首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine whether overexpression of transforming growth factor (TGF)-alpha in the adult lung causes remodeling independently of developmental influences, we generated conditional transgenic mice expressing TGF-alpha in the epithelium under control of the doxycycline (Dox)-regulatable Clara cell secretory protein promoter. Two transgenic lines were generated, and following 4 days of Dox-induction TGF-alpha levels in whole lung homogenate were increased 13- to 18-fold above nontransgenic levels. After TGF-alpha induction, transgenic mice developed progressive pulmonary fibrosis and body weight loss, with mice losing 15% of their weight after 6 wk of TGF-alpha induction. Fibrosis was detected within 4 days of TGF-alpha induction and developed initially in the perivascular, peribronchial, and pleural regions but later extended into the interstitium. Fibrotic regions were composed of increased collagen and cellular proliferation and were adjacent to airway and alveolar epithelial sites of TGF-alpha expression. Fibrosis progressed in the absence of inflammatory cell infiltrates as determined by histology, without changes in bronchiolar alveolar lavage total or differential cell counts and without changes in proinflammatory cytokines TNF-alpha or IL-6. Active TGF-beta in whole lung homogenate was not altered 1 and 4 days after TGF-alpha induction, and immunostaining was not increased in the peribronchial/perivascular areas at all time points. Chronic epithelial expression of TGF-alpha in adult mice caused progressive pulmonary fibrosis associated with increased collagen and extracellular matrix deposition and increased cellular proliferation. Induction of pulmonary fibrosis by TGF-alpha was independent of inflammation or early activation of TGF-beta.  相似文献   

2.
Stone AE  Giguere S  Castleman WL 《Cytokine》2003,24(3):103-113
The goal of this research was to determine whether differential pulmonary IL-12 gene expression controls susceptibility to Sendai virus-induced chronic airway inflammation and fibrosis in inbred rat strains. Sendai virus-resistant F344 rats and susceptible BN rats were studied from 1 to 14 days following virus inoculation. F344 rats had 3.4-fold higher IL-12 mRNA levels detected by real-time PCR in lung than BN rats as early as two days following inoculation. This increase in mRNA was associated at two days with increased total IL-12 protein and with a 2-fold increase in numbers of bronchiolar, OX-6-positive dendritic cells and an increased number of IL-12 p40-positive, bronchiolar macrophages and dendritic cells (p<0.05). Virus-susceptible BN rats treated with 3 mug of recombinant, mouse IL-12 intraperitoneally at the time of virus inoculation had a 22.1% decrease in severity of chronic bronchiolar inflammation and a 23.8% decrease in fibrosis compared to virus-inoculated BN rats treated with saline. IL-12 treatment induced increased IFN-gamma mRNA and protein expression after virus inoculation (p<0.05). The results demonstrate that there is differential pulmonary IL-12 gene expression between virus-susceptible and resistant rat strains and that IL-12 treatment can provide significant protection from virus-induced chronic airway inflammation and remodeling during early life.  相似文献   

3.
The mechanisms responsible for pulmonary vascular remodeling in congenital heart disease with increased pulmonary blood flow remain unclear. We developed a lamb model of congenital heart disease and increased pulmonary blood flow utilizing an in utero placed aortopulmonary vascular graft (shunted lambs). Morphometric analysis of barium-injected pulmonary arteries indicated that by 4 wk of age, shunts had twice the pulmonary arterial density of controls (P < 0.05), and their pulmonary vessels showed increased muscularization and medial thickness at both 4 and 8 wk of age (P < 0.05). To determine the potential role of TGF-beta1 in this vascular remodeling, we investigated vascular changes in expression and localization of TGF-beta1 and its receptors TbetaRI, ALK-1, and TbetaRII in lungs of shunted and control lambs at 1 day and 1, 4, and 8 wk of life. Western blots demonstrated that TGF-beta1 and ALK-1 expression was elevated in shunts compared with control at 1 and 4 wk of age (P < 0.05). In contrast, the antiangiogenic signaling receptor TbetaRI was decreased at 4 wk of age (P < 0.05). Immunohistochemistry demonstrated shunts had increased TGF-beta1 and TbetaRI expression in smooth muscle layer and increased TGF-beta1 and ALK-1 in endothelium of small pulmonary arteries at 1 and 4 wk of age. Moreover, TbetaRI expression was significantly reduced in endothelium of pulmonary arteries in the shunt at 1 and 4 wk. Our data suggest that increased pulmonary blood flow dysregulates TGF-beta1 signaling, producing imbalance between pro- and antiangiogenic signaling that may be important in vascular remodeling in shunted lambs.  相似文献   

