首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrical reactions of 294 neurons of the auditory cortex to a click were recorded in experiments on cats immobilized with tubocurarine (174 intra- and 120 extracellularly). The value of the membrane potential varied from 30 to 70 mV with intracellular leads. The following types of reactions were obtained (the number of neurons is given in parentheses): a peak without slow oscillations in the membrane potential (4), EPSP (3), EPSP-peak (6), EPSP-peak-IPSP (17), EPSP-IPSP (9), primary IPSP (114, including 23 with an after-discharge). Twenty one neurons did not react to a click. The amplitude of the sub-threshold EPSP was 1–1.5 mV, the duration of the ascending part was about 10 and of the descending part 20–30 msec. The peak potential on the ascending part of the EPSP developed at the critical level of 3–4 mV. The amplitude of the peaks varied from several millivolts to 50–60. In 17 neurons prolonged hyperpolarization having all the properties of an IPSP, developed after the peak. The amplitude of these IPSP varied in different neurons from 1 to 10 mV and the duration varied from 20 to 80 msec. IPSP without preceding excitation of the given neuron were the predominant types of reaction. The latent period of these primary IPSP varied from 7 to 20 msec and the amplitude from 1 to 15 msec with a duration of 30–200, more frequently 80–100 msec. It is suggested that two types of inhibition develop in neurons of the auditory cortex in response to a click: recurrent and afferent. The functional significance of the first consists in limiting the duration of the discharge in the reacting neurons, the second prevents the development of excitation in adjacent neurons, thereby limiting the area of neuronal activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 339–349, July–August, 1971.  相似文献   

2.
Changes in the responsiveness of the auditory cortex to an acoustic click and to direct stimulation of the medial geniculate body were studied by the method of evoked potentials in an extended experiment on cats with implanted electrodes. It is shown that the minimum interval between two stimuli for which a second click produces an EP in the auditory cortex is from 30 to 50 msec. The relative refractory period consists of two parts. The first (50–100 msec) is characterized by a rapid recovery, and the second (about 500 msec) by a slow recovery. In contrast with a click, direct stimulation of the geniculate body does not produce a refractory condition but one of facilitation. The effects of Nembutal and chloralose anesthesia and the state of alertness on the recovery of auditory cortex responsiveness were investigated. The reason for the absence and the reduction of an EP from the auditory cortex to a testing click during absolute and relative refractory periods is not a passive decrease of excitability of the usual refractory kind, but an active interplay of excitatory and inhibitory processes in the cerebral cortex, geniculate bodies, and reticular formation of the brain stem.A. A. Bogomolets' Institute of Physiology, Academy of Sciences, Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 54–64, July–August, 1969.  相似文献   

3.
Activity of single neurons and mass evoked potentials (EP) were recorded from the auditory (area 41) and associative (area 39) cortices in acute experiments on rats anesthetized with urethane, nembutal, or chloralose; pure tones were used as acoustic stimuli. The EP appearing in response to a wide range of sound tones on the surface of the auditory and associative cortices were dissimilar in their latency and shape. For neurons exhibiting stable responses, the frequency-threshold curves (FTC) were plotted.Weak and variable responses of neurons were observed under slight urethane anesthesia. Nembutal anesthesia increased the responsiveness of neurons and the probability of appearing of late components in the responses. Chloralose anesthesia was characterized by extension of frequency range perceived by a neuron, while its sharpness of tuning remained unchanged. Under all types of anesthesia employed, the responses recorded from the associative cortex neurons had longer latencies than those recorded from the auditory cortex neurons. Neurons exhibiting the frequency selectivity were much less numerous in the associative cortex than in the auditory cortex. The former neurons were often characterized by intermittent FTC and they responded to a more extended frequency range. No clear tonotopic organization was found in the associative cortex.Neirofiziologiya/Neurophysiology, Vol. 25, No. 5, pp. 343–349, September–October, 1993.  相似文献   

