首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We analyze simple models of predator-prey systems in which there is adaptive change in a trait of the prey that determines the rate at which it is captured by searching predators. Two models of adaptive change are explored: (1) change within a single reproducing prey population that has genetic variation for vulnerability to capture by the predator; and (2) direct competition between two independently reproducing prey populations that differ in their vulnerability. When an individual predator's consumption increases at a decreasing rate with prey availability, prey adaptation via either of these mechanisms may produce sustained cycles in both species' population densities and in the prey's mean trait value. Sufficiently rapid adaptive change (e.g., behavioral adaptation or evolution of traits with a large additive genetic variance), or sufficiently low predator birth and death rates will produce sustained cycles or chaos, even when the predator-prey dynamics with fixed prey capture rates would have been stable. Adaptive dynamics can also stabilize a system that would exhibit limit cycles if traits were fixed at their equilibrium values. When evolution fails to stabilize inherently unstable population interactions, selection decreases the prey's escape ability, which further destabilizes population dynamics. When the predator has a linear functional response, evolution of prey vulnerability always promotes stability. The relevance of these results to observed predator-prey cycles is discussed.  相似文献   

2.
A detailed sensitivity analysis of a model of a predator-prey system comprised of Tetranychus urticae and Phytoseiulus persimilis was performed. The aim was to assess the relative importance of the life history parameters of both species, the functional response, and the components of the numerical response. In addition, the impact of the initial predator-prey ratio and the timing of predator introduction were tested. Results indicated that the most important factors in the system were relative rates of predator and prey development, the time of onset of predator oviposition, and the mode of the predator's oviposition curve. The total oviposition of the predator, the effect of prey consumption on predator oviposition, and predator searching were important under some conditions. Factors of moderate importance were the adult female predator's functional response, total prey oviposition, the mode of the prey's oviposition curve, abiotic mortality of the pre-adult predator, and the effect of prey consumption on predator development and on the immature predator's mortality. Factors of least importance were the variances of the predator's and prey's oviposition curves, the abiotic mortality of the adult predator, the abiotic mortality of the pre-adult and adult prey, the functional response of the nymphal and adult male predators, and the effect of prey consumption on adult predator mortality. The sex ratios had little effect, except when the proportion of female predators was very low. The initial predator-prey ratio and time of predator introduction had significant impacts on system behavior, though the patterns of impact were different.  相似文献   

3.
The use of the “arms race” analogy as a conceptualization of evolutionary predator-prey interactions has been criticized because of the lack of evidence that predators can and do adapt to increased antipredator ability of prey. We present evidence that the garter snake Thamnophis sirtalis has evolved resistance to tetrodotoxin (TTX) in response to the toxicity of the newt Taricha granulosa on which the snake feeds. A bioassay (locomotor performance before and after injection of TTX) was used to obtain repeated measures of resistance for individual snakes. We studied interpopulation and interspecific variation by comparing resistance in Thamnophis sirtalis from populations occurring sympatrically and allopatrically with Taricha granulosa, and in Thamnophis ordinoides (which does not feed on the newt) occurring sympatrically with Taricha granulosa. We also examined intrapopulation variation in TTX resistance using snakes from a population known to feed on Taricha granulosa. Resistance differed significantly among individuals and litters; repeatability and heritability estimates of the assay were significantly different from zero, demonstrating the potential for response to selection. The population of Thamnophis sirtalis that occurs with Taricha granulosa exhibited levels of resistance much greater than either of the other groups. These results suggest that the predator-prey arms race analogy may be applicable to this system.  相似文献   