4.
Mycoplasma pneumoniae (Mp) has been linked to chronic asthma. Airway remodeling (e.g., airway collagen deposition or fibrosis) is one of the pathological features of chronic asthma. However, the effects of respiratory Mp infection on airway fibrosis in asthma remain unclear. In the present study, we hypothesized that respiratory Mp infection may increase the airway collagen deposition in a murine model of allergic airway inflammation in part through upregulation of transforming growth factor (TGF)-beta1. Double (2 wk apart) inoculations of Mp or saline (control) were given to mice with or without previous allergen (ovalbumin) challenges. On days 14 and 42 after the last Mp or saline, lung tissue and bronchoalveolar lavage (BAL) fluid were collected for analyses of collagen and TGF-beta1 at protein and mRNA levels. In allergen-na?ve mice, Mp did not alter airway wall collagen. In allergen-challenged mice, Mp infections did not change airway wall collagen deposition on day 14 but increased the airway collagen on day 42; this increase was accompanied by increased TGF-beta1 protein in the airway wall and reduced TGF-beta1 protein release from the lung tissue into BAL fluid. Our results suggest that Mp infections could modulate airway collagen deposition in a murine model of allergic airway inflammation with TGF-beta1 involved in the collagen deposition process.  相似文献   

5.
The pathogenesis of nonalcoholic steatohepatitis (NASH) is poorly defined. Feeding mice a diet deficient in methionine and choline (MCD diet) induces experimental NASH. Osteopontin (OPN) is a Th1 cytokine that plays an important role in several fibroinflammatory diseases. We examined the role of OPN in the development of experimental NASH. A/J mice were fed MCD or control diet for up to 12 wk, and serum alanine aminotransferase (ALT), liver histology, oxidative stress, and the expressions of OPN, TNF-alpha, and collagen I were assessed at various time points. MCD diet-fed mice developed hepatic steatosis starting after 1 wk and inflammation by 2 wk; serum ALT increased from day 3. Hepatic collagen I mRNA expression increased during 1-4 wk, and fibrosis appeared at 8 wk. OPN protein expression was markedly increased on day 1 of MCD diet and persisted up to 8 wk, whereas OPN mRNA expression was increased at week 4. TNF-alpha expression was increased from day 3 to 2 wk, and evidence of oxidative stress did not appear until 8 wk. Increased expression of OPN was predominantly localized in hepatocytes. Hepatocytes in culture also produced OPN, which was stimulated by transforming growth factor-beta and TNF-alpha. Moreover, MCD diet-induced increases in serum ALT levels, hepatic inflammation, and fibrosis were markedly reduced in OPN(-/-) mice when compared with OPN(+/+) mice. In conclusion, our results demonstrate an upregulation of OPN expression early in the development of steatohepatitis and suggest an important role for OPN in signaling the onset of liver injury and fibrosis in experimental NASH.  相似文献   

6.
Treatment of cardiac dysrhythmias with the iodinated benzofuran derivative amiodarone (AM) is limited by pulmonary toxicity. The susceptibilities of different lung cell types of male Golden Syrian hamsters to AM-induced cytotoxicity were investigated in vitro. Bronchoalveolar lavage and protease digestion to release cells, followed by centrifugal elutriation and density gradient centrifugation, resulted in preparations enriched with alveolar macrophages (98%), alveolar type II cells (75-85%), and nonciliated bronchiolar epithelial (Clara) cells (35-50%). Alveolar type II cell and Clara cell preparations demonstrated decreased viability (by 0.5% trypan blue dye exclusion) when incubated with 50 microM AM for 36 h, and all AM-treated cell preparations demonstrated decreased viability when incubated with 100 or 200 microM AM. Based on a viability index ((viability of AM-treated cells/viability of controls) x 100%), the Clara cell fraction was significantly (p<0.05) more susceptible than all of the other cell types to 50 microM AM. However, AM cytotoxicity was greatest (p<0.05) in alveolar macrophages following incubation with 100 or 200 microM AM. There was no difference between any of the enriched cell preparations in the amount of drug accumulated following 24 h of incubation with 50 microM AM, whereas alveolar macrophages accumulated the most drug during incubation with 100 microM AM. Thus, the most susceptible cell type was dependent on AM concentration. AM-induced cytotoxicity in specific cell types may initiate processes leading to inflammation and pulmonary fibrosis.  相似文献   

