首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a complex system of 2- to 5-nm filaments in the oral apparatus of Tetrahymena. Four major subunit proteins, called tetrins, have been isolated from the filaments. These proteins, showing apparent molecular weights in polyacrylamide gels of 79-89 kDa, will assemble in vitro into 2- to 5-nm filaments. Tetrin filaments in vivo show different packing arrangements in different regions of the oral apparatus. We sought to determine the distributions of tetrin polypeptides within the complex oral structure by obtaining monoclonal antibodies specific for individual tetrins, then mapping their distributions within the oral apparatus using standard fluorescence microscopy, confocal laser scanning fluorescence microscopy, and electron microscopy. The results indicate that the four tetrin polypeptides are colocalized everywhere within the oral apparatus of Tetrahymena. Tetrin-binding proteins or specific nucleating structures may need to be invoked to explain the complex organization of the tetrin network. The 16 monoclonal antibodies obtained were also used to search for evidence of immunological relationships between tetrin and cytoskeletal proteins in multicellular organisms. None was found.  相似文献   

2.
There is a complex system of 2- to 5-nm filaments in the oral apparatus of Tetrahymena. Four major subunit proteins, called tetrins, have been isolated from the filaments. These proteins, showing apparent molecular weights in polyacrylamide gels of 79-89 kDa, will assemble in vitro into 2- to 5-nm filaments. Tetrin filaments in vivo show different packing arrangements in different regions of the oral apparatus. We sought to determine the distributions of tetrin polypeptides within the complex oral structure by obtaining monoclonal antibodies specific for individual tetrins, then mapping their distributions within the oral apparatus using standard fluorescence microscopy, confocal laser scanning fluorescence microscopy, and electron microscopy. The results indicate that the four tetrin polypeptides are colocalized everywhere within the oral apparatus of Tetrahymena. Tetrin-binding proteins or specific nucleating structures may need to be invoked to explain the complex organization of the tetrin network. The 16 monoclonal antibodies obtained were also used to search for evidence of immunological relationships between tetrin and cytoskeletal proteins in multicellular organisms. None was found.  相似文献   

3.
Despite investigation since the 1950s, the molecular architecture of intermediate filaments has not yet been fully elucidated. Reliable information about the longitudinal organization of the molecules within the filaments and about the lateral interfilament packing is now available, which is not the case for the transverse architecture. Interesting results were recently obtained from in vitro microscopy observations and cross-linking of keratin, desmin, and vimentin analyses. The structural features that emerge from these analyses could not be fully representative of the in vivo architecture because intermediate filaments are subject to polymorphism. To bring new light to the transverse intermediate filament architecture, we have analyzed the x-ray scattering equatorial profile of human hair. Its comparison with simulated profiles from atomic models of a real sequence has allowed results to be obtained that are representative of hard alpha-keratin intermediate filaments under in vivo conditions. In short, the alpha-helical coiled coils, which are characteristic of the central rod of intermediate filament dimers, are straight and not supercoiled into oligomers; the radial density across the intermediate filament section is fairly uniform; the coiled coils are probably assembled into tetrameric oligomers, and finally the oligomer positions and orientations are not regularly ordered. These features are discussed in terms of filament self-assembling and structural variability.  相似文献   

4.
The structure of the oral apparatus in the carnivorous macrostomal form of Tetrahymena vorax has been investigated using serial thin sections and preparations of isolated oral apparatuses. The cilia of the oral apparatus are organized into an undulating membrane that borders the right and part of the posterior margin of the buccal cavity and three membranelles that project from plateaus on the anterior surface. Each membranelle consists of one short row and two longer rows of hexagonally packed kinetosomes. The organization of the microtubules of the oral ribs is identical to that in the T. vorax microstomal cell type. However, the first oral rib originates near the first kinetosome at the anterior end of the undulating membrane. The fine filamentous reticulum that underlies part of the oral ribs in the macrostomal cell type is not striated, unlike the reticulum in the microstomal form. A band of filaments similar to the fine filamentous reticulum extends around the anterior margin of the large cytostomal opening that occupies most of the posterior part of the oral cavity. The single row of microtubules along the left side of the oral cavity and cytostome also has filaments associated with it. A major difference between the microstomal and macrostomal forms in the structure of the oral apparatus is in the oral connectives. The macrostomal cell type contains only a single cross-connective that joins the three membranelles and the anterior portion of the undulating membrane. The posterior or peripheral connective between the posterior ends of membranelles one and two and the posterior end of the undulating membrane is absent.  相似文献   

