首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The binding of Mn2+ to the anthranilate synthetase-phosphoribosyltransferase enzyme complex from Salmonella typhimurium was examined by electron paramagnetic resonance studies. Two types of binding sites were observed: one to two tight sites with a dissociation constant of 3–5 μm and five to six weaker sites with a dissociation constant of 40–70 μm. The activator constant for Mn2+ was found to be 9 μm for the glutamine-linked anthranilate synthetase activity and 4 μm for the phosphoribosyltransferase activity. These values are both in the range of the dissociation constant for the tight sites. Water proton relaxation rate measurements showed that the binary enhancement values for both classes of sites were equivalent, ?b = 10.7 ± 2.0. The addition of chorismate to the Mn2+-enzyme complexes when predominantly the tight Mn2+ sites were occupied resulted in a large decrease in the observed enhancement (?T = 2.0). Addition of 5-phosphoribosyl-1-pyrophosphate to the enzyme-Mn2+ complexes caused large decreases in the water proton relaxation rate (?T = 1.5) when tight or tight plus weaker Mn2+ sites were occupied. No changes in the water proton relaxation rate were observed when glutamine, pyruvate, or anthranilate were added; a small decrease was observed when enzyme-Mn2+ was titrated with tryptophan. Tryptophan significantly altered the effect of the binding of chorismate but not of 5-phosphoribosyl-1-pyrophosphate. The effect of tryptophan on the water proton relaxation rate of a Mn2+-enzyme-chorismate complex using a variant enzyme complex which is tryptophan hypersensitive (P. D. Robison, and H. R. Levy, 1976, Biochim. Biophys. Acta. 445, 475–485) occurred at lower concentrations than for the normal enzyme complex. The uncomplexed anthranilate synthetase subunit was titrated with Mn2+ and found to have one to two binding sites with a dissociation constant of 300 ± 100 μm. This dissociation constant is much larger than the activator constant for Mn2+ for uncomplexed anthranilate synthetase which was determined to be 4 μm. These results indicate that the Mn2+-binding sites on anthranilate synthetase are altered when the enzyme complex is formed and that both chorismate and 5-phosphoribosyl-1-pyrophosphate interact closely with enzyme-bound Mn2+ or cause a large effect upon its environment.  相似文献   

2.
3.
Dimethylallylpyrophosphate:l-tryptophan dimethylallyltransferase (DMAT synthetase), the first pathway-specific enzyme of ergot alkaloid biosynthesis, has been isolated from mycelia of Claviceps sp., strain SD 58, and purified to apparent homogeneity. The enzyme reaction products were identified as l-4-(γ,γ-dimethylallyl)tryptophan and inorganic pyrophosphate. DMAT synthetase is a single subunit protein of molecular weight 70,000–73,000 and has an isoelectric point at pH 5.8. The enzyme is activated by Fe2+, Mg2+, and particularly Ca2+; Km values for l-tryptophan and dimethylallylpyrophosphate were determined to be 0.067 and 0.2 mm, respectively. Kinetic analysis indicated that the DMAT synthetase reaction proceeds by a sequential rather than a ping-pong mechanism.  相似文献   

4.
Glutamine synthetase from the plant cytosol fraction of lupin nodules was purified 89-fold to apparent homogeneity. The enzyme molecule is composed of eight subunits of Mr 44,700 ± 10%. Kinetic analysis indicates that the reaction mechanism is sequential and there is some evidence that Mg-ATP is the first substrate to bind to the enzyme. Michaelis constants for each substrate using the ammonium-dependent biosynthetic reaction are as follows: ATP, 0.24 mm; l-glutamate, 4.0–4.2 mm; ammonium, 0.16 mm. Using an hydroxamate-forming biosynthetic reaction the Km ATP is 1.1 mm but the Km for l-glutamate is not altered. The effect of pH on the Km for ammonium indicates that NH3 rather than NH4+ may be the true substrate. At 10 mm Mg2+, the pH optimum of the enzyme is between 7.5 and 8, but increasing Mg2+ concentrations produce progressively more acidic optima while lower Mg2+ concentrations raise the pH optimum. The rate-response curve for Mg2+ is sigmoidal becoming bell-shaped in alkaline conditions. The enzyme is inhibited by l-Asp (Ki, 1.4 mm) and less markedly by l-Gln and l-Asn. Inhibition by ADP and AMP is strong, both nucleotides exhibiting Ki values around 0.3 mM. Investigations of the probable physiological conditions within the nodule plant cytosol indicate that in situ glutamine synthetase has an activity greater than that required to support the efflux of amino acid nitrogen from the nodule. A possible role for glutamine synthetase in the control of nodule ammonium assimilation is suggested.  相似文献   