7.
8.
TGF-beta1 (TGF) has been implicated in the pathogenesis of several chronic infections and is thought to promote microbial persistence by interfering with macrophage function. In rats with experimental pulmonary cryptococcosis, increased lung levels of TGF were present at 12 mo of infection. Within the lung, expression of TGF localized to epithelioid cells and foamy macrophages in areas of inflammation. Increased TGF expression was also observed in the lungs of experimentally infected mice and a patient with pulmonary cryptococcosis. TGF reduced Ab and serum-mediated phagocytosis of Cryptococcus neoformans by rat alveolar macrophages (AM) and peripheral blood monocytes, and this was associated with decreased chemokine production and oxidative burst. Interestingly, TGF-treated rat AM limited both intracellular and extracellular growth of C. neoformans. Control of C. neoformans growth by TGF-treated rat AM was due to increased secretion of lysozyme, a protein with potent antifungal activity. The effects of TGF on the course of infection were dependent on the timing of TGF administration relative to the time of infection. TGF treatment of chronically infected rats resulted in reduced lung fungal burden, while treatment early in the course of infection resulted in increased fungal burden. In summary, our studies suggest a dual role for TGF in persistent fungal pneumonia whereby it contributes to the local control of infection by enhancing macrophage antifungal efficacy through increased lysozyme secretion, while limiting inflammation by inhibiting macrophage/monocyte phagocytosis and reducing associated chemokine production and oxidative burst.  相似文献   

9.
Chorioamnionitis is frequently associated with preterm birth and increases the risk of adverse outcomes such as bronchopulmonary dysplasia (BPD). Transforming growth factor (TGF)-beta1 is a key regulator of lung development, airway remodeling, lung fibrosis, and regulation of inflammation, and all these processes contribute to the development of BPD. Connective tissue growth factor (CTGF) is a downstream mediator of some of the profibrotic effects of TGF-beta1, vascular remodeling, and angiogenesis. TGF-beta1-induced CTGF expression can be blocked by TNF-alpha. We asked whether chorioamnionitis-associated antenatal inflammation would regulate TGF-beta1, the TGF-beta1 signaling pathway, and CTGF in preterm lamb lungs. Fetal sheep were exposed to 4 mg of intra-amniotic endotoxin or saline for 5 h, 24 h, 72 h, or 7 days before preterm delivery at 125 days gestation (full term = 150 days). Intra-amniotic endotoxin increased lung TGF-beta1 mRNA and protein expression. Elevated TGF-beta1 levels were associated with TGF-beta1-induced phosphorylation of Smad2. CTGF was selectively expressed in lung endothelial cells in control lungs, and intra-amniotic endotoxin caused CTGF expression to decrease to 30% of control values and TNF-alpha protein to increase. The antenatal inflammation-induced TGF-beta1 expression and Smad signaling in the fetal lamb lung may contribute to impaired lung alveolarization and reduced lung inflammation. Decreased CTGF expression may inhibit vascular development or remodeling and limit lung fibrosis during remodeling. These effects may contribute to the impaired alveolar and pulmonary vascular development that is the hallmark of the new form of BPD.  相似文献   

10.
Recently established Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of naturally occurring obesity diabetes, exhibit progressive accumulation of connective tissue in the pancreas. The present study was designed to determine the pathogenic role of transforming growth factor-beta1 (TGF-beta1) in the development of pancreatic fibrosis in OLETF rats by investigating the serial changes in the expression of TGF-beta1 and extracellular matrix (ECM) in the pancreas. Progressive proliferation of connective tissue arose from the interstitial region surrounding islets at 20 wk of age and extended to the exocrine pancreas adjacent to the islets. TGF-beta1 mRNA levels in the pancreas increased at 20 wk of age and reached a peak value at 30 wk of age. Fibronectin (FN) and procollagen types I and III mRNAs peaked at 20 wk of age and remained at higher levels than those in the nondiabetic counterparts Long-Evans Tokushima Otsuka rats until 50 wk of age. Immunoreactivities for TGF-beta1 and FN were found in islets of OLETF rats at 20 wk of age and were seen in acinar and interstitial cells at 50 wk of age. Moreover, alpha-smooth muscle actin was located at interstitial region surrounding the islets. Proliferation of the connective tissue in the pancreas of OLETF rats closely correlated with expression of TGF-beta1 and ECM. Our results suggest that the development of pancreatic fibrosis in OLETF rats extends from endocrine to exocrine pancreas and that TGF-beta1 is involved in pancreatic fibrosis of OLETF rats.  相似文献   