4.
We consider a simple predator-prey model of coevolution. By allowing coevolution both within and between trophic levels the model breaks the traditional dichotomy between coevolution among competitors and coevolution between a prey and its predator. By allowing the diversity of prey and predator species to emerge as a property of the evolutionarily stable strategies (ESS), the model breaks another constraint of most approaches to coevolution that consider as fixed the number of coevolving species. The number of species comprising the ESS is influenced by a parameter that determines the predator's niche breadth. Depending upon the parameter's value the ESS may contain: 1) one prey and one predator species, 2) two prey and one predator, 3) two prey and two predators, 4) three prey and two predators, 5) three prey and three predators, etc. Evolutionarily, these different ESSs all emerge from the same model. Ecologically, however, these ESSs result in very different patterns of community organization. In some communities the predator species are ecologically keystone in that their removal results in extinctions among the prey species. In others, the removal of a predator species has no significant impact on the prey community. These varied ecological roles for the predator species contrasts sharply with the essential evolutionary role of the predators in promoting prey species diversity. The ghost of predation past in which a predator's insignificant ecological role obscures its essential evolutionary role may be a frequent property of communities of predator and prey.  相似文献   

5.
The effects of nonselective predation on the optimal age and size of maturity of their prey are investigated using mathematical models of a simple life history with juvenile and adult stages. Fitness is measured by the product of survival to the adult stage and expected adult reproduction, which is usually an increasing function of size at maturity. Size is determined by both age at maturity and the value of costly traits that increase mean growth rate (growth effort). The analysis includes cases with fixed size but flexible time to maturity, fixed time but flexible size, and adaptively flexible values of both variables. In these analyses, growth effort is flexible. For comparison with previous theory, models with a fixed growth effort are analyzed. In each case, there may be indirect effects of predation on the prey's food supply. The effect of increased predation depends on (1) which variables are flexible; (2) whether increased growth effort requires increased exposure to predators; and (3) how increased predator density affects the abundance of food for juvenile prey. If there is no indirect effect of predators on prey food supply, size at maturity will generally decrease in response to increased predation. However, the indirect effect from increased food has the opposite effect, and the net result of predation is often increased size. Age at maturity may either increase or decrease, depending on functional forms and parameter values; this is true regardless of the presence of indirect effects. The results are compared with those of previous theoretical analyses. Observed shifts in life history in response to predation are reviewed, and the role of size-selective predation is reassessed.  相似文献   

6.
Parasites are considered as an important factor in regulating their host populations through trait-mediated effects. On the other hand, predation becomes particularly interesting in host–parasite systems because predation can significantly alter the abundance of parasites and their host population. The combined effects of parasites and predator on host population and community structure therefore may have larger effect. Different field experiments confirm that predators consume disproportionately large number of infected prey in comparison to their susceptible counterpart. There are also substantial evidences that predator has the ability to distinguish prey that have been infected by a parasite and avoid such prey to reduce fitness cost. In this paper we study the predator–prey dynamics, where the prey species is infected by some parasites and predators consume both the susceptible and infected prey with some preference. We demonstrate that complexity in such systems largely depends on the predator's selectivity, force of infection and predator's reproductive gain. If the force of infection and predator's reproductive gain are low, parasites and predators both go to extinction whatever be the predator's preference. The story may be totally different in the opposite case. Survival of species in stable, oscillatory or chaotic states, and their extinction largely depend on the predator's preference. The system may also show two coexistence equilibrium points for some parameter values. The equilibrium with lower susceptible prey density is always stable and the equilibrium with higher susceptible prey density is always unstable. These results suggest that understanding the consequences of predator's selectivity or preference may be crucial for community structure involving parasites.  相似文献   

7.
Coevolutionary interactions typically involve only a few specialized taxa. The factors that cause some taxa and not others to respond evolutionarily to selection by another species are poorly understood. Preadaptation may render some species predisposed for evolutionary response to new pressures, whereas a lack of genetic variation may limit the evolutionary potential of other taxa. We evaluate these factors in the predator-prey interaction between toxic newts (Taricha granulosa) and their resistant garter snake predators (Thamnophis sirtalis). Using a bioassay of resistance to tetrodotoxin (TTX), the primary toxin in the prey, we examined phenotypic evolution in the genus Thamnophis. Reconstruction of ancestral character states suggests that the entire genus Thamnophis, and possibly natricine snakes in general, has slightly elevated TTX resistance compared to other lineages of snakes. While this suggests that T. sirtalis is indeed predisposed to evolving TTX resistance, it also indicates that the potential exists in sympatric congeners not expressing elevated levels of TTX resistance. We also detected significant family level variation for TTX resistance in a species of Thamnophis that does not exhibit elaborated levels of the trait. This finding suggests that evolutionary response in other taxa is not limited by genetic variability. In this predator-prey system, species and population differences in resistance appear to be largely determined by variation in the selective environment rather than preadaptation or constraint.  相似文献   

