首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voigt T  Dauber W 《Tissue & cell》2004,36(4):249-252
In the present investigation the sole plate area of motor end plates of the frog is ultrastructurally examined with different postfixation methods. We concentrated in this case on the proof of the smooth and rough sarcoplasmic reticulum of the sole plate. The relations of the smooth and rough sarcoplasmic reticulum to subsynaptic folds and the local T-system and its connections to diads and triads in the sole plate area are represented. The morphological differences between mammal and frog are pointed out. The possible functions of the sarcoplasmic reticulum in the myofibril-free sarcoplasm are discussed.  相似文献   

2.
Voigt T  Dauber W 《Tissue & cell》2004,36(4):245-248
Previous investigations of the T-system in skeletal muscle fibres described the inter-myofibrillar relationships between T-tubules and the sarcoplasmic reticulum. They disregarded the arrangement of the T-system in the myofibril-free sarcoplasm in the area of muscle fibre nuclei. In the present investigation, the T-system was filled by means of lanthanum incubation and the myofibril-free sarcoplasm was ultrastructural examined by means of thin (< or = 100 nm) as well as thick sections (> 300 nm-1 microm) with the electron microscope. The investigation of thick sections revealed that T-tubules meander through this myofibril-free sarcoplasm and tangle up at the poles of muscle fibre nuclei and in the area of fundamental nuclei of the motor end plate. They are, far from myofibrils, in proximity to these nuclei, the Golgi apparatus and mitochondria. On basis of this proximity and their openings at the muscle fibre surface, a contribution at the drainage of metabolic products and at the local calcium control is discussed.  相似文献   

3.
Local anaesthetics, cardiotoxin and mechanical injuries may cause necrosis of muscle fibres while leaving the motor nerve fibres and their terminals intact. With local injuries to mouse muscles carried out by freezing or cutting we made a point of preserving both the nerve terminals and the muscle fibre portions on which these terminals were located. It was thus possible to follow the changes induced at endplates by these lesions. Within two or three days of the freezing or cutting, the muscle fibres underwent very different degrees of regression of the contractile material and T-system. The neuromuscular junctions also underwent changes, principally affecting their postsynaptic portion, in particular the folds of the subneural apparatus. After dedifferentiation of subsynaptic areas, we observed sprouting of the nerve terminal on muscle fibres which survived the amputation of one end and formed actively new myofibrils. This sprouting restored synaptic connections at the original sites, but with new structural features and correlative changes in the distribution of cholinergic receptors and cholinesterases. It is probable that after a phase of involution followed by a phase of recovery, the injured muscle fibres triggered off the nerve terminal sprouting which led to the remodelling of the endplates.  相似文献   

4.
Ferritin and Imferon molecules were introduced as tracers inside "skinned" muscle fibers to test which part of the triadic junction gap is freely exchangeable with the sarcoplasm. At least 50% of the T-system surface is freely accessible from the sarcoplasm. Of the remainder, 30% of the total T-system surface is covered by the junctional feet, and 20% in the center of the junction may or may not be accessible. The possibility is discussed that the triadic junction may not function as an electrical coupling.  相似文献   

5.
According to a recent model, the cortical tractor model, neural fold and neural crest formation occurs at the boundary between neural plate and epidermis because random cell movements become organized at this site. If this is correct, then a fold should form at any boundary between epidermis and neural plate. To test that proposition, we created new boundaries in axolotl embryos by juxtaposing pieces of neural plate and epidermis that would not normally participate in fold formation. These boundaries were examined superficially and histologically for the presence of folds, permitting the following observations. Folds form at each newly created boundary, and as many folds form as there are boundaries. When two folds meet they fuse into a hollow "tube" of neural tissue covered by epidermis. Sections reveal that these ectopic folds and "tubes" are morphologically similar to their natural counterparts. Transplanting neural plate into epidermis produces nodules of neural tissue with central lumens and peripheral nerve fibers, and transplanting epidermis into neural plate causes the neural tube and the dorsal fin to bifurcate in the region of the graft. Tissue transplanted homotypically as a control integrates into the host tissue without forming folds. When tissue from a pigmented embryo is transplanted into an albino host, the presence of pigment allows the donor cells to be distinguished from those of the host. Mesenchymal cells and melanocytes originating from neural plate transplants indicate that neural crest cells form at these new boundaries. Thus, any boundary between neural plate and epidermis denotes the site of a neural fold, and the behavior of cells at this boundary appears to help fold the epithelium. Since folds can form in ectopic locations on an embryo, local interactions rather than classical neural induction appear to be responsible for the formation of neural folds and neural crest.  相似文献   