11.
Pulmonary fibrosis (PF) is a chronic, fibrosing interstitial pneumonia and devastating disease. Here we investigated the potential roles of Kruppel-like factor 2 (KLF2) on pulmonary fibrosis and inflammation response. A mouse model of pulmonary fibrosis was established by intratracheal injection of bleomycin (BLM). The mRNA and protein levels of KLF2 were assayed by RT-PCR and Western blotting respectively. The extent of lung fibrosis was determined using hematoxylin and eosin (HE) staining and Masson's trichrome staining, and the hydroxyproline content was quantified. RT-PCR was used to evaluate the mRNA expression of collagen type 1a1 (col1a1), col3a1, α-SMA, TNF-α, IL-1β and IL-6. The concentrations of TNF-α, IL-1β, and IL-6 in bronchoalveolar lavage fluid (BALF) and lung tissue were examined by ELISA. Also, the effects of KLF2 on activator protein-1 (AP-1) were evaluated by measuring the c-Jun and c-Fos protein levels. We found that KLF2 was remarkably downregulated in BLM-treated rats, both in mRNA and protein levels. Additionally, overexpression of KLF2 attenuated the destruction of the alveolar space and pulmonary interstitial collagen hyperplasia, and deposition reduced the expression of col1a1, col3a1, and α-SMA, and blocked the production of TNF-α, IL-1β, and IL-6 in BALF and lung tissue in vivo. Moreover, adenoviral transduction of KLF2 inhibited TGF-β1-induced expression of col1a1, col3a1, and α-SMA in vitro. Mechanically, BLM up-regulated c-Jun and c-Fos expression, which was impeded by KLF2 overexpression. Taken together, our data indicate that KLF2 attenuates pulmonary fibrosis and inflammation, possibly through the regulation of AP-1.  相似文献   

12.
13.
We investigated the effects of the nitric oxide (NO) donor molsidomine and the nitric oxide synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME) on pulmonary endothelin (ET)-1 gene expression and ET-1 plasma levels in chronic hypoxic rats. Two and four weeks of hypoxia (10% O2) significantly increased right ventricular systolic pressure, the medial cross-sectional vascular wall area of the pulmonary arteries, and pulmonary ET-1 mRNA expression (2-fold and 3.2-fold, respectively). ET-1 plasma levels were elevated after 4 wk of hypoxia. In rats exposed to 4 wk of hypoxia, molsidomine (15 mg x kg(-1) x day(-1)) given either from the beginning or after 2 wk of hypoxia significantly reduced pulmonary hypertension, pulmonary vascular remodeling, pulmonary ET-1 gene expression, and ET-1 plasma levels. L-NAME administration (45 mg x kg(-1) x day(-1)) in rats subjected to 2 wk of hypoxia did not modify these parameters. Our findings suggest that in chronic hypoxic rats, exogenously administered NO acts in part by suppressing the formation of ET-1. In contrast, inhibition of endogenous NO production exerts only minor effects on the pulmonary circulation and pulmonary ET-1 synthesis in these animals.  相似文献   

14.
Induction of apoptosis has been associated with a variety of exposures which result in inflammatory and fibrotic lung disorders. Macrophages are key regulatory cells in the lung; however, the role of apoptotic macrophages in those pulmonary disorders is not well characterized. In the present investigation, apoptotic macrophages were instilled into the lungs of rats to study directly the pulmonary responses to apoptotic cells. The effects of apoptotic macrophages on lung inflammation and fibrosis, as well as associated protein expression of TNF-alpha, TGF-beta, and matrix metalloproteinases (MMPs) were examined. Induction of macrophage apoptosis was carried out in vitro using a variety of known apoptosis inducers. Intratracheal administration of apoptotic macrophages (5 x 10(6) cells/rat) into the lung of rats caused an increase in pulmonary infiltration of macrophages and lung cell apoptosis 4 weeks after the treatment as indicated by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. In contrast, pulmonary instillation of saline or normal control macrophages had no effect. Histological analysis of lung sections showed collagen deposition and fibrotic lesions after apoptotic cell treatment but not in control groups. Immunohistochemical studies revealed increased expression of TNF-alpha, TGF-beta, MMP2, and MMP9 in the treatment group 4 weeks after the treatment. These results suggest a role for macrophage apoptosis in the initiation of these lung disorders. This study provides direct evidence that apoptotic macrophages can induce lung inflammation and fibrosis and that this induction may be associated with increased expression of TNF-alpha, TGF-beta, MMP2, and MMP9. Published 2002 Wiley-Liss, Inc.  相似文献   

