首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
It is well documented in the anthropological literature that the distinctive morphology of the “robust” hominid facial skeleton reflects its dietary specialization. Rak (1983) has provided the most comprehensive evaluation of Paranthropus facial morphology and this important study concluded that bone strain generated during mastication was responsible for the scaling of measures of facial height and breadth. The present study evaluated Rak's analysis by examining the relationship between bizygomatic breadth and facial height in an ontogenetic series of Pan and Gorilla crania. Results of this analysis indicate that facial height and breadth dimensions were not mechanically scaled in the “robust” australopithecines. Structural analysis of African ape facial maturation was also used to examine alternative spatial methods of malar elongation in Paranthropus. It is concluded that the increased height of the malar region in these specimens is not related to either vertical expansion of the posterior facial skeleton or to expansion of the temporal fossa. Malar elongation is, however, consistent with a derived pattern of facial growth in crania possessing a thickened hard palate. © 1994 Wiley-Liss, Inc.  相似文献   

2.
A complex of traits in the femur and pelvis of Homo ereclus and early “erectus-like” specimens has been described, but never satisfactorily explained. Here the functional relationships between pelvic and femoral structure in humans are explored using both theoretical biomechanical models and empirical tests within modern samples of diverse body form (Pecos Amerindians, East Africans). Results indicate that a long femoral neck increases mediolateral bending of the femoral diaphysis and decreases gluteal abductor and hip joint reaction forces. Increasing biacetabular breadth along with femoral neck length further increases M-L bending of the femoral shaft and maintains abductor and joint reaction forces at near “normal” levels. When compared to modern humans, Homo erectus and early “erectus-like” specimens are characterized by a long femoral neck and greatly increased M-L relative to A-P bending strength of the femoral shaft, coupled with no decrease in hip joint size and a probable increase in abductor force relative to body size. All of this strongly suggests that biacetabular breadth as well as femoral neck length was relatively large in early Homo. Several features preserved in early Homo partial hip bones also indicate that the true (lower) pelvis was very M-L broad, as well as A-P narrow. This is similar to the lower pelvic shape of australopithecines and suggests that nonrotational birth, in which the newborn's head is oriented transversely through the pelvic outlet, characterized early Homo as well as Australopithecus. Because M-L breadth of the pelvis is constrained by other factors, this may have limited increases in cranial capacity within Homo until rotational birth was established during the late Middle Pleistocene. During or after the transition to rotational birth biacetabular breadth decreased, reducing the body weight moment arm about the hip and allowing femoral neck length (abductor moment arm) to also decrease, both of which reduced M-L bending of the proximal femoral shaft. Variation in femoral structural properties within early Homo and other East African Early Pleistocene specimens has several taxonomic and phylogenetic implications. © 1995 Wiley-Liss, Inc.  相似文献   

