首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photon use efficiencies and maximal rates of photosynthesis in Dunaliella salina (Chlorophyta) cultures acclimated to different light intensities were investigated. Batch cultures were grown to the mid-exponential phase under continuous low-light (LL: 100 μmol photon m-2 s-1) or high-light (HL: 2000 μmol photon m-2 s-1) conditions. Under LL, cells were normally pigmented (deep green) containing ∼500 chlorophyll (Chl) molecules per photosystem II (PSII) unit and ∼250 Chl molecules per photosystem I (PSI). HL-grown cells were yellow-green, contained only 60 Chl per PSII and 100 Chl per PSI and showed signs of chronic photoinhibition, i.e., accumulation of photodamaged PSII reaction centers in the chloroplast thylakoids. In LL-grown cells, photosynthesis saturated at ∼200 μmol photon m-2 s-1 with a rate (Pmax) of ∼100 mmol O2 (mol Chl)-1 s-1. In HL-grown cells, photosynthesis saturated at much higher light intensities, i.e. ∼2500 μmol photon m-2 s-1, and exhibited a three-fold higher Pmax (∼300 mmol O2 (mol Chl)-1 s-1) than the normally pigmented LL-grown cells. Recovery of the HL-grown cells from photoinhibition, occurring prior to a light-harvesting Chl antenna size increase, enhanced Pmax to ∼675 mmol O2 (mol Chl)-1 s-1. Extrapolation of these results to outdoor mass culture conditions suggested that algal strains with small Chl antenna size could exhibit 2–3 times higher productivities than currently achieved with normally pigmented cells. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
The response of the coccolithophorid Emiliania huxleyi (Lohmann) W. H. Hay et H. Mohler to acute exposure to high photon flux densities (PFD) was examined in terms of PSII photoinhibition, photoprotection, and photorepair. The time and light dependencies of these processes were characterized as a function of the photoacclimation state of the alga. Low‐light (LL) acclimated cells displayed a higher degree of photoinhibition, measured as decline in Fv/Fm, than high‐light (HL) acclimated cells. However, HL cultures were more susceptible to photodamage but also more capable of compensating for it by performing a faster repair cycle. The relation between gross photoinhibition (observed in the presence of an inhibitor of repair) and PFD to which the algae were exposed deviated from linearity at high PFD, which calls into question the universality of current concepts of photoinhibition in mechanistic models. The light dependence of the de‐epoxidation state (DPS) of the xanthophyll cycle (XC) pigments on the timescale of hours was the same in cells acclimated to LL and HL. However, HL cells were more efficient in realizing nonphotochemical quenching (NPQ) on short timescales, most likely due to a larger XC pool. LL cells displayed an increase in the PSII effective cross‐section (σPSII) as a result of photoinhibition, which was observed also in HL cells when net photoinhibition was induced by blocking the D1 repair cycle. The link between σPSII and photoinhibition suggests that the population of PSII reaction centers (RCIIs) of E. huxleyi shares a common antenna, according to a “lake” organization of the light‐harvesting complex.  相似文献   

3.
Non-photochemical quenching (NPQ) of Chl fluorescence is a mechanism for dissipating excess photon energy and is dependent on the formation of a DeltapH across the thylakoid membranes. The role of cyclic electron flow around photosystem I (PSI) (CEF-PSI) in the formation of this DeltapH was elucidated by studying the relationships between O2-evolution rate [V(O2)], quantum yield of both PSII and PSI [Phi(PSII) and Phi(PSI)], and Chl fluorescence parameters measured simultaneously in intact leaves of tobacco plants in CO2-saturated air. Although increases in light intensity raised V(O2) and the relative electron fluxes through both PSII and PSI [Phi(PSII) x PFD and Phi(PSI) x PFD] only Phi(PSI) x PFD continued to increase after V(O2) and Phi(PSII) x PFD became light saturated. These results revealed the activity of an electron transport reaction in PSI not related to photosynthetic linear electron flow (LEF), namely CEF-PSI. NPQ of Chl fluorescence drastically increased after Phi(PSII) x PFD became light saturated and the values of NPQ correlated positively with the relative activity of CEF-PSI. At low temperatures, the light-saturation point of Phi(PSII) x PFD was lower than that of Phi(PSI) x PFD and NPQ was high. On the other hand, at high temperatures, the light-dependence curves of Phi(PSII) x PFD and Phi(PSI) x PFD corresponded completely and NPQ was not induced. These results indicate that limitation of LEF induced CEF-PSI, which, in turn, helped to dissipate excess photon energy by driving NPQ of Chl fluorescence.  相似文献   