5.
Anthranilate synthetase, phosphoribosyltransferase, phosphoribosyl anthranilate isomerase, and indoleglycerol phosphate synthetase were examined in partially purified extracts of the monocotyledon, Zea mays and the dicotyledon, Pisum sativum. The plant extracts were chromatographed on DEAE-cellulose and Sephadex G150. The molecular weights of the enzymes were determined and found to be similar to those observed for many bacteria. None of the plant tryptophan enzyme activities was aggregated in vitro as is also the case with most bacteria. This is in contrast with the complex aggregation patterns observed in other eucaryotic organisms that have been examined (fungi and Euglena gracilis). The tryptophan enzymes from peas and corn were generally similar but some differences in stability were observed.  相似文献   

6.
Free ribulose bisphosphate (RuBP4?) rather than its magnesium complex (RuBP-Mg2?) was the apparent substrate for spinach ribulose bisphosphate carboxylase/oxygenase. The apparent Km for total RuBP (pH 8.0 at 30° C) increased with increasing Mg2+ concentrations from 11.6 μM at 13.33 mM Mg2+ to 32.6 μM at 40.33 mM Mg2+. Similarly the apparent Km for RuBP-Mg2? complex increased with increasing Mg2+ from 9.4 μM at 13.33 mM Mg2+ to 29.7 μM at 40.33 mM Mg2+. However, the Km values for uncomplexed RuBP4? were independent of the (saturating) concentration of Mg2+ (Km=2.2 μM). The Vmax did not vary with the changing concentrations of Mg2+. In contrast, the Km for total RuBP remained constant with varying Mg2+ concentrations (Km=59.5 μM) for the enzyme from R. rubrum. The apparent Km for the RuBP-Mg2? complex decreased with increasing Mg2+ concentrations from 16.0 μM at 7.5 mM Mg2+ to 5.9 μM at 27.5 mM Mg2+. The initial velocity for the C. vinosum enzyme was also found to be independent of the (saturating) concentration of Mg2+ when total RuBP was varied in the assay. Thus the response to total RuBP by these two bacterial enzymes, which markedly differ in structure, was closely similar.  相似文献   

7.
Free ribulose hisphosphate (RuBP4?) rather than its magnesium complex (RuBP-Mg2?) was the apparent substrate for spinach ribulose bisphosphate carboxylase/oxygenase. The apparent Km for total RuBP (pH 8.0 at 30° C) increased with increasing Mg2+ concentrations from 11.6 μM at 13.33 mM Mg2+ to 32.6 μM at 40.33 mM Mg2+. Similarly the apparent Km for RuBP-Mg2? complex increased with increasing Mg2+ from 9.4 μM at 13.33 mM Mg2+ to 29.7 μM at 40.33 mM Mg2+. However, the Km values for uncomplexed RuBP4? were independent of the (saturating) concentration of Mg2+ (Km=2.2 μM). The Vmax did not vary with the changing concentrations of Mg2+. In contrast, the Km for total RuBP remained constant with varying Mg2+ concentrations (Km=59.5 μM) for the enzyme from R. rubrum. The apparent Km for the RuBP-Mg2? complex decreased with increasing Mg2+ concentrations from 16.0 μM at 7.5 mM Mg2+ to 5.9 μM at 27.5 mM Mg2+. The initial velocity for the C. vinosum enzyme was also found to be independent of the (saturating) concentration of Mg2+ when total RuBP was varied in the assay. Thus the response to total RuBP by these two bacterial enzymes, which markedly differ in structure, was closely similar.  相似文献   