8.
Coevolution of a marine gastropod predator and its dangerous bivalve prey   总被引:2,自引:0,他引:2  
The fossil record of the interaction between the predatory whelk Sinistrofulgur and its dangerous hard‐shelled bivalve prey Mercenaria in the Plio‐Pleistocene of Florida was examined to evaluate the hypothesis that coevolution was a major driving force shaping the species interaction. Whelks use their shell lip to chip open the shell of their prey, often resulting in breakage to their own shells, as well as to their prey. Mercenaria evolved a larger shell in response to an intensifying level of whelk predation. Reciprocally, an increase in attack success (ratio of successful to unsuccessful attacks) and degree of stereotypy of attack position by the predator suggest reciprocal adaptation by Sinistrofulgur to increase efficiency in exploiting hard‐shelled prey. A decrease in prey effectiveness (ratio of unsuccessful to total whelk predation attempts) and an increase in the minimum boundary of a size refuge from whelk predation for Mercenaria may indicate that predator adaptation has outpaced prey antipredatory adaptation. Evolutionary size increase in Sinistrofulgur most likely occurred in response to prey adaptation to decrease the likelihood of feeding‐induced shell breakage and unsuccessful predation when encounters with damage‐inducing prey occur, coupled with (or reinforced by) an evolutionary response to the whelk's own predators. Predator adaptation to Mercenaria best explains temporal changes in whelk behaviour to decrease performance loss (shell breakage) associated with feeding on hard‐shelled prey; this behavioural change limits attacks on prey to when the whelk's shell lip is thickest and most resistant to breakage. Despite evidence of reciprocal adaptation between predator and prey, the contribution of Mercenaria to Sinistrofulgur evolution is likely only a component of the predator's response to dangerous bivalve prey. This study highlights the importance of understanding the interactions among several species in order to provide the appropriate context to test evolutionary hypotheses about any specific pair of species. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 80 , 409–436.  相似文献   

9.
Multiple predator species that coexist with each other and their mutual prey can have combined effects on prey mortality that are similar to the sum of each predator's individual impact (linear effects), greater than the sum of each predator's individual impact (risk enhancement), or less than the sum of each predator's individual impact (risk reduction). Understanding multiple predator effects is important to determine the impact of predators on pest prey in agroecosystems. If two predators share the same broad spatial domain and hunting mode and engage in intraguild predation, then their combination is expected to result in risk reduction for a mutual prey. We tested this hypothesis using both additive and replacement experimental designs on two species of generalist wolf spider predators (Tasmanicosa leuckartii and Hogna crispipes) that hunt in the same domain, and a mutual insect prey (cotton bollworm Helicoverpa armigera). We used two types of enclosures: a small simple laboratory enclosure, and a larger more complex cotton plant enclosure. We found that in the small simple laboratory enclosures, the presence of two spiders led to risk reduction of Helicoverpa larva mortality as expected, but in larger more complex cotton plant enclosures the presence of both species resulted in linear effects rather than risk reduction on Helicoverpa mortality. Furthermore, intraguild predation did not change multiple predator effects in laboratory or plant enclosures. This study has implications for managing arthropod predators in agroecosystems; contrary to predictions of ecological frameworks, coexistence of predators that share the same hunting mode and hunting domain may not lead to risk reduction on a mutual prey in more complex environments, where encounters among predators can be lower. Conservation of multiple predators of a single guild can play an essential role on biological control of insect pests.  相似文献   