15.
It is investigated if exercise-induced mRNA changes cause similar protein expression changes of Na(+)-K(+) pump isoforms (α(1), α(2), β(1), β(2)), FXYD1, and Na(+)/K(+) exchanger (NHE1) in rat skeletal muscle. Expression was evaluated (n = 8 per group) in soleus and extensor digutorum longus after 1 day, 3 days, and 3 wk (5 sessions/wk) of either sprint (4 × 3-min sprint + 1-min rest) or endurance (20 min) running. Two hours after exercise on day 1, no change in protein expression was apparent in either training group or muscle, whereas sprint exercise increased the mRNA of soleus α(2) (4.9 ± 0.8-fold; P < 0.05), β(2) (13.2 ± 4.4-fold; P < 0.001), and NHE1 (12.0 ± 3.1-fold; P < 0.01). Two hours after sprint exercise, protein expression normalized to control samples was higher on day 3 than day 1 for soleus α(1) (41 ± 18% increase vs. 15 ± 8% reduction; P < 0.05), α(2) (64 ± 35% increase vs. 37 ± 12% reduction; P < 0.05), β(1) (17 ± 21% increase vs. 14 ± 29% reduction; P < 0.05), and FXYD1 (35 ± 16% increase vs. 13 ± 10% reduction; P < 0.05). In contrast, on day 3, soleus α(1) (0.1 ± 0.1-fold; P < 0.001), α(2) (0.2 ± 0.1-fold; P < 0.001), β(1) (0.4 ± 0.1-fold; P < 0.05), and β(2)-mRNA (2.9 ± 1.7-fold; P < 0.001) expression was lower than after exercise on day 1. After 3 wk of training, no change in protein expression relative to control existed. In conclusion, increased expression of Na(+)-K(+) pump subunits, FXYD1 and NHE1 after 3 days exercise training does not appear to be an effect of increased constitutive mRNA levels. Importantly, sprint exercise can reduce mRNA expression concomitant with increased protein expression.  相似文献   

16.
Lung fibrosis is characterized by increased deposition of ECM, especially collagens, and enhanced proliferation of fibroblasts. l-arginine is a key precursor of nitric oxide, asymmetric dimethylarginine, and proline, an amino acid enriched in collagen. We hypothesized that l-arginine metabolism is altered in pulmonary fibrosis, ultimately affecting collagen synthesis. Expression analysis of key enzymes in the arginine pathway, protein arginine methyltransferases (Prmt), arginine transporters, and arginases by quantitative (q) RT-PCR and Western blot revealed significant upregulation of arginase-1 and -2, but not Prmt or arginine transporters, during bleomycin-induced pulmonary fibrosis in mice. HPLC revealed a concomitant, time-dependent decrease in pulmonary l-arginine levels. Arginase-1 and -2 mRNA and protein expression was increased in primary fibroblasts isolated from bleomycin-treated mice, compared with controls, and assessed by qRT-PCR and Western blot analysis. TGF-beta1, a key profibrotic mediator, induced arginase-1 and -2 mRNA expression in primary and NIH/3T3 fibroblasts. Treatment of fibroblasts with the arginase inhibitor, NG-hydroxy-l-arginine, attenuated TGF-beta1-stimulated collagen deposition, but not collagen mRNA expression or Smad signaling, in fibroblasts. In human lungs derived from patients with idiopathic pulmonary fibrosis, arginase activity was unchanged, but arginase-1 expression significantly decreased when compared with donor lungs. Our results thus demonstrate that arginase-1 is expressed and functionally important for collagen deposition in lung fibroblasts. TGF-beta1-induced upregulation of arginase-1 suggests an interplay between profibrotic agents and l-arginine metabolism during the course of lung fibrosis in the mouse, whereas species-specific regulatory mechanisms may account for the differences observed in mouse and human.  相似文献   