8.
Tobacco (cv. Xanthi and cv. Wisconsin 38), rice, carrot, tomato, and soybean tissue cultures were grown in liquid media containing L-tryptophan. The addition of tryptophan increased the cellular tryptophan levels greatly (12–2500 fold), but did not lower appreciably the levels of two tryptophan biosynthetic enzymes, anthranilate synthetase and tryptophan synthetase. However, the addition of 50 μM tryptophan to the crude enzyme extract completely inhibited the anthranilate synthetase activity while 1 mM tryptophan inhibited the tryptophan synthetase activity by only 10–20°/o. This information indicates that tryptophan biosynthesis is controlled by the feedback inhibition of anthranilate synthetase by tryptophan and not by repression of enzyme synthesis. All of the species had significant enzyme levels. Anthranilate synthetase activity could not be detected in extracts from cells grown on tryptophan unless the extracts were first passed through two G-25 Sephadex columns with a short 30 °C warming step in between, a procedure shown to remove an inhibitor of the enzyme.  相似文献   

9.
The synthetic chelating agent EDTA can mobilize radionuclides and heavy metals in the environment. Biodegradation of EDTA should reduce this mobilization. Although several bacteria have been reported to mineralize EDTA, little is known about the biochemistry of EDTA degradation. Understanding the biochemistry will facilitate the removal of EDTA from the environment. EDTA-degrading activities were detected in cell extracts of bacterium BNC1 when flavin mononucleotide (FMN), NADH, and O2 were present. The degradative enzyme system was separated into two different enzymes, EDTA monooxygenase and an FMN reductase. EDTA monooxygenase oxidized EDTA to glyoxylate and ethylenediaminetriacetate (ED3A), with the coconsumption of FMNH2 and O2. The FMN reductase provided EDTA monooxygenase with FMNH2 by reducing FMN with NADH. The FMN reductase was successfully substituted in the assay mixture by other FMN reductases. EDTA monooxygenase was purified to greater than 95% homogeneity and had a single polypeptide with a molecular weight of 45,000. The enzyme oxidized both EDTA complexed with various metal ions and uncomplexed EDTA. The optimal conditions for activity were pH 7.8 and 35°C. Kms were 34.1 μM for uncomplexed EDTA and 8.5 μM for MgEDTA2−; this difference in Km indicates that the enzyme has greater affinity for MgEDTA2−. The enzyme also catalyzed the release of glyoxylate from nitrilotriacetate and diethylenetriaminepentaacetate. EDTA monooxygenase belongs to a small group of FMNH2-utilizing monooxygenases that attack carbon-nitrogen, carbon-sulfur, and carbon-carbon double bonds.  相似文献   

10.
Arginase activity (3.1 ± 0.5 units/g (wet wt) of tissue) was found associated to the cytosolic fraction of the gill cells of the bivalve Semele solida. The enzyme, with a molecular weight of 120,000 ± 3000, was partially purified, and some of the enzymic properties were were examined. The activation of the enzyme by Mn2+ followed hyperbolic kinetics with a KMn value of 0.10 ± 0.02 μM. In addition to Mn2+, the metal ion requirement of the enzyme was satisfied by Ni2+, Cd2+ and Co2+; Zn2+ was inhibitory to ail the Values of Km for arginine and Ki for lysine inhibition, were the same, regardless of the metal ion used to activate the enzyme; Km values were 20 mM at pH 7.5 and 12 mM at the optimum pH of 9.5. Competitive inhibition was caused by ornithine, lysine and proline, whereas branched chain amino acids were non competitive inhibitors of the enzyme.  相似文献   

11.
A phosphoenolpyruvate (PEP) phosphatase was purified to homogeneity from germinating mung beans (Vigna radiata). It was found to be a tetrameric protein (molecular mass 240,000 daltons) made up of apparently identical subunits (subunit molecular mass 60,000 daltons). It was free from bound nucleotides. It did not show pyruvate kinase activity. The enzyme showed high specificity for PEP. Pyrophosphate and some esters (nucleoside di- and triphosphates) were hydrolyzed slowly and phosphoric acid monoesters were not hydrolyzed. The enzyme showed maximum activity at pH 8.5. At this pH, the Km of PEP was 0.14 millimolar and the Vmax was equal to 1.05 micromoles pyruvate formed per minute per milligram enzyme protein. Dialysis of the enzyme against 10 millimolar triethanolamine buffer (pH 6.5), led to loss of the catalytic activity, which was restored on addition of Mg2+ ions (Km = 0.12 millimolar). Other divalent metal ions inhibited the Mg2+ -activated enzyme. PEP-phosphatase was inhibited by ATP and several other metabolites.  相似文献   

