首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 450 毫秒
1.
Factors in vitreous humour which regulate prostaglandin production were investigated using cultured rabbit chorioretinal fibroblasts. These cells produced predominantly prostaglandin E2, 6-ketoprostaglandin F1 alpha, a compound likely to be a metabolite of prostaglandin E2 and 5-hydroxyeicosatetraenoic acid. The synthesis of 6-ketoprostaglandin F1 alpha was nearly completely inhibited by the cyclooxygenase inhibitor aspirin and partially inhibited by 10(-6) M dexamethasone (49%) and 10(-5) M forskolin (68%). Addition of 10% rabbit vitreous humour to subconfluent cells maintained in Dulbecco's modified Eagle's medium plus 1% fetal bovine serum resulted in stimulation of 6-ketoprostaglandin F1 alpha production by as much as 246% as measured by radioimmunoassay. Chorioretinal fibroblasts labelled by [3H]arachidonic acid incorporation into cellular phospholipids synthesised greater amounts of all labelled arachidonic acid metabolites in response to vitreous humour. It was concluded, therefore, that there are factors present in vitreous humour of molecular weight above 10 kDa which are capable of stimulating cellular cyclooxygenase activity. Confluent cells also responded to a factor(s) present in vitreous humour. The fraction of less than 10 kDa inhibited 6-ketoprostaglandin F1 alpha production by 50% when used at a concentration of 10%. Furthermore, 6-ketoprostaglandin F1 alpha production in confluent cells (but not subconfluent cells) was inhibited to 40% of control levels by vitamin C at a concentration of 1 mg/100 ml. The latter result points to an inhibitory role for vitamin C in vitreous humour. We conclude, therefore, that vitreous humour contains factors important for the regulation of prostaglandin metabolism in the eye.  相似文献   

2.
Metabolism of endogenous prostacyclin was studied in adults and neonates by measuring urinary levels of 6-ketoprostaglandin F1 alpha (spontaneous hydrolysis product) and 2,3-dinor-6-ketoprostaglandin F1 alpha (enzymatically formed by beta-oxidation). Quantification of prostanoids was achieved by capillary gas chromatography-mass spectrometry using the stable isotope dilution technique. Purification of the urinary lipid extract included silicic acid column chromatography and reverse- and straight-phase high-pressure liquid chromatographies. Accuracy of the method was proven by recovery experiments for both metabolites. Partial mass spectra of endogenous 6-ketoprostaglandin F1 alpha and 2,3-dinor-6-ketoprostaglandin F1 alpha were obtained from urine samples. In neonates (third day of life, n - 5 pooled urines) levels of 2,3-dinor-6-ketoprostaglandin F1 alpha (0.28 +/- 0.18 ng/ml) were much lower than those of 6-ketoprostaglandin F1 alpha (2.13 +/- 1.10 ng/ml), indicating low beta-oxidation activity at high prostacyclin formation. In adults (n = 7), levels of 2,3-dinor-6-ketoprostaglandin F1 alpha (0.27 +/- 0.21 ng/ml) and levels of 6-ketoprostaglandin F1 alpha (0.20 +/- 0.11 ng/ml) were about the same, indicating relatively high beta-oxidation at low prostacyclin formation. Values are expressed as mean +/- S.D.  相似文献   

3.
After [3H]arachidonic acid labeling, cyclooxygenase products were qualitatively analysed in the media of each cultured vascular cell type by reverse-phase high-performance liquid chromatography (rp-HPLC). The prostaglandin E2, prostaglandin F2 alpha, 6-ketoprostaglandin F1 alpha and thromboxane B2 detected in the rp-HPLC radioactive profile were then quantified by radioimmunoassay (RIA) in separate sets of experiments. In preconfluent endothelial cells prostaglandin F2 alpha and 6-ketoprostaglandin F1 alpha were detected in equal amounts (49%), whereas after confluence 6-ketoprostaglandin F1 alpha represented 57% of total secretion (P less than 0.05). Smooth muscle cells secreted mainly prostaglandin F2 alpha (48%) and fibroblasts prostaglandin E2 (44%). Using the bioassay method, antiaggregatory activity was detected only in endothelial cells, though a small percentage of immunoreactive 6-ketoprostaglandin F1 alpha was encountered in smooth muscle cells and fibroblasts (13 and 10%, respectively). Radioimmunological analysis after rp-HPLC separation of the medium of endothelial cells showed that the anti-6-ketoprostaglandin F1 alpha antibody recognized, among other substances, an unidentified compound. Its retention time was similar to that of prostaglandin F2 alpha. This unidentified compound was not detected in the media from smooth muscle cells and fibroblasts.  相似文献   

