首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The salvage of ischaemic myocardium by BW755C in anaesthetised dogs   总被引:5,自引:0,他引:5  
BW755C, a dual inhibitor of the lipoxygenase and cyclo-oxygenase pathways of arachidonic acid metabolism reduces the size of an infarct produced by 60 min of coronary occlusion followed by 5 hours reperfusion in anaesthetised beagles. This effect of BW755C is observed when the drug is given after the period of occlusion, and is independent of any haemodynamic effect. In contrast, indomethacin, which inhibits only the cyclo-oxygenase pathway, did not influence infarct size. It is suggested that the salvage of acutely ischaemic myocardium by BW755C is due to inhibition of lipoxygenase product formation by migrating cells which invade the damaged myocardium to produce an inflammatory response.  相似文献   

2.
Mammalian 5-lipoxygenase systems exist in inactive or cryptic states and have to be stimulated in order to metabolize exogenous [14C]arachidonic acid to 5-HETE and leukotrienes. In most cells, both the activation process and the 5-lipoxygenase activity are calcium-dependent. However, the cryptic 5-lipoxygenase system in the murine PT-18 mast/basophil cell line, which can be stimulated by 15-hydroxyeicosatetraenoic acid (15-HETE), is unusual. Studies with fura-2 loaded PT-18 cells indicate that increases in cytosolic calcium do not appear to correlate with enhanced 5-lipoxygenase product formation. Thus, both the calcium ionophore ionomycin and arachidonic acid increase cytosolic calcium levels but have very little effect on [14C]5-HETE formation, whereas 15-HETE induces large increases in [14C]5-HETE production but no concomitant enhancement in cytosolic calcium is observed. Chelation of extracellular calcium by 3 mM EGTA resulted in a 30-40% inhibition of [14C]5-HETE formation induced by 15 HETE, whereas 3 mM EGTA has no appreciable effect on a crude PT-18 5-lipoxygenase homogenate. These results indicate that in PT-18 cells, calcium does not appear to play an important role in either the 15-HETE-induced activation process, or the enzymatic activity of the cryptic 5-lipoxygenase system.  相似文献   

3.
Rat splenic natural killer (NK) cell activity against 51Cr-labeled YAC-1 or TMT-081 tumor cells can be augmented by culturing at 37 degrees C for 18 hr. Inhibitors of the lipoxygenase pathway of arachidonic acid metabolism, NDGA, alpha-phenanthroline, quercetin, ETYA, BW755C, esculetin, and timegadine, inhibited this NK activation and also inhibited NK cytotoxicity when added directly to the NK assay. However, there was a partial loss of sensitivity of activated NK cells to suppression by NDGA, BW755C, and esculetin. Indomethacin failed to reverse the inhibition of NK activation caused by NDGA. However, LTB4 and LTC4 (0.01 microgram/ml) were able to reverse the inhibitory effect of NDGA on NK activation. Furthermore, spleen cells cultured for 18 hr synthesized detectable amount of LTC4 in their supernatants. NDGA inhibited the LTC4 synthesis in a dose-dependent manner. These data therefore suggest that leukotrienes are responsible for NK activation, and lipoxygenase activity is essential for NK cytolytic activity.  相似文献   

4.
The effects of a variety of inhibitors of the arachidonic acid metabolic pathway have been tested on the growth of early erythroid progenitor cell-derived colonies (CFU-E and BFU-E) in an attempt to discern whether products of the cyclo-oxygenase pathway or lipoxygenase pathway are essential for erythropoiesis. Murine erythroid progenitor cells obtained from fetal livers were cultured in the presence of erythropoietin for CFU-E and of interleukin 3 for BFU-E colony formation in response to the cyclo-oxygenase inhibitors, aspirin or sodium meclofenamate, and the lipoxygenase inhibitors, BW755C, nordihydroguiaretic acid (NDGA), phenidone, and butylated hydroxyanisole (BHA). The most potent inhibitor of colony formation (both CFU-E and BFU-E) was the selective lipoxygenase inhibitor, BW755C, followed by NDGA, phenidone and BHA. Neither aspirin nor sodium meclofenamate (10(-4) - 10(-6)M) significantly (p less than 0.05) inhibited CFU-E or BFU-E formation. These results support the hypothesis that lipoxygenase products of arachidonic acid metabolism may be essential for erythroid cell proliferation/differentiation.  相似文献   

