首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A critical role in the initiation of ripening has been proposed for pectolytic enzymes which are known to be involved in fruit softening. The hypothesis that tomato (Lycopersicon esculentum Mill.) ripening is controlled by the initial synthesis of the cell-wall-degrading enzyme polygalacturonase (EC 3.2.1.15), which subsequently liberates cell-wall-bound enzymes responsible for the initiation of ethylene synthesis and other ripening events, has been examined. A study of kinetics of ethylene evolution and polygalacturonase synthesis by individual fruits in a ripening series, employing an immunological method and protein purification to identify and measure polygalacturonase synthesis, showed that ethylene evolution preceded polygalacturonase synthesis by 20h. Exogenous ethylene stimulated the synthesis of polygalacturonase and other ripening events, when applied to mature green fruit, whereas the maintenance of fruits in a low ethylene environment delayed ripening and polygalacturonase synthesis. It is concluded that enhanced natural ethylene synthesis occurs prior to polygalacturonase production and that ethylene is responsible for triggering polygalacturonase synthesis indirectly. Possible mechanisms for ethylene action are discussed.  相似文献   

2.
Cell extracts of a nonsporeforming strictly anaerobic bacterium, Acetobacterium woodii produced acetate in N-tris(Hydroxymethyl)methyl-2-aminoethane sulfonic acid or phosphate buffers from hydrogen and carbon dioxide. The formation of acetate was not dependent on the presence of ATP in the reaction mixture; ADP also did not influence the acetate production. Since acetic acid is the main fermentation product during growth of A. woodii with H2 and CO2, ATP must be synthesized in the course of acetate formation. The possible sites of ATP synthesis are discussed.  相似文献   

3.
Extracellular ATP dose dependently stimulated 45Ca2+ influx even in the presence of nifedipine, a Ca2+ antagonist that inhibits voltage-dependent Ca2+ channel, in osteoblast-like MC3T3-E1 cells. ATP stimulated arachidonic acid release and the synthesis of prostaglandin E2 (PGE2). However, the ATP-induced arachidonic acid release was significantly reduced by chelating extracellular Ca2+ with EGTA. On the other hand, ATP induced DNA synthesis of these cells in a dose-dependent manner in the range between 1μM and 1 mM. The pretreatment with indomethacin, a cyclooxygenase inhibitor, suppressed both ATP-induced PGE2 synthesis and DNA synthesis in these cells. The inhibitory effect by 50μM indomethacin on the DNA synthesis was reversed by adding 10μM PGE2. These results strongly suggest that extracellular ATP stimulates Ca2+ influx resulting in the release of arachidonic acid in osteoblast-like cells and that extracellular ATP-induced proliferative effect is mediated, at least in part, by ATP-stimulated PGE2 synthesis.  相似文献   

4.
Induction of type-IIA secreted phospholipase A2 (sPLA2-IIA) expression by bacterial components other than lipopolysaccharide has not been previously investigated. Here, we show that exposure of alveolar macrophages (AM) to Neisseria meningitidis or its lipooligosaccharide (LOS) induced sPLA2-IIA synthesis. However, N. meningitidis mutant devoid of LOS did not abolish this effect. In addition, a pili-defective mutant exhibited significantly lower capacity to stimulate sPLA2-IIA synthesis than the wild-type strain. Moreover, pili isolated from a LOS-defective strain induced sPLA2-IIA expression and nuclear factor kappa B (NF-kappaB) activation. These data suggest that pili are potent inducers of sPLA2-IIA expression by AM, through a NF-kappaB-dependent process.  相似文献   

5.
利用ADP和放射性磷直接合成ATP的方法,研究了无机磷(Pi)和叠氮钠对猪心线粒体ATP合成酶(F1FO-ATPase)ATP合成活性的影响.结果发现无机磷除作为合成ATP的底物参与F1FO-ATPase的合成反应外,还对F1FO-ATPase的合成活性呈现抑制作用,在1 mmol/L ADP存在时,随着Pi浓度由0.01~10 mmol/L增加,抑制合成作用越来越强.与叠氮钠在低浓度时(小于1 mmol/L)只抑制ATP水解,不影响ATP合成的观点不同.实验结果显示0.1 mmol/L叠氮钠表观激活F1FO-ATPase的ATP合成活性,且激活程度与反应体系中所加Pi的浓度呈负相关.当固定Pi浓度(0.1 mmol/L)后,随着叠氮钠浓度的增加表观激活程度也在变化,叠氮钠与磷浓度相等时表观激活程度最大,直至叠氮钠浓度接近0.5 mmol/L时,开始呈现表观抑制现象,叠氮钠浓度高于1 mmol/L之后,就出现解偶联现象.  相似文献   