5.
This report is an ultrastructural analysis of the organization of the isolated oral apparatus of Tetrahymena pyriformis, strain WH-6, syngen 1. Attention has been focused on the organization of microtubules and filaments in oral apparatus membranelles. Oral apparatus membranellar basal bodies were characterized with respect to structural differentiations at the distal and proximal ends. The distal region of membranellar basal bodies contains the basal plate, accessory microtubules and filaments. The proximal end contains a dense material from which emanate accessory microtubules and filaments. There are at least two possibly three different arrangements of accessory structures at the proximal end of membranellar basal bodies. All membranellar basal bodies appear to have a dense material at the proximal end from which filaments emanate. Some of these basal bodies have accessory microtubules and filaments emanating from this dense material. A possible third arrangement is represented by basal bodies which have lateral projections, from the proximal end, of accessory microtubules and filaments which constitute cross or peripheral connectives. There are at least three examples of direct associations between oral apparatus microtubules and filaments: (1) filaments which form links between basal body triplet microtubules, (2) filaments which link the material of the basal plate to internal basal body microtubules, (3) filaments which link together microtubule bundles from membranellar connectives. KCl extraction of the isolated oral apparatus resulted in the selective solubilization of oral apparatus basal bodies, remnants of ciliary axonemes and fused basal plates. Based on their response to KCl extraction two distinct sets of morphologically similar micro tubules can be identified: (a) microtubules which constitute the internal structure of basal bodies and ciliary axonemes, (b) microtubules which constitute the fiber connectives between basal bodies.  相似文献   

6.
Several proteins, including microtubule proteins, have been isolated from the oral apparatus of the ciliate Tetrahymena. The synthesis of these proteins has been studied in relation to formation of this organelle system by the cell. Electron microscopy has shown that the isolated oral apparatus consists primarily of basal bodies, pellicular membranes, and a system of subpellicular microtubules and filaments. Cilia were removed during the isolation; therefore none of the proteins studied was from these structures. Evidence was obtained from the study of total oral apparatus protein which indicates that at least some of the proteins involved in formation of this organelle system may be synthesized and stored in the cytoplasm for use over long periods. This pattern of regulation was found for three individual proteins isolated from the oral apparatus fraction after extraction with a phenol-acetic acid solvent. A different pattern of regulation was found for microtubule proteins isolated from the oral apparatus of Tetrahymena. The data suggest that microtubule proteins, at least in logarithmically growing cells, are not stored in a cytoplasmic pool but are synthesized in the same cell cycle in which they are assembled into oral structures.  相似文献   

7.
Intermediate filaments are one of the three major cytoskeletons. Some roles of intermediate filaments in cellular functions have emerged based on various diseases associated with mutations of cytokeratins. However, the precise functions of intermediate filament are still unclear. To resolve this, we manipulated intermediate filaments of cultured cells by expressing a mutant cytokeratin. Arginine 89 of cytokeratin18 plays an important role in intermediate filament assembly. The expression of green fluorescent protein-tagged cytokeratin18 arg89cys induced aggregations and loss of the intermediate filament network composed of cytokeratins in liver-derived epithelial cells, Huh7 and OUMS29, but only induced the formation of cytokeratin aggregates and did not affect the intermediate filament network of endogenous vimentin in HEK293. The expression of this mutant affected the distribution of Golgi apparatus and the reassembly of Golgi apparatus after perturbations by nocodazole or brefeldin A in both Huh7 and OUMS29, but not in HEK293. Our data show that loss of the original intermediate filament network, but not the existence of cytokeratin aggregates, induces redistribution of the Golgi apparatus. The original intact intermediate filament network is necessary for the organization of Golgi apparatus.  相似文献   