6.
To determine the effects of nerve explants on the integrity of motor end plates in vitro, cholinesterase activity and structure of end plates were compared in newt muscle denervated in vivo, cultured in the absence of nerve explants, and cultured in the presence of sensory ganglia. In neuromuscular junctions denervated in vivo or in vitro, the synaptic vesicles become clumped and fragmented. A few intact vesicles escape into the synaptic cleft. Axon terminals degenerate until they are left as residual bodies within the Schwann cell cytoplasm. Junctional folds on the muscle surface are reduced in height and are no longer evident once traces of axoplasm within the Schwann cell disappear. End plate cholinesterase activity is reduced as junctional folds are lost. When muscle is cultured in the presence of a sensory ganglion, the terminal axoplasm degenerates in the same manner but junctional folds persist on the muscle surface. Moderately intense cholinesterase activity remains in association with the junctional folds, so that normal motor end plates are maintained in the absence of innervation. These results show that degenerative changes in the structure of the motor end plate and loss of cholinesterase activity occurring in organ culture as a result of denervation can be retarded by nerve explants that do not directly innervate the muscle.  相似文献   

7.
Summary The structure of the myoneural junction in the striated muscle of rat embryos and postnatal rats was studied by electron microscopy in order to assess at ultrastructural level the roles of neuronal and muscular elements and the sequence of events resulting in the formation of a functionally mature synaptic organization.From the observations it is concluded that the axon terminals enveloped by Schwann cells contain vesicles prior to apposition of the prospective synaptic membranes. Subsequently, subsarcolemmal thickening of the postsynaptic membrane takes place after the synaptic gap has been formed by disappearance of the teloglial cell from between the synaptic membranes but before the primary synaptic cleft in the strict sense is formed. Secondary synaptic clefts are formed later, when the primary synaptic cleft is regular in width, by local finger-like invaginations of the postsynaptic membrane, which thereafter expand basally, in a plane transverse to the axis of the axon terminal, to resemble flattened flasks. The junction is formed between multinucleated muscle cells and multiple axons, which at first lie side by side and later, when formation of adult-type secondary synaptic clefts is in progress, become separated by folds of the sarcoplasm and the teloglia. In extraocular muscles of adult rats the sarcoplasmic reticulum is closely associated with the postjunctional sarcoplasm.In the light of earlier observations on the development of contractibility after nerve stimulation, cholinesterase histochemistry and muscle fibre physiology, these observations are interpreted to indicate that functional differentiation of the myoneural synapse results from induction by the motor axon and that the association of the sarcoplasmic reticulum with the postjunctional sarcoplasm in adult extraocular muscles is related to modified fibre physiology.The author wishes to thank Prof. Antti Telkkä, M.D., Head of the Electron Microscope Laboratory, University of Helsinki, for placing the electron microscopic facilities at his disposal.  相似文献   

8.
Recent studies challenge the view that signals provided by motor neurons are required to activate subsynaptic nuclei and induce postsynaptic specializations in developing skeletal muscle. New findings show that acetylcholine receptor genes are expressed and that acetylcholine receptor clusters form preferentially in the prospective synaptic region of muscle independently of motor innervation. These results indicate that developing myotubes are patterned by mechanisms intrinsic to developing muscles and raise the possibility that patterning of muscles may influence the growth pattern of motor axons and the sites where synapses form.  相似文献   