10.
Synthesis Predation risk experienced by individuals living in groups depends on the balance between predator dilution, competition for refuges, and predator interference or synergy. These interactions operate between prey species as well: the benefits of group living decline in the presence of an alternative prey species. We apply a novel model‐fitting approach to data from field experiments to distinguish among competing hypotheses about shifts in predator foraging behavior across a range of predator and prey densities. Our study provides novel analytical tools for analyzing predator foraging behavior and offers insight into the processes driving the dynamics of coral reef fish. Studies of predator foraging behavior typically focus on single prey species and fixed predator densities, ignoring the potential importance of complexities such as predator dilution; predator‐mediated effects of alternative prey; heterospecific competition; or predator–predator interactions. Neglecting the effects of prey density is particularly problematic for prey species that live in mixed species groups, where the beneficial effects of predator dilution may swamp the negative effects of heterospecific competition. Here we use field experiments to investigate how the mortality rates of a shoaling coral reef fish (a wrasse: Thalassoma amblycephalum), change as a result of variation in: 1) conspecific density, 2) density of a predator (a hawkfish: Paracirrhites arcatus), and 3) presence of an alternative prey species that competes for space (a damselfish: Pomacentrus pavo). We quantify changes in prey mortality rates from the predator's perspective, examining the effects of added predators or a second prey species on the predator's functional response. Our analysis highlights a model‐fitting approach that discriminates amongst multiple hypotheses about predator foraging in a community context. Wrasse mortality decreased with increasing conspecific density (i.e. mortality was inversely density‐dependent). The addition of a second predator doubled prey mortality rates, without significantly changing attack rate or handling time – i.e. there was no evidence for predator interference. The presence of a second prey species increased wrasse mortality by 95%; we attribute this increase either to short‐term apparent competition (predator aggregation) or to a decrease in handling time of the predator (e.g. through decreased wrasse vigilance). In this system, 1) prey benefit from intraspecific group living though a reduced predation risk, and 2) the benefit of group living is reduced in the presence of an alternative prey species.  相似文献   

11.
Biologists have often used simple analogies to help them think about complex processes in evolution. The mutual evolution of predator and prey has often been conceived of as an arms race. An increase in the armaments of one contestant in the race simply causes the other contestant to increase armaments in response. This analogy implies that the evolution in the predator population of improved abilities to capture prey should result in an evolutionary response in the prey that improves its abilities to avoid capture. Conversely, the evolution of improved escape abilities should result in increased capture abilities. The general applicability of this arms race analogy has not been supported by mathematical models of predatorprey interactions.  相似文献   

12.
Behaviours related to foraging and feeding in predator–prey systems are fundamental to our understanding of food webs. From the perspective of a predator, the selection of prey size depends upon a number of factors including prey vulnerability, prey size, and the predator's motivation to eat. Thus, feeding motivation and prey visual cues are supposed to influence predator decisions and it is predicted that prey selection by visual cues is modulated by the predator's stomach fullness prior to attacking a prey. This study was conducted using an animal model from the rocky shores ecosystem, a predatory fish, the frillfin goby Bathygobius soporator, and a benthic prey, the mottled shore crab Pachygrapsus transversus. Our results demonstrate that frillfin gobies are capable of visually evaluating prey size and that the size evaluation process is modulated by the level of stomach fullness. Predators with an empty stomach (0% fullness) attacked prey that was larger than the predicted optimal size. Partially satiated predators (50% stomach fullness) selected prey close to the optimal size, while fully satiated predators (100% stomach fullness) showed no preference for size. This finding indicates an integrative response of the predator that depends on the input of both internal and external sensory information when choosing prey. Predator perceptions of visual cues (prey size) and stomach fullness modulate foraging decisions. As a result, a flexible feeding behaviour emerges, evidencing a clearly adaptive response in line with optimal foraging theory predictions.  相似文献   

13.
Predators frequently exert natural selection through differential consumption of their prey. However, predators may also cause prey mortality through nonconsumptive effects, which could cause selection if different prey phenotypes are differentially susceptible to this nonconsumptive mortality. Here we present an experimental test of this hypothesis, which reveals that nonconsumptive mortality imposed by predatory dragonflies causes selection on their damselfly prey favoring increased activity levels. These results are consistent with other studies of predator‐driven selection, however, they reveal that consumption alone is not the only mechanism by which predators can exert selection on prey. Uncovering this mechanism also suggests that prey defensive traits may represent adaptations to not only avoid being consumed, but also for dealing with other sources of mortality caused by predators. Demonstrating selection through both consumptive and nonconsumptive predator mortality provides us with insight into the diverse effects of predators as an evolutionary force.  相似文献   