8.
The flagellar filament of the mutant Salmonella typhimurium strain SJW814 is straight, and has a right-handed twist like the filament of SJW1655. Three-dimensional reconstructions from electron micrographs of ice-embedded filaments reveal a flagellin subunit that has the same domain organization as that of SJW1655. Both show slight changes from the domain organization of the subunits from SJW1660, which possesses a straight, left-handed filament. This points to the possible role of changes in subunit conformation in the left-to-right-handed structural transition in filaments. Comparison of the left and right-handed filaments shows that the subunit's orientation and intersubunit bonding appear to change. The orientation of the subunit in the SJW814 filament is intermediate between that of SJW1655 and SJW1660. Its intermediate orientation may explain why the filaments of SJW1655 and SJW1660 are locked in one conformation, whereas the filament of SJW814 can be induced to switch by, for example, changes in pH and ionic strength.  相似文献   

9.
10.
The cytoskeletal architecture and adhesion apparatus are tightly controlled during embryogenesis, tissue development, and carcinogenesis. The Rho family GTPases play central roles in regulation of the cytoskeleton and adhesions. Rac1, one of the Rho family GTPases, appears to be activated at the plasma membrane and exert its functions through its effectors. However, where Rac1 and its effectors function at the molecular level remains to be determined. In this study, we examined the molecular organization on the cytoplasmic surface of the substratum-facing plasma membrane, focusing on Rac1 and its effectors, IQGAP1 and Sra-1, by electron microscopy. We employed deep-etch immunoreplica methods to observe the membrane cytoskeletal architecture while determining molecular locations. Beneath the plasma membrane, Rac1 and its effectors showed similar, but distinct, destinations. Rac1 localized on the membrane and associated with the membrane cytoskeleton. IQGAP1 predominantly localized beside actin filaments and occasionally near microtubules together with Rac1. On the other hand, Sra-1 localized at actin filaments, microtubules, and the plasma membrane. Sra-1 colabeled with Rac1 was mainly found at the membrane and actin filaments. These results suggest that IQGAP1 and Sra-1 colocalize with Rac1 at distinct places, including the plasma membrane and cytoskeletal architecture, for their specific functions.  相似文献   

11.
上皮细胞分裂过程中中等纤维的变化   总被引:1,自引:1,他引:0  
Immunofluorescence microscopy was used to follow the rearrangement of keratin filaments and vimentin filaments during mitosis in Vero and HeLa cell lines. The experiment results showed that the three dimensional organization and structure of intermediate filaments changed drastically during mitosis. The behavior of intermediate filaments was different in these two epithelial cell lines. In mitotic Vero cells the keratin filaments and vimentin filaments maintained their filamentous structure and formed a cage around the mitotic apparatus. In mitotic HeLa cells the keratin filaments and vimentin filaments reorganized extensively and formed granular cytoplasmic bodies. The ratio of granular cytoplasmic body formation changed in different mitotic phase. The interphase intermediate filament network was reconstructed after mitosis. It is proposed that the state of intermediate filament network in these cells is cell cycle-dependent and intermediate filaments may have some skeletal role in mitosis.  相似文献   

12.
In neutrophils activated to secrete with formyl-methionyl-leucyl-phenylalanine, intermediate filaments are phosphorylated transiently by cyclic guanosine monophosphate (cGMP)-dependent protein kinase (G-kinase). cGMP regulation of vimentin organization was investigated. During granule secretion, cGMP levels were elevated and intermediate filaments were transiently assembled at the pericortex to areas devoid of granules and microfilaments. Microtubule and microfilament inhibitors affected intermediate filament organization, granule secretion, and cGMP levels. Cytochalasin D and nocodazole caused intermediate filaments to assemble at the nucleus, rather than at the pericortex. cGMP levels were elevated in neutrophils by both inhibitors; however, with cytochalasin D, cGMP was elevated earlier and granule secretion was excessive. Nocodazole did not affect normal cGMP elevations, but specific granule secretion was delayed. LY83583, a guanylyl cyclase antagonist, inhibited granule secretion and intermediate filament organization, but not microtubule or microfilament organization. Intermediate filament assembly at the pericortex and secretion were partially restored by 8-bromo-cGMP in LY83583-treated neutrophils, suggesting that cGMP regulates these functions. G-kinase directly induced intermediate filament assembly in situ, and protein phosphatase 1 disassembled filaments. However, in intact cells stimulated with formyl-methionyl-leucyl-phenylalanine, intermediate filament assembly is focal and transient, suggesting that vimentin phosphorylation is compartmentalized. We propose that, in addition to changes in microfilament and microtubule organization, granule secretion is also accompanied by changes in intermediate filament organization, and that cGMP regulates vimentin filament organization via activation of G-kinase.  相似文献   