4.
Responses of 246 auditory cortical neurons to paired and repetitive stimulation of geniculo-cortical fibers were studied in experiments on cats immobilized with tubocurarine. The refractory period (RP) varied from 1 to 200 msec in different neurons. For neurons excited antidromically it varied from 1 to 3 msec. Among neurons excited monosynaptically there were some with a short (1.3–6 msec), medium, (8–16 msec) or long (30–100 msec) refractory period. Most neurons excited polysynaptically had a RP of mean length. RPs 30–200 msec in length were due to inhibition arising in the neuron after conditioning stimulation. In some neurons, after a short (1.5–2.0 msec) initial period of refractoriness there was a temporary (for 2–3 msec) recovery of responsiveness, followed by another period of ineffectiveness of the testing stimulus lasting 30–100 msec. Barbiturates selectively inhibited long-latency unit responses in the auditory cortex and during their action the number of responding neurons with a mean RP decreased sharply. The results demonstrate functional heterogeneity of auditory cortical neurons responding to an incoming volley of afferent impulses.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 3, pp. 236–245, May–June, 1973.  相似文献   

5.
Extracellular and intracellular single unit responses of neurons of the auditory cortex to electrical stimulation of geniculocortical fibers (GCF) were recorded in experiments on cats immobilized with tubocurarine. The latent period of responses of 15% of neurons to GCF stimulation was 0.3–1.5 msec. It is postulated that they were excited anti-dromically. The latent period of spikes generated by neurons responding to GCF stimulation orthodromically varied from 1.6 to 12 msec. In 28.6% of neurons the latent period was 1.6–2.5 msec. It is postulated that these neurons were excited monosynaptically. Intracellular recording revealed primary IPSPs in response to GCF stimulation in 63.3% of neurons, a brief EPSP followed by a prolonged IPSP in 17.7%, an EPSP-spike-IPSP complex in 12.3%, and subthreshold EPSPs in 7% of neurons. The latent period of the primary IPSPs varied from 1.8 to 11 msec, being 1.8–3.7 in 72%, 3.8–5.7 in 20.0%, and 5.8–11 msec in 8.0% of neurons. The latent period of responses beginning with an EPSP was 1–4 msec (mean 1.8 msec). Orthodromic responses arising 3–10 msec after the antidromic response, and consisting of 3–5 spikes, were recorded in some antidromically excited neurons. Hypotheses regarding the functional organization of the auditory cortex and mechanisms of inhibition in its neurons are put forward on the basis of the results obtained.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 3, pp. 227–235, May–June, 1972.  相似文献   

6.
Evoked potentials (EP) of the cerebellar cortex in response to stimulation of peripheral nerves are characterized by a two-phase positive-negative oscillation of the potential having a latent period of 10–25 msec. The electropositive phase can contain up to three components. The latent period of component I comprises 3–9 msec. The latent period and amplitude of this component are distinguished by considerable stability, which indicates the predominant significance of presynaptic processes in its formation. The sign of component II changes at a depth of 500 µ (and more), which corresponds to the position of the granular cell layer. At this level there arises in the neurons a response with a latent period of 4–10 msec in the form of a group (3–10) of impulses with a frequency of up to 200 per sec. It is concluded that the granular cells participate in the formation of component II and partially participate in the formation of components I and III of the EP. Responses to stimulation of the nerves appear synchronously with the EP in 24% of responding Purkinje cells; they fall on the maximum electropositive deviation or component III of the EP. Microinjections of 1% strychnine into the cerebellar cortex cause an increase of EP amplitude; impulse activity of the neurons is intensified. This indicates participation of postsynaptic processes in the formation of EP. No shifts in the EP of the cerebellar cortex were observed after intracortical injection of 0.1% atropine.N. I. Pirogov Vinnitsa Medical Institute. Translated from Neirofiziologiya, Vol. 2, No. 4, pp. 429–433, July–August, 1970.  相似文献   