12.
We have previously shown that orotate phosphoribosyltransferase (OPRT) and orotidine 5′-monophosphate decarboxylase (OMPDC) in human malaria parasite Plasmodium falciparum form an enzyme complex, containing two subunits each of OPRT and OMPDC. To enable further characterization, we expressed and purified P. falciparum OPRT-OMPDC enzyme complex in Escherichia coli. The OPRT and OMPDC activities of the enzyme complex co-eluted in the chromatographic columns used during purification. Kinetic parameters (Km, kcat and kcat/Km) of the enzyme complex were 5- to 125-folds higher compared to the monofunctional enzyme. Interestingly, pyrophosphate was a potent inhibitor to the enzyme complex, but had a slightly inhibitory effect for the monofunctional enzyme. The enzyme complex resisted thermal inactivation at higher temperature than the monofunctional OPRT and OMPDC. The result suggests that the OPRT-OMPDC enzyme complex might have kinetic benefits and thermal stability significantly different from the monofunctional enzyme.  相似文献   

13.
The anthranilate synthetase of Clostridium butyricum is composed of two nonidentical subunits of unequal size. An enzyme complex consisting of both subunits is required for glutamine utilization in the formation of anthranilic acid. Formation of anthranilate will proceed in the presence of partially pure subunit I provided ammonia is available in place of glutamine. Partially pure subunit II neither catalyzes the formation of anthranilate nor possesses anthranilate-5-phosphoribosylpyrophosphate phosphoribosyltransferase activity. The enzyme complex is stabilized by high subunit concentrations and by the presence of glutamine. High KCl concentrations promote dissociation of the enzyme into its component subunits. The synthesis of subunits I and II is coordinately controlled with the synthesis of the enzymes mediating reactions 4 and 5 of the tryptophan pathway. When using gel filtration procedures, the molecular weights of the large (I) and small (II) subunits were estimated to be 127,000 and 15,000, respectively. Partially pure anthranilate synthetase subunits were obtained from two spontaneous mutants resistant to growth inhibition by 5-methyltryptophan. One mutant, strain mtr-8, possessed an anthranilate synthetase that was resistant to feedback inhibition by tryptophan and by three tryptophan analogues: 5-methyl-tryptophan, 4- and 5-fluorotryptophan. Reconstruction experiments carried out by using partially purified enzyme subunits obtained from wild-type, mutant mtr-8 and mutant mtr-4 cells indicate that resistance of the enzyme from mutant mtr-8 to feedback inhibition by tryptophan or its analogues was the result of an alteration in the large (I) subunit. Mutant mtr-8 incorporates [(14)C]tryptophan into cell protein at a rate comparable with wild-type cells. Mutant mtr-4 failed to incorporate significant amounts of [(14)C]tryptophan into cell protein. We conclude that strain mtr-4 is resistant to growth inhibition by 5-methyltryptophan because it fails to transport the analogue into the cell. Although mutant mtr-8 was isolated as a spontaneous mutant having two different properties (altered regulatory properties and an anthranilate synthetase with altered sensitivity to feedback inhibition), we have no direct evidence that this was the result of a single mutational event.  相似文献   

14.
pH Effects on the Activity and Regulation of the NAD Malic Enzyme   总被引:2,自引:2,他引:0       下载免费PDF全文
The NAD malic enzyme shows a pH optimum of 6.7 when complexed to Mg2+ and NAD+ but shifts to 7.0 when the catalytically competent enzyme-substrate (E-S) complex forms upon binding malate−2. This is characteristic of an induced conformational change. The slope of the Vmax or Vmax/Km profiles is steeper on the alkaline side of the pH optimum. The Km for malate increases markedly under alkaline conditions but is not greatly affected by pH values below the optimum. The loss of catalysis on the acidic side is due to protonation of a single residue, pK 5.9, most likely histidine. Photooxidation inactivation with methylene blue showed that a histidine is required for catalytic activity. The location of this residue at or near the active site is revealed by the protection against inactivation offered by malate. Three residues, excluding basic residues such as lysine (which have also been shown to be vital for catalytic activity, must be appropriately ionized for malate decarboxylation to proceed optimally. Two of these residues directly participate in the binding of substrates and are essential for the decarboxylation of malate. A pK of 7.6 was determined for the two residues required by the E-S complex to achieve an active state, this composite value representing both histidine and cysteine suggests that both have decisive roles in the operation of the enzyme. A major change in the enzyme takes place as protonation nears the pH optimum, this is recorded as a change in the enzyme's intrinsic affinity for malate (Km pH6.7 = 9.2 millimolar, Km pH7.7 = 28.3 millimolar). Similar changes in Km have been observed for the NAD malic enzyme as it shifts from dimer to tetramer. It is most likely that the third ionizable group (probably a cysteine) revealed by the Vmax/Km profile is needed for optimal activity and is involved in the association-dissociation behavior of the enzyme.  相似文献   