14.
The lack of direct empirical evidence of predator evolution in response to prey adaptation is a fundamental weakness of the arms race analogy of predator-prey coevolution. I examined the interaction between the predatory busyconine whelk Sinistrofulgur sinistrum and its bivalve prey Mercenaria mercenaria to evaluate whether reciprocal adaptation was likely in this predator-prey system. Thick-lipped whelks use their shell lip to chip open the shell of their prey, often resulting in breakage to their own shell. Thus, hard-shelled prey, such as Mercenaria, may be considered dangerous because they are able to inflict damage to the predator as a consequence of the interaction. The strength of interaction between whelks and their bivalve prey was viewed by regressing predator performance (the incidence of shell breakage in encounters with prey) on prey phenotype (a function of size). Interaction with Mercenaria of varying sizes has strong and predictable consequences (r2=0.946; p=0.028) for Sinistrofulgur. Predators that select large, thick bivalve prey increase the likelihood that their shell lip will be broken in the process of attempting to open their prey. Ecological consequences of feeding-induced breakage may include reduced growth rate, reproductive success, and survivorship. These results suggest that natural selection should favor predator phenotypes that reduce feeding-induced breakage when interactions with damage-inducing prey occur.  相似文献   

15.
We studied a prey–predator system in which both species evolve. We discuss here the conditions that result in coevolution towards a stable equilibrium or towards oscillations. First, we show that a stable equilibrium or population oscillations with small amplitude is likely to occur if the prey''s (host''s) defence is effective when compared with the predator''s (parasite''s) attacking ability at equilibrium, whereas large-amplitude oscillations are likely if the predator''s (parasite''s) attacking ability exceeds the prey''s (host''s) defensive ability. Second, a stable equilibrium is more likely if the prey''s defensive trait evolves faster than the predator''s attack trait, whereas population oscillations are likely if the predator''s trait evolves faster than that of the prey. Third, when the adaptation rates of both species are similar, the amplitude of the fluctuations in their abundances is small when the adaptation rate is either very slow or very fast, but at an intermediate rate of adaptation the fluctuations have a large amplitude. We also show the case in which the prey''s abundance and trait fluctuate greatly, while those of the predator remain almost unchanged. Our results predict that populations and traits in host–parasite systems are more likely than those in prey–predator systems to show large-amplitude oscillations.  相似文献   

16.
Takahara Y 《Bio Systems》2000,57(3):173-185
Individual base model of predator-prey system is constructed. Both predator and prey species have age structure and cohorts of early reproductive age have competitive advantage. The model has linear functional response in predation behavior and includes the effect of interference among predators and delay of population growth from resource intake, not by functional response but by calculation procedure. Each foraging action is calculated successively and surplus or scarce of acquired resources is interpreted into population size through individual birth and death. This model shows that biomass of prey killed by predator is dependent on demand of predator and that heterogeneity in predator population is essential in persistency and stability of predator-prey system. Heterogeneity of predator makes predator individuals of less competing ability die rapidly. Rapid death of weak individuals causes rapid decrease of total demand of predator and that makes enough room for survived predators. Therefore, the biomass of killed prey is dependent on predator's demand. As young or infant population of predator are the more vulnerable to shortage of prey, and when many of them cannot survive to reproductive age, they can stabilize the system by wasting excessive prey with only temporal numerical increase of predator population.  相似文献   