13.
In the past year, several new developments concerning the structure of intermediate filament proteins and their assembly into intact intermediate filaments have been made: the coiled-coil structure of a rod domain has been elucidated; the basis of the chain interaction and its role in intermediate filament assembly has been specified; the organization of nearest-neighbour molecules in keratin intermediate filaments has been determined; and the glycine loop structures of the terminal domains of epidermal keratin chains have been defined. In addition, mutations in intermediate filament chains that promote pathology have been reported for the first time.  相似文献   

14.
Short, uniform-length actin filaments function as structural nodes in the spectrin-actin membrane skeleton to optimize the biomechanical properties of red blood cells (RBCs). Despite the widespread assumption that RBC actin filaments are not dynamic (i.e., do not exchange subunits with G-actin in the cytosol), this assumption has never been rigorously tested. Here we show that a subpopulation of human RBC actin filaments is indeed dynamic, based on rhodamine-actin incorporation into filaments in resealed ghosts and fluorescence recovery after photobleaching (FRAP) analysis of actin filament mobility in intact RBCs (∼25–30% of total filaments). Cytochalasin-D inhibition of barbed-end exchange reduces rhodamine-actin incorporation and partially attenuates FRAP recovery, indicating functional interaction between actin subunit turnover at the single-filament level and mobility at the membrane-skeleton level. Moreover, perturbation of RBC actin filament assembly/disassembly with latrunculin-A or jasplakinolide induces an approximately twofold increase or ∼60% decrease, respectively, in soluble actin, resulting in altered membrane deformability, as determined by alterations in RBC transit time in a microfluidic channel assay, as well as by abnormalities in spontaneous membrane oscillations (flickering). These experiments identify a heretofore-unrecognized but functionally important subpopulation of RBC actin filaments, whose properties and architecture directly control the biomechanical properties of the RBC membrane.  相似文献   

15.
It is believed that the contractile filaments in smooth muscle are organized into arrays of contractile units (similar to the sarcomeric structure in striated muscle), and that such an organization is crucial for transforming the mechanical activities of actomyosin interaction into cell shortening and force generation. Details of the filament organization, however, are still poorly understood. Several models of contractile filament architecture are discussed here. To account for the linear relationship observed between the force generated by a smooth muscle and the muscle length at the plateau of an isotonic contraction, a model of contractile unit is proposed. The model consists of 2 dense bodies with actin (thin) filaments attached, and a myosin (thick) filament lying between the parallel thin filaments. In addition, the thick filament is assumed to span the whole contractile unit length, from dense body to dense body, so that when the contractile unit shortens, the amount of overlap between the thick and thin filaments (i.e., the distance between the dense bodies) decreases in exact proportion to the amount of shortening. Assembly of the contractile units into functional contractile apparatus is assumed to involve a group of cells that form a mechanical syncytium. The contractile apparatus is assumed malleable in that the number of contractile units in series and in parallel can be altered to accommodate strains on the muscle and to maintain the muscle's optimal mechanical function.  相似文献   

16.
应用制备的血清抗体,采用免疫细胞化学方法观察了两株培养上皮细胞的分裂过程中IF的动态变化过程。实验结果显示,在上皮细胞分裂过程中,IF形态结构及空间分布发生了显著变化,不同细胞之间存在差异,分裂的Vero细胞中角蛋白纤维和波形纤维都维持纤维形态,围绕分裂器形成纤维网罩或纤维束环,随着细胞分裂的进行,IF网的空间组织结构和外观发生动态变化;分裂的HeLa细胞中,角蛋白纤维和波形纤维广泛重组形成颗粒状胞质小体,分裂结束后重建IF网。实验结果表明,IF变化具有细胞周期依赖性和一定的细胞特异性。本文对IF在细胞分裂过程中的功能意义作了讨论。  相似文献   