3.
Body mass estimates for fossil hominin taxa can be obtained from suitable postcranial and cranial variables. However, the nature of the taphonomic processes that winnow the mammalian fossil record are such that these data are usually only available for the minority of the specimens that comprise the hypodigm of a species. This study has investigated the link between species mean body mass and the height and width of the mandibular corpus in a core sample of 23 species of extant simians. The slopes of the least-squares regressions for the whole sample and for the hominoid subset are similar. However, the intercepts differ so that for a given body mass, a hominoid will generally have a smaller mandible than a generalized simian. The same mandibular measurements were taken on 75 early hominin mandibles assigned to eight species groups. When mandibular corpus height- and width-derived estimates of body mass for the fossil taxa were compared with available postcranial and cranial-derived body mass estimates, the eight early hominin species sort into four groups. The first, which includes A. afarensis and A. africanus, has mandibles which follow a “generalized simian” scaling relationship. The second group, which comprises the two “robust” australopithecine species, P. boisei and P. robustus, has mandibles which scale with body mass as if they are “super-simians,” for they have substantially larger mandibles than a simian with the same body mass. The two “early Homo” species, H. habilis sensu stricto and H. rudolfensis, make up the third group. It has mandibular scaling relationships that are intermediate between that of the comparative simian sample and that of the hominoid subsample. The last of the four groups comprises H. ergaster and H. erectus; their mandibles scale with body mass as if they were hominoids, so that of the four groups they have the smallest mandibles per unit body mass. These results are related to comparable information about relative tooth size. Their relevance for attempts to interpret the dietary adaptations of early hominins are explored. Am J Phys Anthropol 105:523–538, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Temporal trends in postcranial robusticity within the genus Homo are explored by comparing cross-sectional diaphyseal and articular properties of the femur, and to a more limited extent, the humerus, in samples of Recent and earlier Homo. Using both theoretical mechanical models and empirical observations within Recent humans, scaling relationships between structural properties and bone length are developed. The influence of body shape on these relationships is considered. These scaling factors are then used to standardize structural properties for comparisons with pre-Recent Homo (Homo sp. and H. erectus, archaic H. sapiens, and early modern H. sapiens). Results of the comparisons lead to the following conclusions: 1) There has been a consistent, exponentially increasing decline in diaphyseal robusticity within Homo that has continued from the early Pleistocene through living humans. Early modern H. sapiens are closer in shaft robusticity to archaic H. sapiens than they are to Recent humans. The increase in diaphyseal robusticity in earlier Homo is a result of both medullary contraction and periosteal expansion relative to Recent humans. 2) There has been no similar temporal decline in articular robusticity within Homo–relative femoral head size is similar in all groups and time periods. Thus, articular to shaft proportions are different in pre-Recent and Recent Homo. 3) These findings are most consistent with a mechanical explanation (declining mechanical loading of the postcranium), that acted primarily through developmental rather than genetic means. The environmental (behavioral) factors that brought about the decline in postcranial robusticity in Homo are ultimately linked to increases in brain size and cultural-technological advances, although changes in robusticity lag behind changes in cognitive capabilities. © 1993 Wiley-Liss, Inc.  相似文献   

5.
The Lothagam mandibular fragment, found in 1967 west of Lake Turkana, Kenya, has been dated to 5.5 million years ago. This date is significant because it may lie within the suggested time range during which the hominid and pongid clades diverged. Because of its fragmentary condition and great age, this specimen has run the gamut of taxonomic assignations, from ramapithecine to pongid to hominid. These three nomenclatural categories serve as the basis for three hypotheses tested in this study. First, morphological and metric comparisons between Lothagam and a sample of Euroafrican ramapithecines address the hypothesis of “Lothagam as predi-vergence hominoid.” Second, comparisons with a sample of Pan test the “Lothagam as postdivergence, African protopongid” hypothesis. Finally, samples of Australopithecus afarensis and A. africanus were utilized to evaluate the hypothesis of “Lothagam as postdivergence, early hominid.” Unlike previous studies attempting to ascertain the evolutionary affinities of this enigmatic fossil, this work benefits from the large sample of A. afarensis specimens now generally available for study. Metric and morphological comparisons demonstrate Lothagam's affinity to A. afarensis in sharing derived, hominid states in such features as the mental foramen vertical position, the ascending ramus origin, the breadth of the alveolar margin, the reduction of the hypoconulid, the dimensions of the M1 and the dimensions of the mandibular corpus. It is suggested that the dental/gnathic features enumerated in this study can be employed to distinguish ancestral hominid from pongid in future Mio/Pliocene paleontological discoveries.  相似文献   

6.
Anthropologists have long recognized the existence among modern humans of geographical variations in body form that parallel climatic gradients, part of more general zoological phenomena commonly referred to as Bergmann's or Allen's “Rules”. These observations have rarely been applied to earlier hominids, in part because fossil skeletons usually are so incomplete that it is difficult to reconstruct body morphology accurately. However, within the past two decades two early hominids have been discovered that preserve enough of the skeleton to allow confident assessment of their body size and shape. Comparison of these specimens—the Australopithecus afarensis A.L. 288-1 (“Lucy”) and the Homo erectus KNM-WT 15000—with others that are less complete make it evident that the evolution of Homo erectus was accompanied by not only a marked increase in body size, but also a similarly dramatic increase in the linearity of body form. That is, relative to their heights, small australopithecines had very broad bodies, whereas large early Homo had narrow bodies. This difference in body form cannot be explained on the basis of obstetric or biomechanical factors, but is consistent with thermoregulatory constraints on body shape. Specifically, to maintain the same ratio of body surface area to body mass, which is an important thermoregulatory mechanism, increases in height should be accompanied by no change in body breadth, which is exactly what is seen in comparisons of A.L. 288-1 and KNM-WT 15000. Conversely, Neandertals living in colder climates had much wider bodies, which are adaptive for heat retention. Differences in limb length proportions between fossil hominids are also consistent with thermoregulatory principles and the geographic variation observed among modern humans. Climatic adaptation during hominid evolution may have wide-ranging implications, not only with regard to interpreting body morphology, but also in relation to ecological scenarios, population movements, and the evolution of the brain.  相似文献   