6.
Prostaglandin F2alpha (PGF2alpha) induces cyclin D1 expression and DNA synthesis in Swiss 3T3 cells. In order to assess which signaling mechanisms are implicated in these processes, we have used both a pharmacological approach and interfering mutants. We demonstrate that PGF2alpha induces extracellular-signal-regulated kinase (ERK1-2) and p38MAPK activation, and inhibition of any of these signaling pathways completely blocks PGF2alpha-stimulated DNA synthesis. We also show that ERK1-2, but not p38MAPK activation is required to induce cyclin D1 expression, strongly suggesting that the concerted action of cyclin D1 gene expression and other events are required to induce complete phosphorylation of retinoblastoma protein and S-phase entry in response to PGF2alpha.  相似文献   

7.
Oxidative stress leads to perturbation of a variety of cellular processes resulting in inhibition of cell proliferation. This study has determined the effect of oxidative stress on protein synthesis in human K562 cells using a hydrophilic peroxyl radical initiator, AAPH and H2O2. The results indicated that oxidative stress leads to a significant decrease in the rate of protein synthesis caused due to induced activation as well as expression of the erythroid cell-specific eIF-2α kinase, called the Heme Regulated Inhibitor (HRI). Elevated levels of HRI expression and activity were accompanied by increased lipid peroxidation and decreased cell proliferation. Further, oxidative stress also caused inactivation of p34cdc2 kinase, thereby arresting cell division leading to apoptosis. Thus, the data provides the mechanism of inhibition of protein synthesis and perturbation of a cell cycle regulatory protein leading to inhibition of cell proliferation in K562 cells during oxidative stress.  相似文献   

8.
A sequential per-O-acetylation and thioglycosidation of unprotected reducing sugars using a stoichiometric quantity of acetic anhydride and alkyl- or arylthiols is reported. These reactions, which are catalyzed by BF3.OEt2, together constitute an efficient one-pot method for the synthesis of acetylated thioglycosides.  相似文献   

9.
The development of mass spectrometry-based techniques is opening new insights into the understanding of arachidonic acid (AA) metabolism. AA incorporation, remodeling and release are collectively controlled by acyltransferases, phospholipases and transacylases that exquisitely regulate the distribution of AA between the different glycerophospholipid species and its mobilization during cellular stimulation. Traditionally, studies involving phospholipid AA metabolism were conducted by using radioactive precursors and scintillation counting from thin layer chromatography separations that provided only information about lipid classes. Today, the input of lipidomic approaches offers the possibility of characterizing and quantifying specific molecular species with great accuracy and within a biological context associated to protein and/or gene expression in a temporal frame. This review summarizes recent results applying mass spectrometry-based lipidomic approaches to the identification of AA-containing glycerophospholipids, phospholipid AA remodeling and synthesis of oxygenated metabolites.  相似文献   

10.
We examined the effects of various leukotriene synthesis inhibitors on calcium signalling in HeLa cells, before and after transfection with BLT1. All of the inhibitors studied were found to reduce increases in intracellular calcium concentration induced by BLT1, but also by an ionophore or activation of various G-protein coupled receptors, regardless of BLT1 expression. In order to explore the mechanism of these apparently general effects we examined HeLa cell expression of leukotriene receptors and biosynthetic enzymes and found that the genes for key leukotriene synthesis enzymes and all of the leukotriene receptors were not expressed. Leukotrienes are involved in the pathology of a variety of cancers, and for HeLa cells leukotrienes have been reported to be important for aspects of the carcinogenic phenotype. We find that leukotriene synthesis inhibitors have non-specific effects, so careful controls are necessary to avoid interpreting non-specific effects as evidence for leukotriene involvement.  相似文献   