9.
Observations on the Fine Structure of the Turtle Atrium   总被引:36,自引:28,他引:8       下载免费PDF全文
The general fine structure of the atrial musculature of the turtle heart is described, including; the nature of the sarcolemma; the cross-banded structure of the myofibrils; the character of the sarcoplasm, and the form and disposition of its organelles. An abundant granular component of the sarcoplasm in this species is tentatively identified as a particulate form of glycogen. The myocardium is composed of individual cells joined end to end at primitive intercalated discs, and side to side at sites of cohesion that resemble the desmosomes of epithelia. Transitional forms are found between desmosomes and intercalated discs. Both consist of a thickened area of the cell membrane with an accumulation of dense material in the subjacent cytoplasm. This dense amorphous component is often continuous with the Z substance of the myofibrils and may be of the same composition. The observations reported reemphasize the basic similarity between desmosomes and terminal bars of epithelia and intercalated discs of cardiac muscle. Numerous unmyelinated nerves are found beneath the endocardium. Some of these occupy recesses in the surface of Schwann cells; others are naked axons. No specialized nerve endings are found. Axons passing near the sarcolemma contain synaptic vesicles, and it is believed that this degree of proximity is sufficient to constitute a functioning myoneural junction.  相似文献   

10.
11.
Summary Nerve endings in the extraocular muscles of the rat were submitted to histochemical tests for formalin-induced fluorescence and carboxylic esterases. Acetylthiocholine, butyrylthiocholine and -naphthyl acetate were used as substrates and iso-OMPA, 284C51, eserine and E-600 as inhibitors. The ultrastructure of the endings was studied with the electron microscope.Both single and multiple nerve terminals were observed in all six extraocular muscles. The single terminals of myelinated axons were comparable in their light and electron microscopic structure with the typical motor end plates of other striated muscles, and like these they exhibit acetylcholinesterase (AChE), non-specific cholinesterase (ns. ChE) and non-specific esterase (ns. E) activity. These endings were apposed to twitch-type muscle fibres.The multiple terminals were classified with the light microscope into two types. The larger type was 1/3 of the size of the motor end plate; 2–5 endings innervated the same muscle fibre; subneural infoldings were weakly developed and possessed only slight AChE and ns. ChE and probably no ns. E activity. No subneural lamellae were visible under the light microscope in the smaller type, which also possessed AChE and ns. ChE and was composed of 10–20 small dots dispersed along a single muscle fibre. The Schwann cells along nerve fibres leading to these two types of multiple endings exhibited ns. ChE but not AChE and ns. E activity.The ultrastructure of the two types of multiple endings was principally similar. The main difference, compared with the motor end plate, was that these endings were derived from unmyelinated axons which either make synaptic contacts along their course with the muscle fibre at variable distances (smaller-type) or these terminals were grouped closely together (larger-type).A few dense-core vesicles were observed in these unmyelinated nerves and in their terminals which were considerably smaller than those in the motor end plate. They were not always separated from each other by sarcoplasm and teloglia (larger-type) and contained also empty vesicles. The secondary synaptic clefts were often sparse and irregular or even absent, but the typical myoneural postsynaptic electron density was always observed. These multiple endings, in contrast to the motor end plate, were apposed only to muscle fibres with slow contraction.No catecholamine containing nerve endings were observed in the extraocular muscles. These observations indicate that the rat extraocular muscles have a double cholinergic innervation.The author wishes to express his gratitude to Professor Antti Telkkä, M. D., Head of the Electron Microscope Laboratory, University of Helsinki, for permission to avail himself of the electron microscope facilities.  相似文献   

12.
Previously, suggestions have been made that postjunctional folds at the vertebrate motor end plate might, in some way, serve to enhance neuromuscular transmission. This suggestion was examined quantitatively using a model junction with geometry similar to that seen in mammalian 'fast twitch' muscles. It was found that the depolarization produced at the top of an interfold by a quantum of acetylcholine is significantly greater than that produced in the absence of folds because of the series resistance of the interfold myoplasm. As a result, voltage-sensitive sodium channels in the postsynaptic membrane are activated more readily. In the model, activation of as few as four interfolds by eight quanta is sufficient for excitation to spread to the remainder of the muscle. With no folds, 19 quanta are required.  相似文献   