4.
High-performance liquid chromatography and radioimmunoassay were used to identify the prostaglandins synthesized by mouse embryo palate mesenchyme cells. Serum stimulated the release of several different metabolites of arachidonic acid including 6-ketoprostaglandin F1 alpha (the stable product of prostacyclin, prostaglandin I2), prostaglandin E2 and prostaglandin F2 alpha. Compared to control cells, the serum-stimulated cells produce elevated levels of prostaglandin E2 (36-fold), 6-ketoprostaglandin F1 alpha (15-fold) and prostaglandin F2 alpha (7-fold). The acetylenic analogue of arachidonic acid, 5,8,11,14-eicosatetraynoic acid prevented this accelerated synthesis.  相似文献   

5.
Myofibroblasts were cultured successfully from experimental wound tissue in rat palatal mucoperiosteum. Arachidonic acid metabolizing activity in cultured myofibroblasts was compared with that in fibroblasts cultured from normal mucoperiosteum. Prostaglandins biosynthesized from [14C]arachidonic acid in cell-free homogenates of both myofibroblasts and fibroblasts were prostaglandins D2, E2 and F2 alpha, and the activity producing each prostaglandin was not significantly different between the myofibroblasts and the fibroblasts, whereas smooth muscle cells, which are histologically similar to myofibroblasts, produced mainly 6-ketoprostaglandin F1 alpha, and relatively small amounts of prostaglandin E2. The release of arachidonic acid from cells prelabeled with [14C]arachidonic acid was compared among three types of cell. The calcium ionophore A23187 strongly enhanced arachidonic acid release in all three cell types. Bradykinin, 5-hydroxytryptamine and prostaglandin F2 alpha affected the stimulation of arachidonic acid release in the fibroblasts but were less or not effective in the myofibroblasts and smooth muscle cells. In addition, prostaglandin E2 biosynthesized in response to several stimuli was measured by radioimmunoassay. The content of prostaglandin E2 correlated closely with arachidonic acid release. In this study, we showed homogeneity between the myofibroblasts and fibroblasts in prostaglandin synthesizing activity and similarity in response to various stimuli between the myofibroblasts and smooth muscle cells, from the standpoint of arachidonic acid metabolism.  相似文献   

6.
The effect of sodium n-butyrate on prostaglandin synthesis in cultured cells was examined. Exposure of BC-90 cells, a clone of an epithelial rat liver cell line, to 1 mM sodium n-butyrate for 40 h induced prostacyclin production. Prostacyclin synthesis was proved by demonstrating: (1) production of labeled 6-ketoprostaglandin F1 alpha by treating [14C]arachidonic acid pre-labeled cells with calcium ionophore A23187, (2) production of unstable substance that inhibited adenosine diphosphate-induced platelet aggregation, and (3) conversion of [14C]arachidonic acid to 6-ketoprostaglandin F1 alpha in homogenates of n-butyrate-treated cells. Untreated control cells showed negligible prostaglandin synthesis. Untreated cell homogenates did not convert [14C]arachidonic acid to any prostaglandins, but they converted [14C]prostaglandin H2 to prostacyclin. Induction of prostacyclin production by n-butyrate was also demonstrated with cells that had been treated with acetylsalicylic acid before n-butyrate treatment in acetylsalicylic acid-free medium. Incorporation of [3H]acetylsalicylic acid by sodium n-butyrate-treated cells increased in accordance with treatment time, while that of untreated cells did not change during culture. There was no difference in the phospholipase A2 activities of n-butyrate-treated and -untreated cells. From these findings, the possibility that n-butyrate induced prostacyclin in BC-90 cells through induction of fatty acid cyclooxygenase activity is discussed.  相似文献   