11.
《Free radical research》2013,47(11-12):1366-1378
Abstract

The NADPH oxidase (NOX) family of enzymes oxidase catalyzes the transport of electrons from NADPH to molecular oxygen and generates O2??, which is rapidly converted into H2O2. We aimed to identify in hepatocytes the protein NOX complex responsible for H2O2 synthesis after α1-adrenoceptor (α1-AR) stimulation, its activation mechanism, and to explore H2O2 as a potential modulator of hepatic metabolic routes, gluconeogenesis, and ureagenesis, stimulated by the ARs. The dormant NOX2 complex present in hepatocyte plasma membrane (HPM) contains gp91phox, p22phox, p40phox, p47phox, p67phox and Rac 1 proteins. In HPM incubated with NADPH and guanosine triphosphate (GTP), α1-AR-mediated H2O2 synthesis required all of these proteins except for p40phox. A functional link between α1-AR and NOX was identified as the Gα13 protein. Alpha1-AR stimulation in hepatocytes promotes Rac1-GTP generation, a necessary step for H2O2 synthesis. Negative cross talk between α1-/β-ARs for H2O2 synthesis was observed in HPM. In addition, negative cross talk of α1-AR via H2O2 to β-AR-mediated stimulation was recorded in hepatocyte gluconeogenesis and ureagenesis, probably involving aquaporine activity. Based on previous work we suggest that H2O2, generated after NOX2 activation by α1-AR lightening in hepatocytes, reacts with cAMP-dependent protein kinase A (PKA) subunits to form an oxidized PKA, insensitive to cAMP activation that prevented any rise in the rate of gluconeogenesis and ureagenesis.  相似文献   

12.
Human decidua contains an active adenylate cyclase, and a number of studies indicate that adenylate cyclase is functionally linked to increased in vitro prostaglandin synthesis. Increased decidual prostaglandin synthesis is associated with parturition, and therefore activation of adenylate cyclase may be involved in the control of human parturition. In this study, third trimester human decidual cells were preincubated for no more than 24 h prior to stimulation with a number of reagents which increase cellular cyclic AMP levels. Forskolin rapidly increased intracellular and extracellular cyclic AMP levels, but there was no increase in prostaglandin E2 biosynthesis during incubations ranging from 5 min up to 24 h. Dibutyryl cyclic AMP or 8-bromo-cyclic AMP were also without effect on PGE2 production, which suggests that the adenylate cyclase was not linked to the mechanisms regulating prostaglandin production. Cholera toxin increased basal cyclic AMP and PGE2 synthesis, and was without effect on IL-1β-stimulated PGE2 levels. PGE2 synthesis was increased by 24 h culture with IL-1β in all the cell preparations, indicating that the cells were biologically active, and that the lack of effect of changes in cyclic AMP synthesis on PGE2 levels could not be attributed to a defect in the prostaglandin synthetic pathway. Our findings did not agree with earlier work which showed that changes in cyclic AMP were correlated with changes in PGE2 production by human decidual cells. It is clear that in the previous studies the decidual cells were preincubated for 4–7 days prior to stimulation, in contrast with 24 h in our investigation. We suggest that the functional link between cyclic AMP and PGE2 synthesis reported previously may develop during culture, and not be a part of normal decidual cell function, but further studies are needed to test this hypothesis.  相似文献   

13.
An easy and fast procedure was developed for one-pot synthesis of steroidal isoxazoles starting from 23-acetylsapogenins derivatives in presence of P2O5/SiO2 in dry media under microwaves irradiation is described. Substrates of the 25S and 25R series were used as raw materials, establishing that this new methodology is applicable to both series.  相似文献   

14.
《Free radical research》2013,47(9):1068-1075
Abstract

It is proposed to discuss how ozonetherapy acts on patients affected by vascular and degenerative diseases. Ozone is a strong oxidant but, if used in small dosages on human blood ex vivo, acts as an acceptable stressor. By instantly reacting with PUFA bound to albumin, ozone is entirely consumed but generates two messengers acting in an early and in a late phase: the former is due to hydrogen peroxide, which triggers biochemical pathways on blood cells and the latter is due to alkenals which are infused into the donor patient. After undergoing a partial catabolism, alkenals enter into a great number of body's cells, where they react with Nrf2-Keap1 protein: the transfer of activated Nrf2 into the nucleus and its binding to antioxidant response element (ARE) is the crucial event able to upregulate the synthesis of antioxidant proteins, phase II enzymes and HO-1. With the progress of ozonetherapy, these protective enzymes are able to reverse the oxidative stress induced by chronic inflammation. Consequently, the repetition of graduated stresses induces a multiform adaptive response able to block the progress of the disease and to improve the quality of life.  相似文献   

15.
A novel series of P2Y12 antagonists for development of drugs within the antiplatelet area is presented. The synthesis of the piperazinyl-pyridine urea derivatives and their structure-activity relationships (SAR) are described. Several compounds showed P2Y12 antagonistic activities in the sub-micromolar range.  相似文献   