5.
Purified recombinant human 5-lipoxygenase was used to investigate the catalytic properties of the protein in the presence and absence of leukocyte stimulatory factors. Recombinant human 5-lipoxygenase was purified to apparent homogeneity (95-99%) from a high expression baculovirus system by chromatography on ATP-agarose with a yield of 0.6 mg of protein per 100 ml of culture (2 x 10(8) cells) and a specific activity of 3-6 mumol of 5-hydroperoxyeicosatetraenoic acid (5-HPETE) per mg of protein in the presence of ATP, Ca2+, and phosphatidylcholine as the only factors. In the absence of leukocyte factors, the reaction catalyzed by the purified recombinant enzyme showed a half-time of maximal 5-HPETE formation of 0.5-0.7 min and was sensitive to the selective 5-lipoxygenase inhibitors BW755C (IC50 = 13 microM) and L-656,224 (IC50 = 0.8 microM). The reaction products of arachidonic acid oxidation were 5-HPETE and 6-trans- and 12-epi-6-trans-leukotriene B4, the nonenzymatic hydrolysis products of leukotriene A4 (LTA4), indicating that the purified protein expressed both the 5-oxygenase and leukotriene A4 synthase activities (ratio 6:1). The microsomal fraction and the 60-90% ammonium sulfate precipitate fraction from sonicated human leukocytes did not increase product formation by the isolated enzyme when assayed in the presence of ATP, Ca2+, and phosphatidylcholine. These factors were found to stabilize 5-lipoxygenase during preincubation of the enzyme at 37 degrees C with the assay mixture but they failed to stimulate enzymatic activity when added at the end of the preincubation period. The results demonstrate that human 5-lipoxygenase can be isolated in a catalytically active form and that protein factors from leukocytes protect against enzyme inactivation but are not essential for enzyme activity.  相似文献   

6.
The effects of an inhalation anesthetic, halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on the formation of 5-lipoxygenase metabolites such as leukotriene B4, 5(S)-hydroxyeicosatetraenoic acid (5-HETE), 6-trans-isomers of leukotriene B4 and leukotriene C4 were studied in human leukocytes stimulated with calcium ionophore A23187. Halothane inhibited the formation of all these metabolites dose dependently and the formation was restored by removal of the drug. The anesthetic also reversibly inhibited the release of [3H]arachidonic acid from neutrophils with a half-inhibition concentration of less than 0.19 mM. The formation of 5-lipoxygenase metabolites was not inhibited by the anesthetic when leukocytes were stimulated with the ionophore in the presence of exogenous arachidonic acid. These observations indicate that the inhibitory effect of halothane on the formation of 5-lipoxygenase metabolites in leukocytes is mainly due to the inhibition of arachidonic acid release.  相似文献   

7.
Degranulation of IgE-sensitized rat mast cells by antigen was studied quantitatively in vitro and in vivo by electron microscopy. The inhibition of this degranulation by an anti-allergic drug, N-(3,4-dimethoxycinnamoyl)anthranilic acid (Tranilast), was also examined both in vitro and in vivo. In the in vitro study using peritoneal mast cells, alteration of the granules, cavity formation by fusion of the perigranular membrane and granule discharge due to fusion of the cavity membrane with the cell membrane were observed and were accompanied by histamine release. Scanning electron microscopy disclosed the extrusion of smooth, round bodies from pores formed on the cell surface. In the in vivo study of passive cutaneous anaphylaxis (PCA), the characteristic features of mast cell degranulation were obvious 5 min after the injection of antigen; leakage of dye increased progressively from 5 to 30 min but was not found at 6 h. From quantitative analysis of the substructure of mast cells, it was demonstrated that degranulation of IgE-sensitized mast cell induced by antigen was achieved by sequential exocytosis both in vitro and in vivo. Tranilast inhibited these changes to a remarkable extent and it was concluded that the inhibition of mast cell degranulation by this drug might play an important role in anti-allergic treatment.  相似文献   