7.
Regulation of prostaglandin production in cultured gastric mucosal cells   总被引:3,自引:0,他引:3  
The aims of this study were to investigate whether exogenous prostaglandin modulates prostaglandin biosynthesis by cultured gastric mucosal cells, and to clarify the role of cyclic nucleotides in the possible modulation of prostaglandin production. After pretreatment for 30 min with buffer alone (control) or 1 to 100ng/ml PGE2, cells were incubated with 4 uM arachidonic acid for 30 min. Pretreatments with greater than 5ng/ml PGE2 inhibited arachidonate-induced PGE2 and PGI2 production in a dose-dependent fashion, as compared with control, with inhibition by 64 +/- 8% and 75 +/- 4% respectively, at 100ng/ml PGE2. PGE2, at 100ng/ml, significantly increased intracellular cAMP accumulation, but pretreatment with dibutyryl cAMP (0.01-mM) did not alter the amounts of arachidonate-induced PGE2 production. Furthermore, while greater than 10ng/ml PGE2 increased cGMP production dose-dependently, preincubation with dibutyryl cGMP (0.001-0.1mM) also failed to affect PGE2 synthesis significantly. In addition, pretreatment with isobutyl-methyl-xanthine, while increasing accumulation of cellular cyclic nucleotides, did not significantly change PGE2 production. Calcium ionophore A23187-induced PGE2 production was also inhibited by pretreatment with PGE2. These results indicate that exogenous PG inhibits subsequent arachidonate or A23187-induced PG biosynthesis in rat gastric mucosal cells, and suggest the possibility that PG regulates its own biosynthesis via feedback inhibition independent of cyclic nucleotides in these cells.  相似文献   

8.
Because leukotrienes and prostaglandins are inflammatory mediators derived from arachidonic acid, their potential role in oleic acid-induced lung injury was evaluated in control and in essential fatty acid-deficient (EFAD) rats depleted of arachidonic acid substrate. In control rats, oleic acid (0.06 ml/kg iv) increased the pulmonary permeability index (measured by scintigraphy) from -10 +/- 13 x 10(-6) s-1 to 217 +/- 20 x 10(-6) s-1 and 118 +/- 13 x 10(-6) s-1 at 5 and 50 min (P less than 0.05), respectively. It also caused arterial hypoxemia at 30 min (P less than 0.05). Compared with saline controls, oleic acid increased bronchoalveolar lavage fluid levels of immunoreactive (i) LTC4/D4, iLTB4, (P less than 0.01), and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) (P less than 0.05). In EFAD rats, oleic acid failed to significantly increase the lung permeability index at 5 and 50 min. In contrast to control rats, oleic acid failed to cause hypoxemia in the EFAD rats. Bronchoalveolar lavage levels of iLTB4 and i6-keto-PGF1 alpha after oleic acid in EFAD rats were lower compared with oleic acid controls, whereas iLTC4/D4 in the oleic acid EFAD group was not decreased. Treatment with intraperitoneal ethyl arachidonate (400 mg over 2 wk) reversed the resistance of EFAD rats such that the pulmonary edema (P less than 0.05) was evident after oleic acid. This latter group also manifested a significant (P less than 0.05) rise in the bronchoalveolar lavage levels of iLTB4 and i6-keto-PGF1 alpha. These results suggest that arachidonic acid metabolites contribute to oleic acid-induced pulmonary permeability.  相似文献   