4.
Diatoms are frequently exposed to high light (HL) levels, which can result in photoinhibition and damage to PSII. Many microalgae can photoreduce oxygen using the Mehler reaction driven by PSI, which could protect PSII. The ability of Nitzschia epithemioides Grunow and Thalassiosira pseudonana Hasle et Heimdal grown at 50 and 300 μmol photons · m?2 · s?1 to photoreduce oxygen was examined by mass spectrometric measurements of 18O2. Both species exhibited significant rates of oxygen photoreduction at saturating light levels, with cells grown in HL exhibiting higher rates. HL‐grown T. pseudonana had maximum rates of oxygen photoreduction five times greater than N. epithemoides, with 49% of electrons transported through PSII being used to reduce oxygen. Exposure to excess light (1,000 μmol photons · m?2 · s?1) produced similar decreases in the operating quantum efficiency of PSII (Fq′/Fm′) of low light (LL)‐ and HL‐grown N. epithemoides, whereas HL‐grown T. pseudonana exhibited much smaller decreases in Fq′/Fm′ than LL‐grown cells. HL‐grown T. pseudonana and N. epithemioides exhibited greater superoxide and hydrogen peroxide production, higher activities (in T. pseudonana) of superoxide dismutase (SOD) and ascorbate peroxidase (APX), and increased expression of three SOD‐ and one APX‐encoding genes after 60 min of excess light compared to LL‐grown cells. These responses provide a mechanism that contributes to the photoprotection of PSII against photodamage.  相似文献   

5.
The response of the photosynthetic apparatus in the green alga Dunaliella salina, to irradiance stress was investigated. Cells were grown under physiological conditions at 500 millimoles per square meter per second (control) and under irradiance-stress conditions at 1700 millimoles per square meter per second incident intensity (high light, HL). In control cells, the light-harvesting antenna of photosystem I (PSI) contained 210 chlorophyll a/b molecules. It was reduced to 105 chlorophyll a/b in HL-grown cells. In control cells, the dominant form of photosystem II (PSII) was PSIIα(about 63% of the total PSII) containing >250 chlorophyll a/b molecules. The smaller antenna size PSIIβ centers (about 37% of PSII) contained 135 ± 10 chlorophyll a/b molecules. In sharp contrast, the dominant form of PSII in HL-grown cells accounted for about 95% of all PSII centers and had an antenna size of only about 60 chlorophyll a molecules. This newly identified PSII unit is termed PSIIγ. The HL-grown cells showed a substantially elevated PSII/PSI stoichiometry ratio in their thylakoid membranes (PSII/PSI = 3.0/1.0) compared to that of control cells (PSII/PSI = 1.4/1.0). The steady state irradiance stress created a chronic photoinhibition condition in which D. salina thylakoids accumulate an excess of photochemically inactive PSII units. These PSII units contain both the reaction center proteins and the core chlorophyll-protein antenna complex but cannot perform a photochemical charge separation. The results are discussed in terms of regulatory mechanism(s) in the plant cell whose function is to alleviate the adverse effect of irradiance stress.  相似文献   

6.
Webb MR  Melis A 《Plant physiology》1995,107(3):885-893
The chloroplast response in the green alga Dunaliella salina to irradiance stress was investigated. Cells were grown under low light (LL) at 100 [mu]mol photons m-2 s-1 or high light (HL) at 2000 [mu]mol photons m-2 s-1 incident intensity. LL-grown cells had a low chlorophyll (Chl) a/b ratio, an abundance of light-harvesting complex II proteins (LHC-II), and a large Chl antenna size. HL-grown cells had a higher Chl a/b ratio, relatively fewer LHC-II, and a small Chl antenna size. The more abundant higher molecular mass subunits of the LHC-II (approximately 31 kD) were selectively depleted from the thylakoid membrane of HL-grown cells. Light-shift experiments defined the kinetics of change in the subunit composition of the LHC-II and suggested distinct mechanisms in the acclimation of thylakoids to HL or LL conditions. The results showed that irradiance exerts a differential regulation on the expression of various Lhcb genes. The specific polyclonal antibodies used in this work, raised against the purified LHC-II, cross-reacted with a polypeptide of approximately 20 kD in HL-grown samples. In this work we examined the dynamics of induction of this novel protein and discuss its function in terms of a chloroplast response to the level of irradiance.  相似文献   