13.
Summary Electron microscopic observations have been made on the regeneration of neuromuscular junctions during spontaneous re-innervation of the rat diaphragm, following unilateral transsection of the phrenic nerve. 3 and 4 weeks after denervation motor end plates displayed the pattern of almost complete degeneration, i.e. persisting subneural foldings, deprived of neural contact and covered with collagen fibrils and fibrocytes. From observations at 5, 10 and 24 weeks after denervation the following sequence of events could be established: a few small axon terminals, accompanied by Schwann cells, became apposed to subneural folds, while most foldings were covered initially by Schwann cells or still by collagen fibrils. Gradually an increasing number of subneural folds came into contact with axon terminals. At 24 weeks all junctions displayed the pattern of a mature motor end plate. In the majority of regenerating neuromuscular junctions single dense-cored vesicles of approximately 900–1200 Å were present in axon terminals.It is concluded that under the present conditions restoration of neuromuscular transmission is accomplished by a re-innervation of the preserved subneural apparatuses of former junctions by regenerating axons. The significance of the occurrence of dense-cored vesicles in regenerating motor end plates is discussed.This work was supported by the Deutsche Forschungsgemeinschaft and the Stiftung Volkswagenwerk.  相似文献   

14.
1. Owing to differing structural characteristics of the contractile substance, the muscle fibres have been divided into the three types A, B and C in former papers. This distinction seems to be corroborated by our investigations into the different structure regarding the traids. As for the A-fibres, they are structured in terms of the T-system being connected in its entire length with the SR-cisternae and circling the myofibrils at the level of the Z-layer. In the B-fibres, this permanent couping of the two membrane systems is partially interrupted so that the T-tubules are arranged round the myofibrils in such a way that they are isolated or only coupled on one side with the SR-cisternae. Apart from the triads we also find diads. There is a totally different arrangement of the membrane systems in the C-fibres. In this instance the T-tubules are not only arranged transversally but also vertically along the contractile elements. They are surrounded by an "SR-labyrinth" which forms individual minor cisternae which are lateraly coupled with the T-tubules. So the axis of these triads is turned by 90 degrees as compared to the A and B fibres. As a result of this different arrangement, these triads always appear in cross-sections, not however, in longitudinal sections as is the case with the A and B fibres. The tirads have a varying shape in the cross-sections depending on the level of the section and due to the fact that the cisternae are not always coupled congruently with the T-tubules. 2. In our discussion we have tried to related these differing shapes and arrangements of the triads in the fibre types A, B and C to known physiological findings. Therefore we deduced that the excitation transmittance and calcium release can be correlated with the anomal rectification of the triads, which has been localized in the region where the T-tubules and SR-cisternae are coupled. However, we can only reckon with a solution once the morphology and function of the "feet" and the eletronmicroscopically "blank" spaces which fill the gap-junction between the T-tubules and the SR-cisternae have been explained. Whatever function the free surface of the T-tubules has remains open. It is directly adjoining the sarcoplasm and we are tryping to relate it to the delayed rectification which appears on the fibre membrane. 3. Moreover from the arrangement of the SR-cisternae i- the individual fibre types we can deduce th intrafibrillar directions of expansion of the calcium after its release and thus the process of the excitation in the A, B and C fibres. It appears that calcium is being directed homogeneously from the SR-cisternae of the A-fibres to the actinfilaments. here the morphological appearance of the twitch fibre presents itself to us. In principle this pattern of expansion of calcium in the B-fibres remains consistent. Owing to the interruption between the T-system and the SR-cisternae we may assume that the process of contraction is delayed in contrast to the A-fibres...  相似文献   