9.
Peripheral blood neutrophils from patients with allergic rhinitis and from normal subjects were incubated for 5 min at 37 degrees C with 0.15 microM calcium ionophore A23187 in the absence or presence of exogenous arachidonic acid (2.5 to 10 microM). In neutrophils from allergic patients, the leukotriene B4 (LTB4) level was significantly increased by exogenous arachidonic acid in a concentration-dependent manner (16.2 +/- 4.2 and 38.1 +/- 6.8 pmol/5 min per 2 X 10(6) cells in the absence and presence of 10 microM arachidonic acid, respectively; P less than 0.005; n = 8). The LTB4 level in neutrophils from healthy subjects was only 0.97 +/- 0.17 pmol/5 min per 2 x 10(6) cells (n = 5) and was not enhanced by exogenous arachidonate. When cells from allergic patients were challenged in the presence of exogenous [1-14C]arachidonic acid, released LTB4 was radiolabeled and the incorporated radioactivity increased with the labeled arachidonate concentration. Labeled LTB4 was never detectable after incubating neutrophils from normal donors with exogenous labeled arachidonate. When neutrophils were incubated with [1-14C]arachidonate for 1 h, the different lipid pools of the two cell populations were labeled but both types of neutrophils produced unlabeled LTB4 in response to ionophore stimulation. The hydrolysis of choline and ethanolamine phospholipids into diacyl-, alkenylacyl- and alkylacyl-species revealed that solely the alkylacyl-subclass of phosphatidylcholine was unlabeled. We conclude (i) that neutrophils from allergic patients stimulated by low ionophore concentration produce more LTB4 than neutrophils from healthy subjects and incorporate exogenous arachidonate, (ii) that endogenous arachidonate converted to LTB4 by the 5-lipoxygenase pathway may provide only from 1-O-alkyl-2-arachidonoyl-glycero-3-phosphocholine.  相似文献   

10.
Heat shock has a profound influence on the metabolism and behavior of eukaryotic cells. We have examined the effects of heat shock on the release from cells of arachidonic acid and its bioactive eicosanoid metabolites, the prostaglandins and leukotrienes. Heat shock (42-45 degrees) increased the rate of arachidonic acid release from human, rat, murine, and hamster cells. Arachidonate accumulation appeared to be due, at least partially, to stimulation of a phospholipase A2 activity by heat shock and was accompanied by the accumulation of lysophosphatidyl-inositol and lysophosphatidylcholine in membranes. Induction of arachidonate release by heat did not appear to be mediated by an increase in cell Ca++. Stimulation of arachidonate release by heat shock in hamster fibroblasts was quantitatively similar to the receptor-mediated effects of alpha thrombin and bradykinin. The effects of heat shock and alpha thrombin on arachidonate release were inhibited by glucocorticoids. Increased arachidonate release in heat-shocked cells was accompanied by the accelerated accumulation of cyclooxygenase products prostaglandin E2 and prostaglandin F2 alpha and by 5-lipoxygenase metabolite leukotriene B4. Elevated concentrations of arachidonic acid and metabolites may be involved in the cytotoxic effects of hyperthermia, in homeostatic responses to heat shock, and in vascular and inflammatory reactions to stress.  相似文献   

11.
Microsomes prepared from rabbit renal cortex were found to synthesize substantial amounts of 6-ketoprostaglandin F1alpha from prostaglandin G2 or arachidonic acid during an incubation. In contrast, no 6-ketoprostaglandin F1alpha was formed by renal medullary microsomes which synthesize predominantly prostaglandin E2. Mass spectral confirmation of the structure of 6-ketoprostaglandin F1alpha from these incubations demonstrates the ability of the renal cortex to synthesize prostacyclin.  相似文献   

12.
Highly specific antibodies to 13,14-dihydro-15-ketoprostaglandin E2 (PGEM) were raised in rabbits. The animals were immunized with PGEM-bovine serum albumin (BSA)-conjugates. The metabolites were extracted with dichloromethane followed by column chromatography. The final antisera dilution was 1:15000 and the cross-reactivity towards prostaglandin A2, F2 alpha, I2, 13,14-dihydro-15-ketoprostaglandin F2 alpha was less than 0.1%. The limit of detection was 7.8 +/- 4.7 pg/ml plasma at the standard range of 3.9 to 500 pg/ml. The intra- and inter-assay variations were 5 and 12%, respectively. PGEM was measured throughout the menstrual cycle in female volunteers. In normal ovulatory women (n = 6) plasma concentrations of PGEM varied between 0.94 to 2.19 ng/ml. A significant increase of plasma PGEM was detected in the preovulatory phase of the cycle (P less than 0.01) over basal levels. In three of these volunteers cervical mucus was analyzed on PGEM and PGFM concentrations showing a fluctuation from 2 pg to 109 pg for PGEM and 0.05 pg to 2.4 pg for PGFM per ml of cervical mucus. The lowest concentrations have been found at the time of ovulation. The application of the radioimmunological method to the measurement of PGEM in addition to the measurement of prostaglandin E2 may be useful for estimating the turnover rates of this fatty acid.  相似文献   

