首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The Aspergillus nidulans ambient pH signaling pathway involves two transmembrane domain (TMD)-containing proteins, PalH and PalI. We provide in silico and mutational evidence suggesting that PalI is a three TMD (3-TMD) protein with an N-terminal signal peptide, and we show that PalI localizes to the plasma membrane. PalI is not essential for the proteolytic conversion of the PacC translation product into the processed 27-kDa form, but its absence markedly reduces the accumulation of the 53-kDa intermediate after cells are shifted to an alkaline pH. PalI and its homologues contain a predicted luminal, conserved Gly-Cys-containing motif that distantly resembles a Gly-rich dimerization domain. The Gly44Arg and Gly47Asp substitutions within this motif lead to loss of function. The Gly47Asp substitution prevents plasma membrane localization of PalI-green fluorescent protein (GFP) and leads to its missorting into the multivesicular body pathway. Overexpression of the likely ambient alkaline pH receptor, the 7-TMD protein PalH, partially suppresses the null palI32 mutation. Although some PalH-GFP localizes to the plasma membrane, it predominates in internal membranes. However, the coexpression of PalI to stoichiometrically similar levels results in the strong predominance of PalH-GFP in the plasma membrane. Thus, one role for PalI, but possibly not the only role, is to assist with plasma membrane localization of PalH. These data, considered along with previous reports for both Saccharomyces cerevisiae and A. nidulans, strongly support the prevailing model of pH signaling involving two spatially segregated complexes: a plasma membrane complex containing PalH, PalI, and the arrestin-like protein PalF and an endosomal membrane complex containing PalA and PalB, to which PacC is recruited for its proteolytic activation.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
Ambient pH gene regulation in fungi: making connections   总被引:1,自引:0,他引:1  
  相似文献   

13.
14.
Candida albicans is an important commensal of mucosal surfaces that is also an opportunistic pathogen. This organism colonizes a wide range of host sites that differ in pH; thus, it must respond appropriately to this environmental stress to survive. The ability to respond to neutral-to-alkaline pHs is governed in part by the RIM101 signal transduction pathway. Here we describe the analysis of C. albicans Rim13p, a homolog of the Rim13p/PalB calpain-like protease member of the RIM101/pacC pathway from Saccharomyces cerevisiae and Aspergillus nidulans, respectively. RIM13, like other members of the RIM101 pathway, is required for alkaline pH-induced filamentation and growth under extreme alkaline conditions. Further, our studies suggest that the RIM101 pathway promotes pH-independent responses, including resistance to high concentrations of lithium and to the drug hygromycin B. RIM13 encodes a calpain-like protease, and we found that Rim101p undergoes a Rim13p-dependent C-terminal proteolytic processing event at neutral-to-alkaline pHs, similar to that reported for S. cerevisiae Rim101p and A. nidulans PacC. However, we present evidence that suggests that C. albicans Rim101p undergoes a novel processing event at acidic pHs that has not been reported in either S. cerevisiae or A. nidulans. Thus, our results provide a framework to understand how the C. albicans Rim101p processing pathway promotes alkaline pH-independent processes.  相似文献   

15.
16.
17.
W. Li  A. P. Mitchell 《Genetics》1997,145(1):63-73
In the yeast Saccharomyces cerevisiae, rim1, 8, 9, or 13 mutations cause four phenotypes: poor growth at low temperature, altered colony morphology, inefficient sporulation due to reduced expression of the meiotic activator IME1, and, as shown here, defective invasive growth. In this report, we have determined the relationship between RIM1 and the other genes, RIM8, 9, and 13, in this group. We have analyzed production of epitope-tagged Rim1p derivatives with HA epitopes at the N-terminus or in the middle of the protein. These Rim1p derivatives exist primarily as a small form (90 kD for Rim1-HA2p) in wild-type cells and as a large form (98 kD for Rim1-HA2p) in rim8, 9, and 13 mutants. We have also analyzed production of β-galactosidase in strains that express a RIM1-lacZ fusion gene. β-galactosidase exists primarily as a ~130 kD form in wild-type cells and as a ~190 kD form in rim9 mutants. These results indicate that Rim1p undergoes C-terminal proteolytic cleavage, and that rim8, 9, and 13 mutations block cleavage. Expression of a Rim1p C-terminal deletion derivative suppresses rim8, 9, and 13 mutations. Thus the phenotypes of rim8, 9, and 13 mutants arise from the defect in Rim1p C-terminal cleavage. Cleavage of Rim1p, like that of its Aspergillus nidulans homologue PacC, is stimulated under alkaline growth conditions. Therefore, Rim1p, PacC and their respective processing pathways may represent a conserved signal transduction pathway.  相似文献   

18.
Completing the molecular analysis of the six pal genes of the ambient pH signal transduction pathway in Aspergillus nidulans , we report the characterization of palC and palH . The derived translation product of palH contains 760 amino acids with prediction of seven transmembrane domains in its N-terminal moiety. Remarkably, a palH frameshift mutant lacking just over half the PalH protein, including almost all of the long hydrophilic region C-terminal to the transmembrane domains, retains some PalH function. The palC -derived translation product contains 507 amino acids, and the null phenotype of a frameshift mutation indicates that at least one of the C-terminal 142 residues is essential for function. Uniquely among the A. nidulans pH-signalling pal genes, palC appears to have no Saccharomyces cerevisiae homologue, although it does have a Neurospora crassa expressed sequence tag homologue. In agreement with findings for the palA , palB and palI genes of this signalling pathway, levels of the palC and palH mRNAs do not appear to be pH regulated.  相似文献   

19.
20.
The Rim9/PalI groups of proteins are members of the Sur7 family, all of which contain a signal sequence and a block of three potential trans-membrane helices. Multi-protein sequence comparisons among fungi suggest that there are two classes of Rim9/PalI proteins; longer proteins like PalI that contain a Sur7 domain and a C-terminal extension, and shorter proteins like Rim9 that contain essentially only the Sur7 domain. We have examined possible roles of the longer, PalI-like proteins of both Saccharomyces cerevisiae (Yol019w) and Candida albicans (Orf19.1510/Srd1), two species that also contain short Rim9 proteins required for alkaline-associated stress responses. Deletions of the long form genes did not create any significant stress response phenotype in either S. cerevisiae or C. albicans, nor did the deletions enhance any of the rim9 deletion effects when combined in a double mutant. Furthermore, challenges in C. albicans show RIM9 but not SRD1 is important for proper response and hyphal formation. It appears that in fungal species such as Aspergillus nidulans containing only a long-form PalI-like protein, this element functions in the process of stress response, while in fungi with both versions the response to stress function is limited to the short-form protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号