7.
We present an analysis of cranial capacity of 118 hominid crania available from the literature. The crania belong to both the genusAustralopithecus andHomo and provide a clear outline of hominid cranial evolution starting at more than 3 million years ago. Beginning withA. afarensis there is a clear increase in both absolute and relative brain size with every successive time period.H.s. neandertal has an absolutely and relatively smaller brain size (1412cc, E.Q.=5.6) than fossil modernH.s. sapiens (1487cc, E.Q.=5.9). Three evolutionary models of hominid brain evolution were tested: gradualism, punctuated equilibrium, and a mixed model using both gradualism and punctuated equilibrium. Both parametric and non-parametric analyses show a clear trend toward increasing brain size withH. erectus and a possible relationship within archaicH. sapiens. An evolutionary stasis in cranial capacity could not be refuted for all other taxa. Consequently, the mixed model appears to more fully explain hominid cranial capacity evolution. However, taxonomic decisions could directly compromise the possibility of testing the evolutionary mechanisms hypothesized to be operating in hominid brain expansion.  相似文献   

8.
A restudy of the Danish brain weight data published by Pakkenberg and Voigt ('64), using partial correlation techniques, confirms and extends their earlier conclusions regarding a much stronger allometric relationship between height and brain weight than between body weight and brain weight. The relationship is particularly strong in males, and not in females, which is hypothesized to be related to higher fat components in the latter. Comparative data for smaller samples of Pan, Gorilla, Pongo, Macaca, Papio, and Saimiri using body weights, suggest that such relationship also hold more strongly in males than females, although more reliable data are greatly needed. In addition to providing within-species ranges of variability for variously derived neural statistics (e.g., encephalization quotients, “extra neurons,” etc.), for “normal” primates, it is suggested that while allometric trends do exist within species, and particularly males, evolutionary pressures leading to larger brain size were probably very diverse, and that any one homogenistic theory is unlikely.  相似文献   

9.
In 2004, a new hominin species, Homo floresiensis, was described from Late Pleistocene cave deposits at Liang Bua, Flores. H. floresiensis was remarkable for its small body-size, endocranial volume in the chimpanzee range, limb proportions and skeletal robusticity similar to Pliocene Australopithecus, and a skeletal morphology with a distinctive combination of symplesiomorphic, derived, and unique traits. Critics of H. floresiensis as a novel species have argued that the Pleistocene skeletons from Liang Bua either fall within the range of living Australomelanesians, exhibit the attributes of growth disorders found in modern humans, or a combination of both. Here we describe the morphology of the LB1, LB2, and LB6 mandibles and mandibular teeth from Liang Bua. Morphological and metrical comparisons of the mandibles demonstrate that they share a distinctive suite of traits that place them outside both the H. sapiens and H. erectus ranges of variation. While having the derived molar size of later Homo, the symphyseal, corpus, ramus, and premolar morphologies share similarities with both Australopithecus and early Homo. When the mandibles are considered with the existing evidence for cranial and postcranial anatomy, limb proportions, and the functional anatomy of the wrist and shoulder, they are in many respects closer to African early Homo or Australopithecus than to later Homo. Taken together, this evidence suggests that the ancestors of H. floresiensis left Africa before the evolution of H. erectus, as defined by the Dmanisi and East African evidence.  相似文献   