15.
Isocitrate lyase was partially purified from germinating spores of the fern Anemia phyllitidis. The enzyme requires Mg2+ and thiol compounds for maximal activity and has a pH optimum between 6.5 and 7.5. The Km of the enzyme for threo-Δs-isocitrate is 0.5 mM. Succinate inhibits the enzyme non-competitively (Ki. 1.8 mM). The increase of isocitrate lyase activity is closely correlated with the induction of the germination process. The fall of enzyme activity during germination is associated with the decline in triglyceride reserves.  相似文献   

16.
1. Anthranilate synthetase activity in crude extracts from tissue cultures of Daucus carota L. (carrot), Nicotiana tabacum L. (tobacco; cv. Wisconsin 38 and xanthi), Glycine max Merr. (soybean) and Oryza sativa L. (rice) was completely inhibited by l -tryptophan (5 to 50 μM). Mutant carrot and tobacco lines, capable of growth in the presence of 5-methyltryptophan, required 500 to more than 1000 μM tryptophan for complete inhibition of enzyme activity, respectively. 2. Except for the mutant tobacco line, the concentrations of free tryptophan in all tissue cultures tested were greater than the levels necessary to completely inhibit the respective anthranilate synthetase activities in vitro. These findings would indicate that much of the free tryptophan is compartmentalized away from the regulatory enzyme, anthranilate synthetase. This could implicate compartmentalization of the inhibitor as a biosynthetic control mechanism. 3. During the growth of normal and mutant carrot tissues the anthranilate synthetase enzyme must be at least 7.8 and 10.8% active, respectively, in order to accumulate the amount of tryptophan found in the tissues. 4. Of the substrates and cofactors required for anthranilate synthetase activity in vitro, Mg2+ and glutamine were present at near optimal levels in the carrot and tobacco tissues, but chorismate was found to be significantly below the optimal concentrations.  相似文献   

17.
The reaction scheme of methionyl-tRNA synthetase from Escherichia coli with the initiator tRNAsMet from E. coli and rabbit liver, respectively, has been resolved. The statistical rate constants for the formation, kR, and for the dissociation, kD, of the 1:1 complex of these tRNAs with the dimeric enzyme have been calculated. Identical kR values of 250 μm?1 s?1 reflect similar behaviour for antico-operative binding of both tRNAsMet to native methionyl-tRNA synthetase. Advantage was taken of the difference in extent of tryptophan fluorescence-quenching induced by the bacterial and mammalian initiator tRNAsMet to measure the mode of exchange of these tRNAs antico-operatively bound to the enzyme. Analysis of the results reveals that antico-operativity does not arise from structural asymmetric assembly of the enzyme subunits. Indeed, both subunits can potentially bind a tRNA molecule. Exchange between tRNA molecules can occur via a transient complex in which both sites are occupied. Either strong and weak sites reciprocate between subunits on the transient complex or occupation of the weak site induces symmetry of this complex. While in the present case, these two alternatives are kinetically indistinguishable, they do account for the observation that, upon increasing the concentration of the competing mammalian tRNA, the rate of exchange of the E. coli initiator tRNAMet is enhanced, due to its faster rate of dissociation from the transient complex. Finally, it has been verified that in the case of the trypsin-modified methionyl-tRNA synthetase which cannot provide more than one binding site for tRNA, exchange of enzymebound bacterial tRNA by mammalian tRNA does proceed to a limiting rate independent of the mammalian tRNA concentration present in the solution.  相似文献   