8.
The synthesis and release of leukotriene B4 (LTB4) from canine polymorphonuclear leukocytes (PMNs) was characterized in terms of incubation time, temperature and effects of calcium ionophore A23187 concentrations. Maximal LTB4 concentrations were determined when canine PMNs were incubated with 10 microM A23187. Increasing LTB4 concentrations were determined through 10 min incubation. The maximal LTB4 concentrations (310 +/- 30 pg LTB4/2.5 x 10(5) cells) determined at 10 min did not change through a 55 min incubation period. Greater LTB4 concentrations were synthesized by canine PMNs at 37 degrees C (268 +/- 12 pg LTB4/2.5 x 10(5) cells) than at 25 degrees C (206 +/- 11 pg LTB4/2.5 x 10(5) cells) or 5 degrees C (59 +/- 3 pg LTB4/2.5 x 10(5) cells). The synthesis of LTB4 in canine PMNs was inhibited by incubation of the cells with either of two known lipoxygenase inhibitors, BWA4C or BW755C. BWA4C inhibited LTB4 synthesis with an approximate IC50 = 0.1 microM, whereas BW755C inhibited LTB4 synthesis with an approximate IC50 = 10 microM. These results indicate canine PMNs have the capability to synthesize large quantities of LTB4 when stimulated with calcium ionophore A23187. Furthermore, the 5-lipoxygenase inhibitors BWA4C, an acetohydroxyamic acid, and BW755C, a phenyl pyrazoline, can readily inhibit LTB4 synthesis in canine PMNs.  相似文献   

9.
Cross-linking of IgE receptors by antigen stimulation leads to histamine release and arachidonic acid release in rat peritoneal mast cells. Investigators have reported a diverse distribution of [3H]arachidonate that is dependent on labelling conditions. Mast cells from rat peritoneal cavity were labelled with [3H]arachidonic acid for different periods of time at either 30 or 37 degrees C. Optimum labelling was found to be after 4 h incubation with [3H]arachidonate at 30 degrees C, as judged by cell viability (Trypan Blue uptake), responsiveness (histamine release) and distribution of radioactivity. Alterations in 3H-radioactivity distribution in mast cells labelled to equilibrium were examined on stimulation with antigen (2,4-dinitrophenyl-conjugated Ascaris suum extract). The results indicated that [3H]arachidonic acid was lost mainly from phosphatidylcholine and, to a lesser extent, from phosphatidylinositol. A transient appearance of radiolabelled phosphatidic acid and diacylglycerol indicated phosphatidylinositol hydrolysis by phospholipase C. Pretreatment with a phospholipase A2 inhibitor, mepacrine, substantially prevented the antigen-induced liberation of [3H]arachidonic acid from phosphatidylcholine. It can be thus concluded that, in the release of arachidonic acid by antigen-stimulated mast cells, the phospholipase A2 pathway, in which phosphatidylcholine is hydrolysed, serves as the major one, the phospholipase C/diacylglycerol lipase pathway playing only a minor role.  相似文献   

10.
Thapsigargin, a non-TPA-type tumor promoter, releases histamine and stimulates arachidonic acid metabolism in rat peritoneal mast cells. In order to clarify the relationship between the histamine-releasing activity and the arachidonic acid metabolism-stimulating activity of thapsigargin in mast cells, the effects of cyclooxygenase inhibitors, indomethacin and ibuprofen, a lipoxygenase inhibitor, AA861, and dual inhibitors for cyclooxygenase and lipoxygenase, nordihydroguaiaretic acid and BW755C, on histamine release and arachidonic acid metabolism were examined. High-performance liquid chromatography analysis revealed that the peritoneal mast cells preferentially produce prostaglandin D2 by thapsigargin treatment. These inhibitors suppressed thapsigargin-induced prostaglandin D2 production in a dose-dependent manner, but failed to inhibit histamine release, suggesting that the mechanisms for stimulation of histamine release by thapsigargin is not dependent on increased arachidonic acid metabolism. Time-course experiments of histamine release and the release of radioactivity from [3H]arachidonic acid-labeled mast cells also provide evidence for a difference in mechanism.  相似文献   