17.
为了解海州湾关键饵料生物在食物网中的被捕食压力及自然死亡率波动情况,研究基于2011和2013—2020年在海州湾及其邻近海域进行的渔业资源底拖网调查资料和胃含物分析数据,以物种间的营养联系为基础,选择细螯虾(Leptochela gracilis)、日本鼓虾(Alpheus japonicus)、枪乌贼(Loligo sp.)、小黄鱼(Larimichthys polyactis)和口虾蛄(Oratosquilla oratoria)5种关键饵料生物为研究对象,通过计算捕食压力指数(Predation pressure index, PPI),分析它们在海州湾食物网中的主要捕食者及其捕食压力,并计算了纳入捕食压力指数的自然死亡系数。结果表明,细螯虾的捕食者对其年平均捕食压力指数最高,小黄鱼的捕食者对其年平均捕食压力指数最低。小眼绿鳍鱼(Chelidonichthys kumu)对细螯虾和枪乌贼的年平均捕食压力指数最高,分别为168.89和75.77;(Miichthys miiuy)对日本鼓虾和口虾蛄的年平均捕食压力指数最高,分别为39.41和9.85;海鳗(Muraenesox c...  相似文献   

18.
1. Functional response models (e.g. Holling's disc equation) that do not take the spatial distributions of prey and predators into account are likely to produce biased estimates of predation rates. 2. To investigate the consequences of ignoring prey distribution and predator aggregation, a general analytical model of a predator population occupying a patchy environment with a single species of prey is developed. 3. The model includes the density and the spatial distribution of the prey population, the aggregative response of the predators and their mutual interference. 4. The model provides explicit solutions to a number of scenarios that can be independently combined: the prey has an even, random or clumped distribution, and the predators show a convex, sigmoid, linear or no aggregative response. 5. The model is parameterized with data from an acarine predator-prey system consisting of Phytoseiulus persimis and Tetranychus urticae inhabiting greenhouse cucumbers. 6. The model fits empirical data quite well and much better than if prey and predators were assumed to be evenly distributed among patches, or if the predators were distributed independently of the prey. 7. The analyses show that if the predators do not show an aggregative response it will always be an advantage to the prey to adopt a patchy distribution. On the other hand, if the predators are capable of responding to the distribution of prey, then it will be an advantage to the prey to be evenly distributed when its density is low and switch to a more patchy distribution when its density increases. The effect of mutual interference is negligible unless predator density is very high. 8. The model shows that prey patchiness and predator aggregation in combination can change the functional response at the population level from type II to type III, indicating that these factors may contribute to stabilization of predator-prey dynamics.  相似文献   

19.
Velvet ants are a group of parasitic wasps that are well known for a suite of defensive adaptations including bright coloration and a formidable sting. While these adaptations are presumed to function in antipredator defense, observations between potential predators and this group are lacking. We conducted a series of experiments to determine the risk of velvet ants to a host of potential predators including amphibians, reptiles, birds, and small mammals. Velvet ants from across the United States were tested with predator's representative of the velvet ants native range. All interactions between lizards, free‐ranging birds, and a mole resulted in the velvet ants survival, and ultimate avoidance by the predator. Two shrews did injure a velvet ant, but this occurred only after multiple failed attacks. The only predator to successfully consume a velvet ant was a single American toad (Anaxyrus americanus). These results indicate that the suite of defenses possessed by velvet ants, including aposematic coloration, stridulations, a chemical alarm signal, a hard exoskeleton, and powerful sting are effective defenses against potential predators. Female velvet ants appear to be nearly impervious to predation by many species whose diet is heavily derived of invertebrate prey.  相似文献   

20.
Counter-adaptations of predators towards their prey are a far less investigated phenomenon in predator-prey interactions. Caudal autotomy is generally considered an effective last-resort mechanism for evading predators. However, in victim-exploiter relationships, the efficacy of a strategy will obviously depend on the antagonist’s ability to counter it. In the logic of the predator-prey arms race, one would expect predators to develop attack strategies that minimize the chance of autotomy of the prey and damage on the predator. We tested whether avian predators preferred grasping lizards by their head. We constructed plasticine models of the Italian wall lizard (Podarcis sicula) and placed them in natural habitat of the species. Judging from counts of beak marks on the models, birds preferentially attack the head and might also avoid the tail and limb regions. While a preference for the head might not necessarily demonstrate tail and limb avoidance, this topic needs further exploration because it suggests that even unspecialised avian predators may see through the lizard’s trick-of-the-tail. This result may have implications for our understanding of the evolution of this peculiar defensive system and the loss or decreased tendency to shed the tail on island systems with the absence of terrestrial predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号