16.
比色生物传感技术由于具有灵敏度高、方法简单并且容易操作等优点,已广泛应用于生物环境中污染物检测、生物体内重要标志物的检测以及癌症筛查等多个领域。基于纳米酶的比色生物传感器主要是借助纳米酶自身所具有的催化能力,模拟类过氧化物酶活性,将显色剂氧化生成有色溶液,从而实现可视化检测,并通过对有色溶液吸光度的检测得到相关物质的含量。与无纳米酶的比色生物传感器相比,基于纳米酶的比色生物传感器具有选择性更高、检测更快以及灵敏度更高等优点。纳米酶在具有天然酶活性的同时还具有成本低、稳定性好的、易于合成等优点,其相关研究越来越广泛。目前,基于纳米酶的比色生物传感器已成为辅助相关医学检测的重要方法,同时也广泛应用于便携和实时性相关检测当中,为医学检测提供了重要的支持和保障。为了提高比色生物传感器的灵敏度以及应用范围,研究人员也在致力于增加可检测物质的种类以及纳米酶种类的多样化等。本文主要介绍基于纳米酶的比色生物传感器的检测原理、几类典型的纳米酶,以及基于纳米酶的比色生物传感器在生物医学检测领域中的应用情况和研究进展。  相似文献   

17.
Endothelins are well known as modulators of inflammation in the periphery, but little is known about their possible role in brain inflammation. Stimulation of astrocyte prostaglandin, an inflammatory mediator, synthesis was shown so far only by endothelin 3 (ET-3). By contrast, several studies showed no change or slight decrease of basal nitric oxide synthesis after treatment of astrocytes with endothelin 1 (ET-1) and ET-3. However, a significant increase in astrocytic and microglial nitric oxide synthase (NOS) was observed after exposure to ET-1 and ET-3 in a model of forebrain ischaemia. Here we demonstrate that all three endothelins (ET-1, ET-2, ET-3) significantly enhanced the synthesis of prostaglandin E(2) and nitric oxide in glial cells. Each of the selective antagonists for ETA and ETB receptors (BQ123 and BQ788 respectively), significantly inhibited endothelins-induced production of both nitric oxide and prostaglandin E(2). These results suggest a regulatory mechanism of endothelins, interacting with both endothelin receptors, on glial inflammation. Therefore, inhibition of endothelin receptors may have a therapeutic potential in pathological conditions of the brain, when an uncontrolled inflammatory response is involved.  相似文献   

18.
Convergent synthesis of two trisaccharides related to the cytotoxic triterpenoid saponin isolated from Pithecellobium lucidum is reported. The trisaccharides are synthesized in the form of their propargyl glycosides to leave the scope for further glycoconjugate formation through various multi-component reactions. A simple protecting group manipulation is followed using commercially available monosaccharides, d-glucose, d-xylose, d-fucose and l-rhamnose. H2SO4 immobilized on silica is used as the Brönsted acid source for the N-iodosuccinimide-mediated thioglycoside activation for stereoselective glycosylations and proved to be a better choice over traditional Lewis acid catalysts such as TMSOTf and TfOH.  相似文献   

19.
Here we describe in detail the crystal structures of the Vitamin K2 synthesis protein MenD, from Escherichia coli, in complex with thiamine diphosphate (ThDP) and oxoglutarate, and the effects of cofactor and substrate on its structural stability. This is the first reported structure of MenD in complex with oxoglutarate. The residues Gly472 to Phe488 of the active site region are either disordered, or in an open conformation in the MenD oxoglutarate complex structure, but adopt a closed conformation in the MenD ThDP complex structure. Biospecific-interaction analysis using surface plasmon resonance (SPR) technology reveals an affinity for ThDP and oxoglutarate in the nanomolar range. Biochemical and structural analysis confirmed that MenD is highly dependent on ThDP for its structural stability. Our structural results combined with the biochemical assay reveal novel features of the enzyme that could be utilized in a program of rational structure-based drug design, as well as in helping to enhance our knowledge of the menaquinone synthesis pathway in greater detail.  相似文献   

20.
SCH 58261 is a reported adenosine A2A receptor antagonist, which is active in rat in vivo models of Parkinson’s Disease upon ip administration. However, it has poor selectivity versus the A1 receptor and does not demonstrate oral activity. We report the design and synthesis of biaryl and heteroaryl analogs of SCH 58261 which improve the A2A receptor binding selectivity as well as the pharmacokinetic properties of SCH 58261. In particular, the quinoline 25 has excellent A2A receptor in vitro binding affinity and selectivity, sustained rat plasma levels upon oral dosing, and is active orally in a rat behavioral assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号