 beta 1 integrin, a roughly semi-logarithmic correlation was observed between the affinity of the receptor-ligand interaction and the rate of bacterial internalization. Evidence is presented that high affinity binding of the bacterium allows the microorganism to compete efficiently with receptor-ligand interactions at the basolateral surface of the cell.  相似文献   

18.
The immunological synapse is a stable intercellular structure that specializes in substance and signal transfer from one immune cell to another. Its formation is regulated in part by the diffusion of adhesion and signaling molecules into, and their binding of countermolecules in the contact area. The stability of immunological synapses allows receptor-ligand interactions to approximate chemical equilibrium despite other dynamic aspects. We have developed a mathematical model that describes the coupled reaction-diffusion process in an established immunological synapse. In this study, we extend a previously described contact area fluorescence recovery after photobleaching (FRAP) experiment to test the validity of the model. The receptor binding activity and lateral mobility of fluorescently labeled, lipid-anchored ligands in the bilayer resulted in their accumulation, as revealed by a much higher fluorescence intensity inside the contact area than outside. After complete photobleaching of the synapse, fluorescence recovery requires ligands to dissociate and rebind, and to diffuse in and out of the contact area. Such a FRAP time course consequently provides information on reaction and diffusion, which can be extracted by fitting the model solution to the data. Surprisingly, reverse rates in the two-dimensional contact area were at least 100-fold slower than in three-dimensional solution. As previously reported in immunological synapses, a significant nonrecoverable fraction of fluorescence was observed with one of two systems studied, suggesting some ligands either dissociated or diffused much more slowly compared with other ligands in the same synapse. The combined theory and experiment thus provides a new method for in situ measurements of kinetic rates, diffusion coefficients, and nonrecoverable fractions of interacting molecules in immunological synapses and other stable cell-bilayer junctions.  相似文献   

19.
Low-affinity extracellular protein interactions are critical for cellular recognition processes, but existing methods to detect them are limited in scale, making genome-wide interaction screens technically challenging. To address this, we report here the miniaturization of the AVEXIS (avidity-based extracellular interaction screen) assay by using protein microarray technology. To achieve this, we have developed protein tags and sample preparation methods that enable the parallel purification of hundreds of recombinant proteins expressed in mammalian cells. We benchmarked the protein microarray-based assay against a set of known quantified receptor-ligand pairs and show that it is sensitive enough to detect even very weak interactions that are typical of this class of interactions. The increase in scale enables interaction screening against a dilution series of immobilized proteins on the microarray enabling the observation of saturation binding behaviors to show interaction specificity and also the estimation of interaction affinities directly from the primary screen. These methodological improvements now permit screening for novel extracellular receptor-ligand interactions on a genome-wide scale.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号