7.
A comparative analysis of the polysensory properties of 102 neurons in areas 39 and 41 (the associative and auditory cortices, respectively) was performed in acute experiments on rats under chloralose-nembutal anesthesia. In the auditory cortex, the evoked potentials (EP) recorded from the surface of the above area in response to acoustic tonal, electrical cutaneous, and light stimulations almost always were distinguished by their shorter (4–5 msec) latency and higher amplitude. We studied neurons in both areas; their responses to the pure tones of various frequencies and to the stimulations of other modalities were compared. Bi- and polysensory neurons constituted 56.4% in area 39, and only 23% in area 41. The depth distribution of the responding neurons in areas 39 and 41 was different. Neurons with selective sensitivity to different frequencies of tonal signals were found in both areas. Usually monomodal neurons demonstrated selective properties in the auditory cortex, and 70% of them had a characteristic frequency. Over one-half of polymodal cells were frequency-selective in the associative cortex.Neirofiziologiya/Neurophysiology, Vol. 26, No. 3, pp. 223–229, May–June, 1994.  相似文献   

8.
The latent periods, amplitude, and duration of IPSPs arising in neurons in different parts of the cat cortex in response to afferent stimuli, stimulation of thalamocortical fibers, and intracortical microstimulation are described. The duration of IPSPs evoked in cortical neurons in response to single afferent stimuli varied from 20 to 250 msec (most common frequency 30–60 msec). During intracortical microstimulation of the auditory cortex, IPSPs with a duration of 5–10 msec also appeared. Barbiturates and chloralose increased the duration of the IPSPs to 300–500 msec. The latent period of 73% of IPSPs arising in auditory cortical neurons in response to stimulation of thalamocortical fibers was 1.2 msec longer than the latent period of monosynaptic EPSPs evoked in the same way. It is concluded from these data that inhibition arising in most neurons of cortical projection areas as a result of the arrival of corresponding afferent impulsation is direct afferent inhibition involving the participation of cortical inhibitory interneurons. A mechanism of recurrent inhibition takes part in the development of inhibition in a certain proportion of neurons. IPSPs arise monosynaptically in 2% of cells. A study of responses of cortical neurons to intracortical microstimulation showed that synaptic delay of IPSPs in these cells is 0.3–0.4 msec. The length of axons of inhibitory neurons in layer IV of the auditory cortex reaches 1.5 mm. The velocity of spread of excitation along these axons is 1.6–2.8 msec (mean 2.2 msec).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 394–403, May–June, 1984.  相似文献   

9.
Investigation of unit responses of the cerebellar cortex (lobules VI–VII of the vermis) to acoustic stimulation showed that the great majority of neurons responded by a discharge of one spike or a group of spikes with a latent period of 10–40 msec and with a low fluctuation value. Neurons identified as Purkinje cells responded to sound either by inhibition of spontaneous activity or by a "climbing fiber response" with a latent period of 40–60 msec and with a high fluctuation value. In 4 of 80 neurons a prolonged (lasting about 1 sec or more), variable response with a latent period of 225–580 msec was observed. The minimal thresholds of unit responses to acoustic stimuli were distributed within the range from –7 to 77 dB, with a mode from 20 to 50 dB. All the characteristics of the cerebellar unit responses studied were independent of the intensity, duration, and frequency of the sound, like neurons of short-latency type in the inferior colliculi. In certain properties — firing pattern, latent period, and threshold of response — the cerebellar neurons resemble neurons of higher levels of the auditory system: the medial geniculate body and auditory cortex.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 3–12, January–February, 1973.  相似文献   