13.
The capacity of cultured mesothelial cells to produce prostaglandins from both exogenous an endogenous arachidonic acid has been investigated. Incubations with labelled [1-14C]arachidonic acid and [1-14C]prostaglandin endoperoxide H2 indicated the formation of prostacyclin and prostaglandin E2. Evaluation of the transformation of endogenously released arachidonic acid, however, could only confirm the production of prostacyclin.  相似文献   

14.
Bovine pulmonary artery endothelial cells, in serum-free culture medium, release small quantities of prostacyclin and thromboxane A2 (3-10 and 0.1-0.3 ng/ml; measured as immunoreactive 6-ketoprostaglandin F1 alpha and thromboxane B2, respectively). The release of these substances is stimulated by up to 20-fold during a 3 min incubation with the vasodilator, bradykinin (Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9). Endothelial cells incubated with [3H]arachidonic acid for 24 h and then exposed to bradykinin for 3 min release 3H into the medium, approximately 65% of which co-chromatographs with 6-ketoprostaglandin F1 alpha and 3% with thromboxane B2. The effects of bradykinin are dose-related and are often discernible when the hormone is used at concentrations believed to occur physiologically (10 pg/ml; approximately 10 pM). Furthermore, the bradykinin molecule must be intact: none of its lower homologs affects the release of prostacyclin, thromboxane A2, or 3H unless used at concentrations (1 microM or higher) unlikely to be achieved in vivo. The release appears to involve calcium uptake and calmodulin: it is abolished by EGTA (5 mM) and inhibited by the 'slow channel' calcium antagonists, verapamil and nifedipine (10-100 microM), and by the calmodulin inhibitor, trifluoperazine (3-30 microM). Our findings suggest that bradykinin exerts some of its hormonal effects by acting on specific receptors possessed by vascular endothelial cells; receptor activation is associated with calcium transport, arachidonate mobilization, and a selective synthesis of prostacyclin, a vasodilator in its own right.  相似文献   

15.
Corpora lutea (CL) were collected from Holstein heifers on Days 5, 10, 15 and 18 (5/day) of the estrous cycle. Dispersed luteal cell preparations were made and 10(6) viable luteal cells were incubated with bovine luteinizing hormone (LH) and different amounts of arachidonic acid in the presence and absence of the prostaglandin (PG) synthetase inhibitor indomethacin. The concentrations of progesterone, PGF2 alpha and 6-keto-PGF1 alpha, the stable inactive metabolite of prostacyclin (PGI2), were measured. Day 5 CL had the greatest initial content of 6-keto-PGF1 alpha (1.01 +/- 0.16 ng/10(6) cells), and synthesized more 6-keto-PGF1 alpha (2.55 +/- 0.43) than CL collected on Days 10 (0.57 +/- 0.11), 15 (0.08 +/- 0.05) and 18 (0.19 +/- 0.03) during a 2-h incubation period. Arachidonic acid stimulated the production of 6-keto-PGF1 alpha by Days 10, 15 and 18 luteal tissue. PGF2 alpha was produced at a greater rate on Day 5 (0.69 +/- 0.17 ng/10(6) cells) than on Days 10 (0.06 +/- 0.01), 15 (0.04 +/- 0.02) and 18 (0.08 +/- 0.01). Arachidonic acid stimulated and indomethacin inhibited the production of PGF2 alpha, in most cases. The initial content of 6-keto-PGF1 alpha was higher than that of PGF2 alpha on all days of the cycle and more 6-keto-PGF1 alpha was synthesized in response to arachidonic acid addition. The ratio of 6-keto-PGF1 alpha content to PGF2 alpha content was 4.39, 2.30, 1.25 and 1.13 on Days 5, 10, 15 and 18, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Three newly established human melanoma cell lines (WU-BI, PN-JC, MJ-ZJ) of different morphology and different stage of malignancy were incubated with ionophore A23187 (2.5 to 40 microM) or arachidonic acid (AA, 6.25 to 100 microM). PGF2 alpha, 6-keto-PGF1 alpha, PGE2, TXB2 and 2,3-dinor-TXB2 from isolated cells and supernatants were measured by negative ion chemical ionization gas chromatography/mass spectrometry (GC/MS). PGE2 decreased in the fibroblastoid MJ-ZJ cells from 36.7 ng/mg cell protein about 70% (A23187) and about 20% (AA), respectively. However, in the cell supernatant PGE2 increased up to 295.4 +/- 66.5 ng/mg cell protein. Production of PGF2 alpha and PGE2 increased up to 5.7 +/- 1.2 ng/mg cell protein for polydendritic WU-BI cells and spindle shaped PN-JC cells. Up to 9.3 +/- 4.3 ng PGF2 alpha and 13.4 +/- 4.7 ng PGE2 was measured for WU-BI and PN-JC in the cell supernatants. All three melanoma cell lines completely lacked formation of 6-keto-PGF1 alpha, TXB2, and 2,3-dinor-TXB2.  相似文献   