11.
The effect of inhibitors of the cyclo-oxygenase and lipoxygenase pathways of arachidonic acid metabolism on steroidogenesis in rat testis Leydig cells and rat tumour Leydig cells has been investigated. In the presence of nordihydroguaiaretic acid [NDGA; 4,4'-(2,3- dimethylbutan -1,4- diyl )bis[1,2- benzendiol ]], 5,8,11,14-eicosatetraynoic acid (ETYA), BW 755C [3-amino-1-[3-(trifluoromethyl)phenyl]-2-pyrazoline hydrochloride] and benoxaprofen [ Opren ; 2-(2-p-chlorophenyl- benzoxazol -5-yl)propionic acid)] (which inhibit lipoxygenase activity), but not indomethacin and aspirin (which inhibit cyclo-oxygenase activity), a dose-related inhibition of lutropin (LH)-stimulated testosterone and pregnenolone production was obtained (ID50 values of 2.5, 30, 25 and 30 microM for NDGA, ETYA, BW 755C and benoxaprofen were obtained, respectively). BW 755C and benoxaprofen had no significant effect on LH-stimulated cyclic AMP production except at the highest concentrations examined (330 and 380 microM, respectively), whereas NDGA and ETYA inhibited LH-stimulated cyclic AMP production in a dose-dependent manner (ID50 7.0 and 22 microM respectively). However, NDGA and ETYA also caused a dose-dependent inhibition of dibutyryl cyclic AMP-stimulated testosterone and pregnenolone production. The metabolism of exogenous ( 22R )-hydroxycholesterol or pregnenolone to testosterone by Leydig cells was not inhibited by either NDGA, ETYA or indomethacin. At low concentrations of NDGA and ETYA a significant increase in the conversion of both pregnenolone and ( 22R )-hydroxycholesterol to testosterone was obtained. Studies in which the metabolism of [14C]arachidonic acid by purified rat tumour Leydig cells was investigated indicate that products are formed by tumour Leydig cells that have similar mobilities in a thin layer chromatography system to 5-L-hydroxy-6,8,11,14-eicosatetraenoic acid, 12-L-hydroxy-5,8,10,14-eicosatetraenoic acid and leukotriene B4. The formation of these products was inhibited to varying degrees by NDGA, BW 755C and benoxaprofen but not by aspirin and indomethacin. These studies demonstrate for the first time that inhibition of lipoxygenase activity but not cyclo-oxygenase activity causes an inhibition of LH- and dibutyryl cyclic AMP-stimulated steroid production and suggest a stimulatory role for products of the lipoxygenase pathway of arachidonic acid metabolism in steroidogenesis. The site of this stimulation is apparently distal to the production of cyclic AMP and before the side chain cleavage of cholesterol.  相似文献   

12.
A cloned murine mast cell line designated MC9 expresses a 5-lipoxygenase activity when stimulated with the ionophore A23187. Upon addition of 0.5 microM ionophore, MC9 cells produce 270 +/- 43 pmoles 5-HETE, 74 +/- 40 pmoles 5,12 diHETEs and 65 +/- 31 pmoles LTC4/10(6) cells from 37 microM exogenously added [1-14C]arachidonic acid in two minutes. 5-HETE and 5,12-diHETES, including LTB4 were identified by GC/MS whereas LTC4 was confirmed by HPLC mobility, bio-assay, RIA and enzymatic transformation. The principal cyclooxygenase products were PGD2 and TxB2 (8.5 +/- 2.4 and 5.4 +/- 1.2 pmoles/10(6) cells respectively). Prostanoids were identified by comigration with authentic standards on two-dimensional thin layer chromatograms. Production of arachidonic acid lipoxygenase metabolites stimulated with ionophore proved relatively insensitive to removal of extracellular Ca+2 and chelation by EGTA. In addition, MC9 5-lipoxygenase required only low micromolar amounts of exogenous arachidonic acid for maximal activity. Whereas production of arachidonic acid metabolites lasted only two to five minutes, histamine release stimulated with ionophore was not initiated until 5 minutes (12 +/- 3% cellular histamine) and continued for 30 minutes (37 +/- 7% cellular histamine). Although these cells metabolize arachidonic acid differently from the classic peritoneal-derived mast cell, they resemble subpopulations found in certain tissues (such as mucosa) and should be useful in understanding the biochemistry of mast cell mediator release.  相似文献   