10.
Extracellular and intracellular unit responses of thepars principalis of the medial geniculate body to stimulation of the first (AI), second (AII), and third (AIII) auditory cortical areas were studied in cats immobilized with D-tubocurarine. In response to auditory cortical stimulation both antidromic (45–50%) and orthodromic (50–55%) responses occurred in the geniculate neurons. The latent period of the antidromic responses was 0.3–2.5 msec and of the orthodromic 2.0–18.0 msec. Late responses had a latent period of 30–200 msec. Of all neurons responding antidromically to stimulation of AII, 63% responded antidromically to stimulation of AI also, confirming the hypothesis that many of the same neurons of the medial geniculate body have projections into both auditory areas. Orthodromic responses of geniculate neurons consisted either of 1 or 2 spikes or of volleys of 8–12 spikes with a frequency of 300–600/sec. It is suggested that the volleys of spikes were discharges of inhibitory neurons. Intracellular responses were recorded in the form of antidromic spikes, EPSPs, EPSP-spike, EPSP-spike-IPSP, EPSP-IPSP, and primary IPSP. Over 50% of primary IPSP had a latent period of 2.0–4.0 msec. It is suggested that they arose through the participation of inhibitory interneurons located in the medial geniculate body.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 1, pp. 5–12, January–February, 1976.  相似文献   

11.
Unit activity in the visual (area 17) and sensomotor (areas 4 and 6) cortex in response to an optical stimulus up to 1000 msec in duration was investigated by extracellular recording in acute experiments on cats anesthetized with chloralose (70 mg/kg body weight). Comparative analysis of the types of unitary responses and the durations of the intervals of functional changes showed that: 1) The number of neurons generating on-off responses was about 25% in the visual cortex and 100% in the sensomotor cortex; 2) the intervals of functional changes of the neurons were equal in length to the time intervals of on-off discharges; 3) together with a single time range (200–500 msec), for each area studied specific ranges also exist: from 0 to 200 msec for the visual cortex and from 500 msec and more for the sensomotor cortex; 4) the latent period of after-discharge is equal to the duration of the intervals of functional changes. The results were analyzed from the standpoint of reflection of temporal parameters of optical stimuli by neurons of the sensomotor cortex.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 7, No. 4, pp. 365–371, July–August, 1975.  相似文献   

12.
Responses of 98 auditory cortical neurons to electrical stimulation of the medial geniculate body (MGB) were recorded (45 extracellulary, 53 intracellularly) in experiments on cats immobilized with tubocurarine. Responses of the same neurons to clicks were recorded for comparison. Of the total number of neurons, 75 (76%) responded both to MGB stimulation and to clicks, and 23 (24%) to MGB stimulation only. The latent period of extracellularly recorded action potentials of auditory cortical neurons in response to clicks varied from 7 to 28 msec (late responses were disregarded), and that to MGB stimulation varied from 1.5 to 12.5 msec. For EPSPs these values were 8–13 and 1–4 msec respectively. The latent period of IPSPs arising in response to MGB stimulation varied from 2.2 to 6.5 msec; for 34% of neurons it did not exceed 3 msec. The difference between the latent periods of responses to clicks and to MGB stimulation varied for different neurons from 6 to 21 msec. Responses of 11% of neurons to MGB stimulation, recorded intracellularly, consisted of sub-threshold EPSPs, while responses of 23% of neurons began with an EPSP which was either followed by an action potential and subsequent IPSP or was at once cut off by an IPSP; 66% of neurons responded with primary IPSPs. Neurons responding to MGB stimulation by primary IPSPs are distributed irregularly in the depth of the cortex: there are very few in layers III and IV and many more at a depth of 1.6–2 mm. Conversely, excited neurons are predominant in layer III and IV, and they are few in number at a depth of 1.6–2 mm. It is concluded that the afferent volley reaching the auditory cortex induces excitation of some neurons therein and, at the same time, by the principle of reciprocity, induces inhibition of others. This afferent inhibition takes place with the participation of inhibitory interneurons, and in some cells the inhibition is recurrent. The existence of reciprocal relationships between neurons in different layers of the auditory cortex is postulated.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 1, pp. 23–31, January–February, 1972.  相似文献   