17.
Free radical-mediated oxidant injury and lipid peroxidation have been implicated in a number of neural disorders. We have reported that bioactive prostaglandin D2/E2-like compounds, termed D2/E2-isoprostanes, are produced in vivo by the free radical-catalyzed peroxidation of arachidonic acid. Docosahexaenoic acid, in contrast to arachidonic acid, is the most abundant unsaturated fatty acid in brain. We therefore questioned whether D/E-isoprostane-like compounds (D4/E4-neuroprostanes) are formed from the oxidation of docosahexaenoic acid. Levels of putative D4/E4-neuroprostanes increased 380-fold after oxidation of docosahexaenoic acid in vitro from 15.2 +/- 6.3 to 5773 +/- 1024 ng/mg of docosahexaenoic acid. Subsequently, chemical approaches and liquid chromatography electrospray ionization tandem mass spectrometry definitively identified these compounds as D4/E4-neuroprostanes. We then explored the formation of D4/E4-neuroprostanes from a biological source, rat brain synaptosomes. Basal levels of D4/E4-neuroprostanes were 3.8 +/- 0.6 ng/mg of protein and increased 54-fold after oxidation (n = 4). We also detected these compounds in fresh brain tissue from rats at levels of 12.1 +/- 2.4 ng/g of brain tissue (n = 3) and in human brain tissue at levels of 9.2 +/- 4.1 ng/g of brain tissue (n = 4). Thus, these studies have identified novel D/E-ring isoprostane-like compounds that are derived from docosahexaenoic acid and that are formed in brain in vivo. The fact that they are readily detectable suggests that ongoing oxidative stress is present in the central nervous system of humans and animals. Further, identification of these compounds provides a rationale for examining their role in neurological disorders associated with oxidant stress.  相似文献   

18.
Prostaglandin E release rates from isolated strips of guinea-pig taenia coli increased during exposure to zero K+ bathing fluid, from control values of 0.78 +/- 0.11 ng/g per min to levels as high as 29.2 ng/per min. Release rates increased for 40-50 min and then remained constant or fell despite progressive increases in intracellular sodium [Nai+] or fall in intracellular potassium [Ki+]. Readmittance of K+ to the bathing solution resulted in rapid reversal of elevated prostaglandin E release rates. [Nai+] and [Ki+] were markedly more abnormal in strips exposed to zero K+ for 70-201 min compared to 30-min exposures. Upon the readdition of K+ after long zero K+ exposure, the rate of prostaglandin E release fell long before [Nai+] and [Ki+] returned to control levels. After K+ was readded to the bathing solution, the ion concentration of tissues exposed to zero K+ for 30 min returned to normal much more quickly than did those of tissues exposed for the longer time periods, yet the exponential rate constants for fall of prostaglandin E release rate after K+ was added were not significantly different after short or long zero K+ exposure. Thus there was a dissociation between the return of [Nai+] and [Ki+] and the fall of prostaglandin E release rate to control levels. Ouabain augmented prostaglandin E release under conditions where [Ki+] could not fall. Addition of known neurotransmitters present in this tissue to the bathing fluid did not augment prostaglandin E release. Guinea-pig taenia coli strips that had been incubated with [3H]arachidonic acid, constantly released [3H]arachidonic acid and [3H]prostaglandin E and a prostaglandin which cochromatographed with prostaglandin E but could not be converted to prostaglandin B by alkali and was shown to be 6-ketoprostaglandin F1 alpha. Release of [3H]arachidonic acid and [3H]prostaglandin E plus 6-[3H]ketoprostaglandin F1 alpha was increased when strips were exposed to zero K+. Data obtained in this study suggest the augmented prostaglandin E release seen during zero K+ or ouabain is related to increased availability of unbound arachidonic acid at the site of cyclooxygenase in the cell. Augmented prostaglandin E release is apparently not related to alterations in intracellular electrolyte concentrations or release of known neurotransmitters.  相似文献   