10.
Compact bone distribution and biomechanics of early hominid mandibles.   总被引:1,自引:0,他引:1  
This investigation explores the effects of compact bone distribution on the biomechanical properties of the postcanine mandibular corpus of the fossil hominid taxa Australopithecus africanus and Paranthropus robustus. The mandibles of extant great apes, modern humans, and the fossil hominids are examined by computed tomography (CT), and compact bone contours are used to calculate cross-sectional biomechanical properties (cortical area, second moments of area, and Bredt's formula for torsional strength). The relative amount of compact bone is comparable in the modern and fossil mandibles, but the mechanical properties of A. africanus and P. robustus jaws are distinct in terms of the ratio of minimum to maximum second moments of area. This difference most likely represents a structural response to elevated torsional moments in the fossil hominids. Although the relative amount of compact bone in cross-section does not differ significantly between taxa by statistical criteria, A. africanus utilizes less cortical bone than P. robustus in the same manner in which Pongo is separated from the condition in other extant large-bodied hominoids. It has been suggested that the phenomenon of mandibular "robusticity" (expressed as an index of corpus breadth/corpus height) may be an effect of postcanine megadontia and/or reduced canine size in the australopithecines. Results presented here, however, indicate that it is unlikely that either factor adequately accounts for mandibular size and shape variation in early hominids.  相似文献   

11.
Over 200 hominid specimens were recovered by the International Omo Expedition of 1967–1976. Despite the fragmentary nature of this primarily dental collection, these hominid remains represent a major body of evidence about hominid evolution in eastern Africa during the 2–3 myr time period. Our analysis of the Omo dental collection is based on a large comparative sample of 375 quantifiable mandibular postcanine teeth of A. afarensis, A. africanus, A. aethiopicus, A. boisei, A. robustus, and early Homo. A total of 48 isolated mandibular premolars and molars of the Omo collection spanning the 2–3 myr time period is sufficiently preserved to allow reliable serial allocations and intertaxon comparisons and is the object of study in this paper. We present taxonomic identifications of these teeth and seven other mandibular specimens preserving tooth crowns. Metric analyses of this study include cusp area and crown shape variables taken on occlusal view diagrams. Nonmetric analyses were based on simultaneous observations of all relevant material to ensure accuracy of categorical evaluations. First, a combined metric and morphological evaluation was conducted to allocate each Omo tooth to either robust or nonrobust categories. Further taxonomic affinities were then examined. Our results indicate that nonrobust and robust lineages cooccur by circa 2.7 myr. We consider the Shungura robust specimens from Members C through F to represent A. aethiopicus. A significant phenetic transformation occurs at circa 2.3 myr, with the mosaic emergence of the derived A. boisei morphology across Member G times. Characterization of the East African nonrobust lineage is more difficult because of the comparatively subtle morphological differences seen among the dentitions of A. afarensis, A. africanus, and early Homo. The earlier Members B and C nonrobust specimens are difficult to evaluate and are considered indeterminate to genus or species. Both molars and premolars from Members E through G exhibit phenetic similarities to the early Homo condition and are considered as aff. Homo sp. indet. At present, there is no indication of multiple species in the Omo nonrobust sample at any time horizon. The 2–2.4 myr Omo nonrobust specimens exhibit some similarities to the stated Homo “rudolfensis” condition in size and morphology and are likely to represent the ancestral condition of the genus Homo. The bearing of these results on interpretations of early hominid evolution and diversification is considered. © 1996 Wiley-Liss, Inc.  相似文献   

12.
13.
14.
Discovery of the first complete Early Pleistocene hominin pelvis, Gona BSN49/P27, attributed to Homo erectus, raises a number of issues regarding early hominin body size and shape variation. Here, acetabular breadth, femoral head breadth, and body mass calculated from femoral head breadth are compared in 37 early hominin (6.0-0.26 Ma) specimens, including BSN49/P27. Acetabular and estimated femoral head sizes in the Gona specimen fall close to the means for non-Homo specimens (Orrorin tugenesis, Australopithecus africanus, Paranthropus robustus), and well below the ranges of all previously described Early and Middle Pleistocene Homo specimens. The Gona specimen has an estimated body mass of 33.2 kg, close to the mean for the non-Homo sample (34.1 kg, range 24-51.5 kg, n = 19) and far outside the range for any previously known Homo specimen (mean = 70.5 kg; range 52-82 kg, n = 17). Inclusion of the Gona specimen within H. erectus increases inferred sexual dimorphism in body mass in this taxon to a level greater than that observed here for any other hominin taxon, and increases variation in body mass within H. erectus females to a level much greater than that observed for any living primate species. This raises questions regarding the taxonomic attribution of the Gona specimen. When considered within the context of overall variation in body breadth among early hominins, the mediolaterally very wide Gona pelvis fits within the distribution of other lower latitude Early and Middle Pleistocene specimens, and below that of higher latitude specimens. Thus, ecogeographic variation in body breadth was present among earlier hominins as it is in living humans. The increased M-L pelvic breadth in all earlier hominins relative to modern humans is related to an increase in ellipticity of the birth canal, possibly as a result of a non-rotational birth mechanism that was common to both australopithecines and archaic Homo.  相似文献   