13.
Arachidonic acid metabolism in ionophore A23187-activated human polymorphonuclear leukocytes (PMNs) proceeds predominantly via the 5-lipoxygenase pathway in comparison to metabolism by the 15-lipoxygenase route. Products of both lipoxygenase pathways appear to be involved in the mediation of inflammatory reactions. Pretreatment of polymorphonuclear leukocytes with micromolar amounts of the platelet-derived 12-lipoxygenase product 12-hydroxy-5,8,10,14- eicosatetraenoic acid (12-HETE) prior to the addition of A23187 and [14C]arachidonic acid resulted in the unexpected dose-dependent stimulation of the 15-lipoxygenase pathway, as evidenced by the formation of [14C]15-HETE. A concomitant inhibition of the 5-lipoxygenase pathway was also observed. The structural identity of 15-HETE was confirmed by retention times on straight-phase and reverse-phase high pressure liquid chromatography in comparison with an authentic standard, radioimmunoassay, and chemical derivatization. When other isomeric HETEs were tested, the order of stimulatory potencies was 15-HETE greater than 12-HETE greater than 5-HETE. When arachidonic acid metabolism via the 5-lipoxygenase route was inhibited by nordihydroguaiaretic acid, previously ineffective concentrations of exogenous 12-HETE were now able to stimulate the polymorphonuclear leukocyte 15-lipoxygenase. Thus, blockade of the 5-lipoxygenase pathway appeared to be a prerequisite for the activation of the 15-lipoxygenase. The HETE-induced activation of the 15-lipoxygenase occurred within 1-2 min, was a reversible process, and was enhanced in the presence of A23187. In nine donors tested, up to 14-fold stimulation of [14C]15-HETE production was observed. Our results indicate that endogenous HETEs can have a dual role in the post-phospholipase regulation of arachidonic acid metabolism since they can act as physiological stimulators of the 15-lipoxygenase as well as inhibitors of the 5-lipoxygenase.  相似文献   

14.
Contribution of macrophages to immediate hypersensitivity reaction   总被引:3,自引:0,他引:3  
The interaction of mast cells with other leukocytes during immediate hypersensitivity reactions was tested by in vivo and in vitro experiments. Intraperitoneal challenge of passively sensitized rats with antigen caused the production of peptidoleukotrienes, leukotriene (LT)B4, thromboxane (TX)B2, and 6-keto-prostaglandin (PG) F1 alpha in the peritoneal cavity. Pretreatment of the rats with thioglycollate i.p. markedly changed the amount of eicosanoids formed. When polymorphonuclear leukocytes were the predominant cell type in the peritoneal exudate, both LTC4 and 6-keto-PGF1 alpha were decreased by 75% each and TXB2 by 50%. When elicited macrophages were predominant, there was an additional reduction in LTC4 by 68% as compared with 18 hr after thioglycollate treatment, but no additional change in the other arachidonic acid metabolites. In vitro antigen challenge of passively sensitized mouse bone marrow-derived mast cells caused the release of LTC4, LTB4, 6-trans-LTB4, 5-hydroxyeicosatetraenoic (5-HETE), and TXB2. Exposure to antigen of these mast cells in the presence of resident peritoneal macrophages markedly altered eicosanoid formation. Early in the time course (2 to 15 min), macrophages markedly enhanced all 5-lipoxygenase products. However, later in the time course (30 to 120 min), these products were decreased. This decrease was reversed by catalase and superoxide dismutase, which suggests the involvement of oxygen radicals. These active oxygen species also seemed to be generated by mast cells, because these enzymes caused an increase in 5-lipoxygenase products when mast cells were challenged alone. RIA of cyclooxygenase products showed that mast cells released only TXB2 when stimulated with antigen. When they were stimulated in the presence of macrophages, TXB2 and also PGE2 and 6-keto-PGF1 alpha were synthesized. Therefore, macrophages probably contribute the PGE2 and 6-keto-PGF1 alpha. Because the same amount of TXB2 was generated whether macrophages were present or not, the mast cells seem to be the major source of this compound. These data indicate that macrophages and possibly polymorphonuclear leukocytes participate in immediate hypersensitivity reactions.  相似文献   