17.
DEVELOPMENT OF THE FLAGELLAR APPARATUS OF NAEGLERIA   总被引:19,自引:15,他引:4       下载免费PDF全文
Flagellates of Naegleria gruberi have an interconnected flagellar apparatus consisting of nucleus, rhizoplast and accessory filaments, basal bodies, and flagella. The structures of these components have been found to be similar to those in other flagellates. The development of methods for obtaining the relatively synchronous transformation of populations of Naegleria amebae into flagellates has permitted a study of the development of the flagellar apparatus. No indications of rhizoplast, basal body, or flagellum structures could be detected in amebae. A basal body appears and assumes a position at the cell surface with its filaments perpendicular to the cell membrane. Axoneme filaments extend from the basal body filaments into a progressive evagination of the cell membrane which becomes the flagellum sheath. Continued elongation of the axoneme filaments leads to differentiation of a fully formed flagellum with a typical "9 + 2" organization, within 10 min after the appearance of basal bodies.  相似文献   

18.
Summary An extensive network of intermediate filaments that interconnected cytoplasmic dense bodies and connected the dense bodies to the cell surface was revealed in double-fixed, tannic acid-stained preparations of ascidian smooth muscle. The filament network ran through spaces in the continuous network of myofibrils, connecting them longitudinally, obliquely and transversely to form an intimately associated, dual network. In their transverse passage, the intermediate filaments ran across myofibrils along I-zones exclusively, interconnecting successive dense bodies.The pattern of attachment of intermediate filaments to dense bodies was predominantly one-sided. The filaments, which themselves were not incorporated into the contractile apparatus, remained folded or unfolded between myofibrils and between sarcomere-like structures in synchrony with the contraction-relaxation cycles.These results suggest that the intermediate filaments mechanically maintain the organization and arrangement of myofibrils via an intimate association with the myofibrils in the regions of the dense bodies, in such a way that the filaments do not impede muscle function.Based on these observations, a new model for the network of intermediate filaments in smooth muscle cells is proposed.  相似文献   

19.
《The Journal of cell biology》1983,96(6):1727-1735
We studied the localization of desmin (skeletin), the major subunit of muscle-type intermediate filaments, by high resolution immunoelectron microscopy in adult chicken skeletal muscle. Immunoferritin labeling of ultrathin frozen sections of intact fixed sartorius muscle showed the presence of desmin between adjacent Z-bands and as strands peripheral to Z-bands, forming apparent connections between the Z-bands with adjacent sarcolemma, mitochondria, and nuclei. We observed no desmin labeling, however, in the vicinity of the T-tubules. In addition, intermediate filaments were morphologically discernible at the level of the Z-bands in plastic sections of glycerol-extracted muscle that had been infused with unlabeled antidesmin antibodies. Our results indicate that the desmin present in adult skeletal muscle, that had previously been detected by immunofluorescence light microscopy, is largely if not entirely in the form of intermediate filaments. The results provide evidence that these filaments serve to interconnect myofibrils at the level of their Z-bands, and to connect Z-bands with other specific structures and organelles in the myotube, but not with the T-tubule system.  相似文献   

20.
The general architecture of the mitotic apparatus was studied at the ultrastructural level in Drosophila cultured cells. Its two main characteristics are a very polarized spindle and a strong compartmentalization, ensured by large remnants of the nuclear envelope. Such compartmentalization has previously been reported for the rapid syncytial divisions of the early embryo; a similar finding in these cells with a long cycle strongly suggests that this organization constitutes a general mechanism for mitosis in Drosophila. We followed the modifications of these structures after a heat shock of 20, 50 or 120 min at 37°C. Contrary to interphase cells, mitotic cells appear very sensitive to hyperthermia. This stress treatment induced a disruption of the mitotic spindle, a reappearance and an extension of the Golgi apparatus, an inactivation of microtubule nucleation and a disorganization of the centrosome. This organelle seems the first to be affected by the heat shock response. The centrosome is not only inactivated, but also is structurally affected. During the recovery phase after heat stress, the mitotic cells presented a remarkable ring-shaped accumulation of electrondense material around the centrioles. We conclude that in Drosophila cells the mitotic phase, and more specifically the centrosome, are targets of the stress response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号