15.
Body mass is a key variable in investigating the evolutionary biology of the hominines (Australopithecus, Paranthropus, and Homo). It is not only closely related to life-history parameters but also provides a necessary baseline for studies of encephalization or megadonty. Body mass estimates are normally based on the postcranial skeleton. However, the majority of hominid fossils are cranio-dental remains that are unassociated with postcranial material. Only rarely can postcranial material be linked with craniodentally defined hominid taxa. This study responds to this problem by evaluating body mass estimates based on 15 cranial variables to determine whether they compare in reliability with estimates determined from postcranial variables. Results establish that some cranial variables, and particularly orbital area, orbital height, and biporionic breadth, are nearly as good mass predictors for hominoids as are some of the best postcranial predictors. For the hominines in particular, orbital height is the cranial variable which produces body mass estimates that are most in line with postcranially generated estimates. Both orbital area and biporionic breadth scale differently in the hominines than they do in the other hominoids. This difference in scaling results in unusually large estimates of body mass based on these variables for the larger-sized hominines, although the three cranial variables produce equivalent predicted masses for the smaller-bodied hominines. © 1994 Wiley-Liss, Inc.  相似文献   

16.
There is currently great interest in developing ecological models for investigating human evolution. Yet little attention has been given to energetics, one of the cornerstones of modern ecosystem ecology. This paper examines the ecological correlates of variation in metabolic requirements among extant primate species, and uses this information to draw inferences about the changes in energy demands over the course of human evolution. Data on body size, resting metabolism, and activity budgets for selected anthropoid species and human hunter-gatherers are used to estimate total energy expenditure (TEE). Analyses indicate that relative energy expenditure levels and day ranges are positively correlated with diet quality; that is, more active species tend to consume more energy-rich diets. Human foragers fall at the positive extremes for modern primates in having high expenditure levels, large ranges, and very high quality diets. During hominid evolution, it appears that TEE increased substantially with the emergence of Homo erectus. This increase is partly attributable to larger body size as well as likely increases in day range and activity level. Assuming similar activity budgets for all early hominid species, estimated TEE for H. erectus is 40–45% greater than for the australopithecines. If, however, it is assumed that the evolution of early Homo was also associated with a shift to a more “human-like” foraging strategy, estimated expenditure levels for H. erectus are 80–85% greater than in the australopithecines. Changing patterns of resource distribution associated with the expansion of African savannas between 2.5 and 1.5 mya may been the impetus for a shift in foraging behavior among early members of the genus Homo. Such ecological changes likely would have made animal foods a more attractive resource. Moreover, greater use of animal foods and the resulting higher quality diet would have been important for supporting the larger day ranges and greater energy requirements that appear to have been associated with the evolution of a human-like hunting and gathering strategy. Am J Phys Anthropol 102:265–281, 1997 © 1997 Wiley-Liss, Inc.  相似文献   