15.
The formation of radiolabelled oxygenated products of arachidonic acid in thrombin-stimulated, [3H]arachidonic acid-prelabelled human platelets is inhibited in a concentration-dependent manner by BW 755C (3-amino-1-[m-(trifluoromethyl)phenyl]-2-pyrazoline) or propyl gallate, both of which are combined inhibitors of lipoxygenase and cyclooxygenase. These compounds do not inhibit the thrombin-induced decrease in the radioactivity of platelet phospholipids but, instead, allow the accumulation of free radiolabelled arachidonic acid. Thrombin causes an increase in the levels of free, endogenous palmitic, stearic, oleic, linoleic and arachidonic acids of up to 10 nmol/10(9) platelets. In the presence of BW 755C or propyl gallate, further increases in the level of free arachidonic acid, of 20-50 nmol/10(9) platelets, occur. The enzyme inhibitors do not affect the accumulation of the other free fatty acids. The increase in arachidonic acid is optimal at 1 U/ml thrombin and 60% complete by 1 min at 37 degrees C. In the platelets from eight donors, the average increases in free fatty acids (in nmol/10(9) platelets) induced by 5 U/ml thrombin in 5 min at 37 degrees C in the presence of 100 microM BW 755C were 1 for linoleic acid, 3.6 for oleic acid, 4.5 for palmitic acid, 7.6 for stearic acid and 32.0 for arachidonic acid.  相似文献   

16.
17.
We report herein for the first time the formation by freshly grown garlic roots and the structural characterization of 14,15-epoxide positional analogs of the hepoxilins formed via the 15-lipoxygenase-induced oxygenation of arachidonic acid. These compounds are formed through the combined actions of a 15(S)-lipoxygenase and a hydroperoxyeicosatetraenoic acid (HPETE) isomerase. The compounds were formed when either arachidonic acid or 15-HPETE were used as substrates. Both the "A"-type and the "B"-type products are formed although the B-type compounds are formed in greater relative quantities. Chiral phase high performance liquid chromatography analysis confirmed the formation of hepoxilins from 15(S)- but not 15(R)-HPETE, indicating high stereoselectivity of the isomerase. Additionally, the lipoxygenase was of the 15(S)-type as only 15(S)-hydroxyeicosatetraenoic acid was formed when arachidonic acid was used as substrate. The structures of the products were confirmed by gas chromatography-mass spectrometry of the methyl ester trimethylsilyl ether derivatives as well as after characteristic epoxide ring opening catalytically with hydrogen leading to dihydroxy products. That 15(S)-lipoxygenase activity is of functional importance in garlic was shown by the inhibition of root growth by BW 755C, a dual cyclooxygenase/lipoxygenase inhibitor and nordihydroguaiaretic acid, a lipoxygenase inhibitor. Additional biological studies were carried out with the purified intact 14(S), 15(S)-hepoxilins, which were investigated for hepoxilin-like actions in causing the release of intracellular calcium in human neutrophils. The 14,15-hepoxilins dose-dependently caused a rise in cytosolic calcium, but their actions were 5-10-fold less active than 11(S), 12(S)-hepoxilins derived from 12(S)-HPETE. These studies provide evidence that 15(S)-lipoxygenase is functionally important to normal root growth and that HPETE isomerization into the hepoxilin-like structure may be ubiquitous; the hepoxilin-evoked release of calcium in human neutrophils, which is receptor-mediated, is sensitive to the location within the molecule of the hydroxyepoxide functionality.  相似文献   