17.
Arginase is greatly elevated in asthma and is thought to play a role in the pathophysiology of this disease. As inhibitors of phosphodiesterase 4 (PDE4), the predominant PDE in macrophages, elevate cAMP levels and reduce inflammation, they have been proposed for use in treatment of asthma and chronic obstructive pulmonary disease. As cAMP is an inducer of arginase, we tested the hypothesis that a PDE4 inhibitor would enhance macrophage arginase induction by key cytokines implicated in asthma and other pulmonary diseases. RAW 264.7 cells were stimulated with IL-4 or transforming growth factor (TGF)-beta, with and without the PDE4 inhibitor rolipram. IL-4 and TGF-beta increased arginase activity 16- and 5-fold, respectively. Rolipram alone had no effect but when combined with IL-4 and TGF-beta synergistically enhanced arginase activity by an additional 15- and 5-fold, respectively. The increases in arginase I protein and mRNA levels mirrored increases in arginase activity. Induction of arginase II mRNA was also enhanced by rolipram but to a much lesser extent than arginase I. Unlike its effect in RAW 264.7 cells, IL-4 alone did not increase arginase activity in human alveolar macrophages (AM) from healthy volunteers. However, combining IL-4 with agents to induce cAMP levels induced arginase activity in human AM significantly above the level obtained with cAMP-inducing agents alone. In conclusion, agents that elevate cAMP significantly enhance induction of arginase by cytokines. Therefore, consequences of increased arginase expression should be evaluated whenever PDE inhibitors are proposed for treatment of inflammatory disorders in which IL-4 and/or TGF-beta predominate.  相似文献   

18.
TGF-beta and Smad3 signaling link inflammation to chronic fibrogenesis   总被引:6,自引:0,他引:6  
Transient adenovirus-mediated gene transfer of IL-1beta (AdIL-1beta), a proinflammatory cytokine, induces marked inflammation and severe and progressive fibrosis in rat lungs. This is associated with an increase in TGF-beta1 concentration in bronchoalveolar lavage (BAL) fluid. TGF-beta1 is a key cytokine in the process of fibrogenesis, using intracellular signaling pathways involving Smad2 and Smad3. In this study we investigate whether inflammation induced by IL-1beta is able to independently induce lung fibrosis in mice deficient in the Smad3 gene. Seven days after AdIL-1beta administration, similar levels of IL-1beta transgene are seen in BAL in both wild-type (WT) and knockout (KO) mice, and BAL cell profiles demonstrated a similar marked neutrophilic inflammation. Phospho-Smad2 staining was positive in areas of inflammation in both WT and KO mice at day 7. By day 35 after transient IL-1beta expression, WT mice showed marked fibrosis in peribronchial areas, quantified by picrosirius red staining and morphometry. However, there was no evidence of fibrosis or collagen accumulation in IL-1beta-treated KO mice, and peribronchial areas were not different from KO mice treated with the control adenovector. TGF-beta1 and phospho-Smad2 were strongly positive at day 35 in fibrotic areas observed in WT mice, but no such staining was detectable in KO mice. The IL-1beta-induced chronic fibrotic response in mouse lungs is dependent on Smad3. KO and WT animals demonstrated a similar inflammatory response to overexpression of IL-1beta indicating that inflammation must link to the Smad3 pathway, likely through TGF-beta, to induce progressive fibrosis.  相似文献   

19.
20.
The signal transduction mechanisms generating pathological fibrosis are almost wholly unknown. Endothelin-1 (ET-1), which is up-regulated during tissue repair and fibrosis, induces lung fibroblasts to produce and contract extracellular matrix. Lung fibroblasts isolated from scleroderma patients with chronic pulmonary fibrosis produce elevated levels of ET-1, which contribute to the persistent fibrotic phenotype of these cells. Transforming growth factor beta (TGF-beta) induces fibroblasts to produce and contract matrix. In this report, we show that TGF-beta induces ET-1 in normal and fibrotic lung fibroblasts in a Smad-independent ALK5/c-Jun N-terminal kinase (JNK)/Ap-1-dependent fashion. ET-1 induces JNK through TAK1. Fibrotic lung fibroblasts display constitutive JNK activation, which was reduced by the dual ETA/ETB receptor inhibitor, bosentan, providing evidence of an autocrine endothelin loop. Thus, ET-1 and TGF-beta are likely to cooperate in the pathogenesis of pulmonary fibrosis. As elevated JNK activation in fibrotic lung fibroblasts contributes to the persistence of the myofibroblast phenotype in pulmonary fibrosis by promoting an autocrine ET-1 loop, targeting the ETA and ETB receptors or constitutive JNK activation by fibrotic lung fibroblasts is likely to be of benefit in combating chronic pulmonary fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号