13.
In cats immobilized with tubocurarine, a paired-click method was used to determine the duration of the refractory period of 75 auditory cortical neurons responding to clicks with a latent period of up to 30 msec. Sixty-eight of the neurons exhibited no spontaneous activity, while in the other seven spontaneous activity was infrequent and irregular. It was found that a click makes responding neurons refractory to a second click for a long time. The duration of this refractory period is 3 to 700 msec; it is constant for each neuron, but varies from one neuron to another. A direct relationship was found between the number of neurons responding to the second click and the interval between the first and second clicks: the shorter the interval the fewer neurons respond to the second click. It is postulated that this dependence lies at the basis of the neurophysiological mechanism of perception and discrimination of short time intervals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 3, pp. 227–235, May–June, 1970.  相似文献   

14.
Monopolar intracortical stimulation of the auditory cortex was carried out in cats immobilized with D-tubocurarine. A macroelectrode (tip diameter 100 µ) or a microelectrode (tip diameter 10–15 µ) was used for stimulation. In both cases, besides excitatory responses, primary IPSPs with latent periods of 0.4–1.2 and 1.4–6.0 msec were recorded in cortical neurons close to the point of stimulation. The first group of IPSPs are considered to be generated in response to direct stimulation of bodies or axons of inhibitory cortical neurons, i.e., monosynaptically. The amplitude of these IPSPs varied in different neurons from 3 to 15 mV, and their duration from 4 to 150 msec. Additional later inhibitory responses were superposed on many of them. Of the IPSPs generated in auditory cortical neurons in response to stimulation of geniculocortical fibers 1.5% had a latency of 0.8–1.3 msec. They also are assumed to be monosynaptic. It is concluded that the duration of synaptic delay of IPSPs in cortical neurons and spinal motoneurons is the same, namely 0.3–0.4 msec. Axons of auditory cortical inhibitory neurons may be 1.5 mm long. The velocity of impulse conduction along these axons is 1.6–2.8 m/sec. The genesis of some special features of IPSPs of cortical neurons is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 7, No. 5, pp. 458–467, September–October, 1975.  相似文献   

15.
Experiments on cats with recording electrodes implanted into the cranial bone showed that the evoked potential (EP) in the auditory cortex of the intact waking cat in response to clicks consists of five components with a total duration of up to 300 msec. Neurons of two types participate in the response to clicks: those with and without background activity. The former respond to clicks by various changes in background activity, the latter by one or several action potentials. The latent period of this response varies in different neurons from 6 to 250 msec. In response to clicks, several groups of neurons participate successively in the response, accounting for its long duration. From the beginning of the response, neurons of all cortical layers take part in it. At any moment of EP development, some neurons are in a state of excitation, others in a state of inhibition. About 80% of neurons responding to clicks respond before or during the initial electropositivity, 12% during the initial electronegativity, and only 8% during the late components of the EP. The importance of these findings is discussed relative to the question of the nature of the EP and of processes taking place in the brain after the arrival of an afferent volley.A. A Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neiofiziologiya, Vol. 2, No. 4, pp. 349–359, July–August, 1970.  相似文献   

16.
It was shown during experiments on cats undergoing surgery under ketamine-induced anesthesia and immobilized with myorelaxin that applying trains of stimuli to the locus coeruleus (LC) produces an effect on 79% of parietal cortex neurons. This manifests as inhibition lasting 300–700 msec or a 16–32% decline in the activity rate of neurons with background activity. Hyperpolarization of 5–7 mV lasting 120–500 msec preceded by a latency of 30–90 msec was noted in such neurons as well as "silent" cells during intracellular recording. Duration of the inhibitory pause in neuronal background activity induced by transcallosal stimulation (TCS) increased by 50–200 msec under the effects of conditioned stimuli applied to the LC. Duration of the IPSP triggered by TCS likewise increased (by 50–100 msec) under the effects of LC stimulation. It was concluded that the effects of stimulating the LC on neuronal activity in the parietal cortex may manifest either directly, as inhibition of background activity and hyperpolarization, or else as modulation of influences exerted by other neurotransmitters.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 4, pp. 486–494, July–August, 1990.  相似文献   