18.
Quinolinic acid phosphoribosyltransferase (EC 2.4.2.19) was purified 3600-fold from rat liver and 280-fold from rat brain. Kinetic analyses (Km = 12 μM for the substrate quinolinic acid and Km 23 μM for the cosubstrate phosphoribosylpyrophosphate), physicochemical properties of the purified enzymes, inhibition by phthalic acid (Ki = 1.4 μM) and molecular weight determination (Mr 160 000 for the holoenzyme, consisting of five identical 32 kDa subunits) indicated the structural identity of quinolinic acid phosphoribosyltransferase from the two rat tissues. This was further confirmed immunologically, using antibodies raised against purified rat liver quinolinic acid phosphoribosyltransferase. Rat quinolinic acid phosphoribosyltransferase differs in several aspects from quinolinic acid phosphoribosyltransferase isolated from other organisms. The purified enzyme will prove a useful tool in the examination of a possible role of quinolinic acid in cellular function and/or dysfunction.  相似文献   

19.
Glyoxalase I from human erythrocytes was studied by use of the strong reversible competitive inhibitor S-p-bromobenzylglutathione. Replacements of cobalt, manganese and magnesium for the essential zinc in the enzyme were made by a new procedure involving 10% methanol as a stabilizer of the enzyme. The Km value for the adduct of methylglyoxal and glutathione was essentially unchanged by the metal substitutions, whereas the inhibition constant for S-p-bromobenzylglutathione increased from 0.08μm for the Zn-containing enzyme to 1.3, 1.7 and 2.4μm for Co-, Mn- and Mg-glyoxalase I respectively. Binding of the inhibitor to the enzyme caused quenching of the tryptophan fluorescence of the protein, from which the binding parameters could be determined by the use of non-linear regression analysis. The highest dissociation constant was obtained for apoenzyme (6.9μm). The identity of the corresponding kinetic and binding parameters of the native enzyme and the Zn2+-re-activated apoenzyme and the clear differences from the parameters of the other metal-substituted enzyme forms give strong support to the previous identification of zinc as the natural metal cofactor of glyoxalase I. Binding to apoenzyme was also shown by the use of S-p-bromobenzylglutathione as a ligand in affinity chromatography and as a protector in chemical modification experiments. The tryptophan-modifying reagent 2-hydroxy-5-nitrobenzyl bromide caused up to 85% inactivation of the enzyme. After blocking of the thiol groups (about 8 per enzyme molecule) 6.1 2-hydroxy-5-nitrobenzyl groups were incorporated. Inclusion of S-p-bromobenzylglutathione with the modifying reagent preserved the catalytic activity of the enzyme completely and decreased the number of modified residues to 4.4 per enzyme molecule. The findings indicate the presence of one tryptophan residue in the active centre of each of the two subunits of the enzyme. Thiol groups appear not to be essential for catalytic activity. The presence of at least two categories of tryptophan residues in the protein was also shown by quenching of the fluorescence by KI.  相似文献   

20.
Tryptophan hydroxylation in cockroach (Periplaneta americana) nervous tissue was measured and compared to the hydroxylation of tryptophan in rat brain. Tryptophan hydroxylation in both tissues requires a pterine cofactor, and is inhibited by p-chlorophenylalanine. The molecular weight of the protein responsible for hydroxylation of tryptophan in cockroach nervous tissue obtained from gel filtration was estimated to be 54,000.The pH optima and enzyme kinetics differed greatly between the two hydroxylases. Hydroxylation of tryptophan by the enzyme obtained from cockroach tissues incubated with dimethyltetrahydropterine had a pH optimum of about 5.8–5.9 and a Km in crude enzyme preparations of 2.6 × 10−6 M and is activity was substrate inhibited above 10−4 M tryptophan. Hydroxylation of tryptophan by the enzyme obtained from rat brain incubated with dimethyltetrahydropterine had a pH optimum of about 6.5–7.0, a Km of about 6.7 × 10−4 M and exhibited no substrate inhibition at tryptophan concentrations up to 2 × 10−3 M.When incubated with biopterin, the presumed natural cofactor, the hydroxylase from cockroach tissues had a Km of about 6.8 × 10−5 M and no substrate inhibition occurred at tryptophan concentrations up to 2 × 10−3 M. Under the same conditions rat hydroxylase had a Km of 1.1 × 10−5M and substrate inhibition occurred above 10−4 M tryptophan.Unlike the mammalian situation, administration of tryptophan peripherally did not change the 5-hydroxytryptamine concentration in cockroach nervous tissue, but did increase tryptophan levels. The low Vmax values of the cockroach hydroxylase and the inability of administered tryptophan to elevate 5-hydroxytryptamine levels suggest that in the cockroach hydroxylation of tryptophan itself may be the limiting factor in the biosynthesis of 5-hydroxytryptamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号