15.
Summary The fine structure of the body wall muscle of the pentastomid Reighardia sternae is described. The muscle fibres are separated from one another and form two layers, circular and longitudinal. They are cross-striated with approximately 11 actin filaments surrounding each myosin filament. The T-system consists of simple in-pushings of the sarcolemma. The SR is also simple and forms both dyadic and triadic contacts with the T-system tubules and dyadic contacts with the sarcolemma. Electron-dense inclusions occur, usually in the vicinity of the Z-lines, and it is suggested that these may be composed of unsaturated lipids.  相似文献   

16.
Voltage-sensing dyes were used to examine the electrical behavior of the T-system under passive recording conditions similar to those commonly used to detect charge movement. These conditions are designed to eliminate all ionic currents and render the T-system potential linear with respect to the command potential applied at the surface membrane. However, we found an unexpected nonlinearity in the relationship between the dye signal from the T-system and the applied clamp potential. An additional voltage- and time-dependent optical signal appears over the same depolarizing range of potentials where change movement and mechanical activation occur. This nonlinearity is not associated with unblocked ionic currents and cannot be attributed to lack of voltage clamp control of the T-system, which appears to be good under these conditions. We propose that a local electrostatic potential change occurs in the T-system upon depolarization. An electrostatic potential would not be expected to extend beyond molecular distances of the membrane and therefore would be sensed by a charged dye in the membrane but not by the voltage clamp, which responds solely to the potential of the bulk solution. Results obtained with different dyes suggest that the location of the phenomena giving rise to the extra absorbance change is either intramembrane or at the inner surface of the T-system membrane.  相似文献   

17.
Six extraocular muscles of the grass snake, Natrix natrix L. together with their motor end plates were examined in the light and electron microscope, and the measurements of the diameter of muscle fibres and the area of their motor end plates were performed. Morphologically, two types of muscle fibres: tonic and red phase ones were distinguished. The former fibres, 2,3 to 14,5 mum in diameter possess single or multiple (up to five on a single fibre) "en grappe" motor end plates, without postsynaptic junctional folds. The latter fibres, 10...40 mum in diameter have single, "en plaque" motor end plates, with numerous postsynaptic junctional infoldings. The morphological features of muscle fibres and motor end plates as well as the correlation between the diameter of muscle fibres and the area of motor end plates are discussed.  相似文献   

18.
The morphology of neuromuscular junction in the amphibian submandibular muscle has been examined both light and electron microscopically. Despite the differentiation of muscle fibres into types, both the structure and ultrastructure of the motor end plates was found fairly uniform in the examined species. The strongly positive correlation between the motor end plate surface area and muscle fibre diameter was found in Triturus and Rana. Some aspects of the motor end plate morphology are discussed in connection with the results of the author's physiological and morphological observations obtained formerly.  相似文献   

19.
Using the electron-microscope technique of Lewis and Shute, we studied the localization of the acetylcholinesterase (AChE) activity in the hypoglossal, facial and spinal-cord motor nuclei of rats. The technique used selectively detects synapses with subsynaptic cisterns (type C synapses) as well as heavy deposits of reaction products in the rough endoplasmic reticulum, in fragments of the nuclear envelope, in some Golgi zones and on parts of the pericaryal plasma membrane, the axolemma and the dendritic membrane. In C synapses, AChE activity was located in the synaptic cleft and on the membrane of presynaptic boutons. Some C synapses exhibited distinct synaptic specialization in the form of multiple 'active zones'. These zones were characterized by dense presynaptic projections, short dilations of the synaptic cleft, and postsynaptic densities localized between the postsynaptic membrane and the outer membrane of the subsynaptic cistern. Within the postsynaptic densities, rows of rod- or channel-like structures were observed. The subsynaptic cisterns were continuous with the positive rough endoplasmic reticulum. The results are discussed in terms of the possible role of C synapses in the regulation of AChE synthesis in postsynaptic cholinergic neurons and/or in the regulation of AChE release into the extracellular space as well as in the establishment of new synaptic contacts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号