18.
A cloned murine mast cell line designated MC9 expresses a 5-lipoxygenase activity when stimulated with the ionophore A23187. Upon addition of 0.5 uM ionophore, MC9 cells produce 270 ± 43 pmoles 5-HETE, 74 ± 40 pmoles 5,12 di HETEs and 65 ± 31 pmoles LTC4/106 cells from 37 uM exogenously added [1-14C]arachidonic acid in two minutes. 5-HETE and 5,12-di HETES, including LTB4 were identified by GC/MS whereas LTC4 was confirmed by HPLC mobility, bio-assay, RIA and enzymatic transformation. The principal cyclooxygenase products were PGD2 and TxB2 (8.5 ± 2.4 and 5.4 ± 1.2 pmoles/106 cells respectively). Prostanoids were identified by comigration with authentic standards on two-dimensional thin layer chromatograms. Production of arachidonic acid lipoxygenase metabolites stimulated with ionophore proved relatively insensitive to removal of extracellular Ca+2 and chelation by EGTA. In addition, MC9 5-lipoxygenase required only low micromolar amounts of exogenous arachidonic acid for maximal activity. Whereas production of arachidonic acid metabolites lasted only two to five minutes, histamine release stimulated with ionophore was not initiated until 5 minutes (12 ± 3% cellular histamine) and continued for 30 minutes (37 ± 7% cellular histamine). Although these cells metabolize arachidonic acid differently from the classic peritoneal-derived mast cell, they resemble subpopulations found in certain tissues (such as mucosa) and should be useful in understanding the biochemistry of mast cell mediator release.  相似文献   

19.
In order to study the hormonal control mechanisms of cervical maturation, we investigated cyclooxygenase and 5-lipoxygenase inhibitors-induced changes in the distribution of glycosaminoglycans (GAG) in pregnant Wistar rat uterine cervices at term. The GAG were measured in a control (n=11), in a Diclofenac (cyclooxygenase inhibitor) treated group (n=8), in a BW 755C (dual inhibitor of cyclooxygenase and 5-lipoxygenase treated group (n=6), and a L 651392 (5-lipoxygenase inhibitor) treated group (n=9). The results of these studies suggest, that cervical hyaluronic acid metabolism and cervical hydration are controlled in association by prostaglandins and leukotrienes (and perhaps by other phospholipids metabolites), whereas heparan sulphate metabolism is obviously controlled by prostaglandins. Nevertheless complete and normal cervical maturation is probably controlled in association by arachidonic acid metabolites and other factors (steroids and peptides).  相似文献   

20.
Reactive oxygen species are well-known mediators of various biological responses. Recently, new homologues of the catalytic subunit of NADPH oxidase have been discovered in non-phagocytic cells. These new homologues (Nox1-Nox5) produce low levels of superoxides compared to the phagocytic homologue Nox2/gp91phox. Using Nox1 siRNA, we show that Nox1-dependent superoxide production affects the migration of HT29-D4 colonic adenocarcinoma cells on collagen-I. Nox1 inhibition or down-regulation led to a decrease of superoxide production and alpha 2 beta 1 integrin membrane availability. An addition of arachidonic acid stimulated Nox1-dependent superoxide production and HT29-D4 cell migration. Pharmacological evidences using phospholipase A2, lipoxygenases and protein kinase C inhibitors show that upstream regulation of Nox1 relies on arachidonic acid metabolism. Inhibition of 12-lipoxygenase decreased basal and arachidonic acid induced Nox1-dependent superoxide production and cell migration. Migration and ROS production inhibited by a 12-lipoxygenase inhibitor were restored by the addition of 12(S)-HETE, a downstream product of 12-lipoxygenase. Protein kinase C delta inhibition by rottlerin (and also GO6983) prevented Nox1-dependent superoxide production and inhibited cell migration, while other protein kinase C inhibitors were ineffective. We conclude that Nox1 activation by arachidonic acid metabolism occurs through 12-lipoxygenase and protein kinase C delta, and controls cell migration by affecting integrin alpha 2 subunit turn-over.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号