19.
Freshly isolated neonatal porcine aortic tissue (smooth muscle with or without endothelium present) produced approximately 30 ng/mg wet tissue of 6-oxo-prostaglandin F1 alpha (the stable hydrolysis product from prostacyclin) and approximately 15 ng/mg of prostaglandin E2, as measured by radioimmunoassay after 24 h incubation in culture medium. Primary cultures of porcine endothelial and smooth muscle cells (isolated by enzymic digestion of aortic tissue) exhibited the same pattern of prostaglandin production, but absolute values were greater than for fresh tissue, particularly in the case of endothelium. Subcultures of endothelium produced smaller amounts of prostaglandins, although the pattern remained similar. In contrast, subcultures of smooth muscle cells produced a greater total amount of prostaglandins than did primary cultures, and the main product was prostaglandin E2. Experiments with [14C] prostaglandin H2 or [14C]arachidonic acid confirmed that aortic tissue, cultured endothelium, and primary cultures or aortic smooth muscle cells synthesized prostacyclin, and demonstrated that subcultured smooth muscle cells enzymically isomerised prostaglandin H2 to prostaglandin E2. Kinetic studies showed that prostaglandin production by cultured vascular cells was transiently increased by subculture or changing the growth medium, and that production per cell declined with increasing cell density. The change in pattern of prostaglandin production during culture was shown to be due to a rapid decline in the rate of prostacyclin production (which apparently began immediately after tissue isolation), together with a more gradual rise in prostaglandin E2 production. These results indicate that the amounts and ratios of prostaglandins produced by vascular endothelial and smooth muscle cells are greatly affected by the conditions used to isolate and culture the cells; vascular cells in vivo may similarly alter their pattern of prostaglandin production in response to local changes in their environment.  相似文献   

20.
Slices of rat aorta were incubated in Krebs-Ringer bicarbonate buffer for measurements of immunoreactive 6-ketoprostaglandin F1 alpha, thromboxane (TX) B2, prostaglandin (PG)E2, and PGF2 alpha, and in Tris buffer (pH 9.3) for determination of prostacyclin (PGI2)-like activity. No significant generation of TXB2, PGE2, or PGF2 alpha by rat aortic tissue could be detected. The time-dependent release of 6-keto-PGF1 alpha Krebs-Ringer bicarbonate buffer closely correlated with PGI2 generation in alkaline Tris buffer. During a 30-min incubation period, 6-keto-PGF1 alpha, release was 79.8 +/- 3.3 pmol/mg at a buffer potassium concentration of 3.9 mmol/liter and significantly increased by 23% to 98.3 +/- 8.5 pmol/mg (P less than 0.025) in the absence of potassium in the incubation medium. A smaller decrease in buffer potassium concentration to 2.1 mmol/liter and an increase to 8.8 mmol/liter did not significantly alter aortic 6-keto-PGF1 alpha release. Changes in the incubation buffer sodium concentration from 144 mmol/liter to either 138 or 150 mmol/liter at a constant potassium concentration of 3.9 mmol/liter did not alter the recovery of 6-keto-PGF1 alpha. Our results support the concept that PGI2 is the predominant product of arachidonic acid metabolism in rat aorta. They further show that PGI2 can be recovered quantitatively as 6-keto-PGF1 alpha under the present in vitro conditions. In addition, this in vitro study points to the potassium ion as a modulator of vascular PGI2 synthesis with a stimulation at low potassium concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号