17.
Responses of 93 neurons to isolated presentation of a single click and a series of 10 clicks with following frequency of 1000 Hz and responses of 66 neurons after the click had become a positive conditioned stimulus, and a series of 10 clicks had become a differential, negative stimulus, were investigated in chronic experiments on cats. Formation and realization of differential inhibition of an instrumental food reflex was shown not to lead to strengthening of inhibition in the auditory cortex, and the process of differential inhibition itself within the primary auditory cortex is not essentially an inhibitory process. Identical changes were found in responses of auditory cortical neurons to both positive and negative conditioned stimuli after training, evidence that neurons of the primary auditory cortex play a similar role in realization of the instrumental reflex and in its differential inhibition. It is suggested that the presence of groups of neurons responding by excitation or inhibition only to presentation of a stimulus with definite informative value is of great importance for differentiation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukranian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 2, pp. 212–221, March–April, 1985.  相似文献   

18.
Neuronal responses in an isolated slab (area AI) to intracortical pulsed electrical stimulation at the level of layer IV were investigated extracellularly in acute experiments on cats immobilized with D-tubocurarine. Responding neurons were found in all layers of the slab. The character of their distribution by depth in the slab depended on the distance between recording and stimulating electrodes. The latent period of responses of different neurons ranged from 0.8 to 25 msec. With interelectrode distances of 0.5–2 mm most neurons responded mono- and disynaptically. However, responses of many neurons had a latent period of over 4 msec, i.e., they were polysynaptic. This indicates the complex character of interneuronal interactions, even in a limited area of the cortex. After intracortical stimulation no after-discharges with a latent period of over 40 msec could be recorded in the isolated slab of auditory cortex.I. I. Mechnikov Odessa State University. Translated from Neirofiziologiya, Vol. 14, No. 1, pp. 85–93, January–February, 1982.  相似文献   

19.
The responses of motor cortex neurons in the cat to the presentation of a single auditory click and a series of 10 clicks presented with 1,000/sec frequency were studied under conditions of chronic experiments before and after the development of an instrumental food reflex. After reflex development a single presentation of a positive conditioned stimulus (single click) markedly influenced for 7 sec the appearance of instrumental movements. At the same time, the immediate responses of motor cortex neurons to presentation of the conditioned auditory stimulus had no impact on the appearance in the motor cortex of discharges leading to the realization of instrumental movements. Consequently, motor cortex neurons do not require activation from afferent sensory inputs for the generation of such discharges. The immediate neuronal responses to conditioned stimulation did not inhibit the realization of the instrumental reflex. It is proposed that they are associated with the realization of motor function in the unconditioned defensive response evoked by the presentation of an auditory stimulus. The presence or absence of responses to auditory conditioned stimulation was dependent upon the signal meaning of the stimulus, its physical parameters, and the degree of excitability of the animal.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 4, pp. 539–550, July–August, 1985.  相似文献   

20.
Unit responses of the sensomotor cortex to paired electrical stimulation and visual cortex, applied either simultaneously or after various delays (from 0 to 200 msec) depend on the order of application of the stimuli and on the interval between them. If stimulation of the sensomotor cortex was used in a conditioning role the response continued unchanged when the intervals between stimuli were increased to 200 msec. If, however, stimulation of the sensomotor cortex had a testing role interaction was observed between the stimuli so that responses to both first and second stimuli were blocked; this was exhibited most clearly for intervals of 40–80 msec between stimuli. The blocking effect persisted on some neurons with delays of up to 200 msec between stimuli, while the response of others to both the first and the second stimulus was restored.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 6, pp. 628–635, November–December, 1973.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号