17.
All early (Pliocene–Early Pleistocene) hominins exhibit some differences in proximal femoral morphology from modern humans, including a long femoral neck and a low neck‐shaft angle. In addition, australopiths (Au. afarensis, Au. africanus, Au. boisei, Paranthropus boisei), but not early Homo, have an “anteroposteriorly compressed” femoral neck and a small femoral head relative to femoral shaft breadth. Superoinferior asymmetry of cortical bone in the femoral neck has been claimed to be human‐like in australopiths. In this study, we measured superior and inferior cortical thicknesses at the middle and base of the femoral neck using computed tomography in six Au. africanus and two P. robustus specimens. Cortical asymmetry in the fossils is closer overall to that of modern humans than to apes, although many values are intermediate between humans and apes, or even more ape‐like in the midneck. Comparisons of external femoral neck and head dimensions were carried out for a more comprehensive sample of South and East African australopiths (n = 17) and two early Homo specimens. These show that compared with modern humans, femoral neck superoinferior, but not anteroposterior breadth, is larger relative to femoral head breadth in australopiths, but not in early Homo. Both internal and external characteristics of the australopith femoral neck indicate adaptation to relatively increased superoinferior bending loads, compared with both modern humans and early Homo. These observations, and a relatively small femoral head, are consistent with a slightly altered gait pattern in australopiths, involving more lateral deviation of the body center of mass over the stance limb. Am J Phys Anthropol, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
The widespread and complex ecogeographical diversity of macaques may have caused adaptive morphological convergence among four phylogenetic subgroups, making their phylogenetic relationships unclear. We used geometric morphometrics and multivariate analyses to test the null hypothesis that craniofacial morphology does not vary with ecogeographical and phylogenetic factors. As predicted by Bergmann's rule, size was larger for the fascicularis and sinica groups in colder environments. No clear size cline was observed in the silenus and sylvanus groups. An allometric pattern was observed across macaques, indicating that as size increases, rounded faces become more elongated. However, the elevation was differentiated within each of the former two groups and between the silenus and sylvanus groups, and the slope decreased in each of the two northern species of the fascicularis group. All allometric changes resulted in the similar situation of the face being more rounded in animals inhabiting colder zones and/or in animals having a larger body size than that predicted from the overarching allometric pattern. For non‐allometric components, variations in prognathism were significantly correlated with dietary differences; variations in localized shape components in zygomatics and muzzles were significantly correlated with phylogenetic differences among the subgroups. The common allometric pattern was probably influenced directly or indirectly by climate‐related factors, which are pressures favoring a more rounded face in colder environments and/or a more elongated face in warmer environments. Allometric dissociation could have occurred several times in Macaca even within a subgroup because of their wide latitudinal distributions, critically impairing the taxonomic utility of craniofacial elongation. Am J Phys Anthropol 154:27–41, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
The relative development of permanent teeth in samples of Neandertal/archaic Homo and Early Modern/Upper Paleolithic hominids is compared to the range of variability found in three recent human samples. Both fossil hominid samples are advanced in relative M2 and M3 development compared to white French-Canadians, but only the Neandertal/archaic Homo M3 sample is advanced when compared to black southern Africans. Both fossil hominid samples are delayed in relative I1 and P3 development compared to the recent human samples. Two hypotheses concerning the significance of the advanced M3 and M2 development found in both hominid groups and southern Africans compared to French-Canadians are discussed. The first postulates that the differences in relative molar development are due simply to variation in tooth/jaw size relationships. The second postulates that the relatively advanced M3 and M2 development found in the fossil hominids and southern Africans is a correlate of their potential for advanced skeletal maturation compared to French-Canadians and other European-derived populations. It appears that dental development patterns have continued to evolve from the Upper Pleistocene to present times, and that Neandertals and Early Moderns shared similar patterns of relative dental development. © 1996 Wiley-Liss, Inc.  相似文献   

20.
A quantitative analysis that employs randomization methods and distance statistics has been undertaken in an attempt to clarify the taxonomic affinities of the partial Homo cranium (SK 847) from Member 1 of the Swartkrans Formation. Although SK 847 has been argued to represent early H. erectus, exact randomization tests reveal that the magnitude of differences between it and two crania that have been attributed to that taxon (KNM-ER 3733 and KNM-WT 15000) is highly unlikely to be encountered in a modern human sample drawn from eastern and southern Africa. Some of the variables that differentiate SK 847 from the two early H. erectus crania (e. g., nasal breadth, frontal breadth, mastoid process size) have been considered to be relevant characters in the definition of that taxon. Just as the significant differences between SK 847 and the two early H. erectus crania make attribution of the Swartkrans specimen to that taxon unlikely, the linkage of SK 847 to KNM-ER 1813, and especially Stw 53, suggests that the Swartkrans cranium may have its closest affinity with H. habilis sensu lato. Differences from KNM-ER 1813, however, hint that the South African fossils may represent a species of early Homo that has not been sampled in the Plio-Pleistocene of eastern Africa. The similarity of SK 847 and Stw 53 may support faunal evidence which suggests that Sterkfontein Member 5 and Swartkrans Member 1 are of similar geochronological age. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号