7.
Hizikia fusiformis thalli experience dynamic incident light conditions during the period of growth. The present study was designed to examine how changing photon irradiance affects the photosynthesis both in the short and long terms by culturing H. fusiformis under three different light levels: 35 μmol photons m-2 s-1 (low light, LL), 85 μmol photons m-2 s-1 (intermediate light, IL), and 165 μmol photons m-2 s-1 (high light, HL). A similar relative growth rate was observed between IL- and HL-grown algae, but the growth rate was significantly reduced in LL-grown algae. The photosynthetic rates (P n) measured at their respective growth light levels were found to be lowest in the thalli grown at LL and highest at HL. However, LL-grown algae exhibited much higher P n in comparison with IL- and the HL-grown thalli at the same measuring photosynthetic photon flux density, indicating the photosynthetic acclimation to low growth light in H. fusiformis. The photosynthesis–light curves showed that LL-grown algae had a highest light-saturating maximum P n (P max) in comparison with IL- or HL-grown algae when the photosynthetic rates were expressed on the biomass basis. However, P max was highest in HL-grown algae compared to IL- or LL-grown algae when the rates were normalized to chlorophyll a. The photosynthesis–inorganic carbon (Ci) response curves were also significantly affected by the growth light conditions. The highest value of apparent photosynthetic conductance occurred in LL-grown algae while the lowest value in HL-grown algae. Additionally, the activity of external carbonic anhydrase (CA) tended to increase while the total CA activity inclined to decrease in H. fusiformis thalli when the growth light level altered from 35 to 165 μmol photons per square meter per second. The external CA inhibitors showed a higher inhibition in HL-grown algae compared with LL-grown algae. It was proposed that photosynthetic acclimation to low light condition in H. fusiformis was achieved through an increase in the number of reaction centers and increased capacities of electron transport and of Ci transport within cells. The ability of photosynthetic acclimation to low light confers H. fusiformis thalli to overcome the environmental low light condition as a result of the attenuation of seawater or self-shading through enhancing its photosynthetic performance and carbon assimilation necessary for growth.  相似文献   

8.
In this study we investigated the ability of Chara intermedia to acclimate to different irradiances (i.e. “low-light” (LL): 20–30 μmol photons m−2 s−1 and “high-light” (HL): 180–200 μmol photons m−2 s−1) and light qualities (white, yellow and green), using morphological, photosynthesis, chlorophyll fluorescence and pigment analysis.Relative growth rates increased with increasing irradiance from 0.016 ± 0.003 (LL) to 0.024 ± 0.005 (HL) g g−1 d−1 fresh weight and were independent of light quality. A growth-based branch orientation towards high-light functioning as a mechanism to protect the plant from excessive light was confirmed. It was shown that the receptor responsible for the morphological reaction is sensitive to blue-light.C. intermedia showed higher oxygen evolution (up to 10.5 (HL) vs. 4.5 (LL) nmol O2 mg Chl−1 s−1), photochemical and energy-dependent Chl fluorescence quenching and a lower Fv/Fm after acclimation to HL. With respect to qP, the acclimation of the photosynthetic apparatus depended on light quality and needed the blue part of the spectrum for full development. In addition, pigment composition was influenced by light and the Chl a/Car and Antheraxanthin (A) + Zeaxanthin (Z)/Violaxanthin (V) + A + Z (DES) ratios revealed the expected acclimation behaviour in favour of carotenoid protection under HL (i.e. decrease of Chl a/Car from 3.41 ± 0.48 to 2.30 ± 0.35 and increase of DES from 0.39 ± 0.05 to 0.87 ± 0.03), while the Chl a/Chl b ratios were not significantly affected. Furthermore it was shown that morphological light acclimation mechanisms influence the extent of the physiological modifications.  相似文献   

9.
We studied the variability of in vivo absorption coefficients and PSII‐scaled fluorescence excitation (fl‐ex) spectra of high light (HL) and low light (LL) acclimated cultures of 33 phytoplankton species that belonged to 13 different pigment groups (PGs) and 10 different phytoplankton classes. By scaling fl‐ex spectra to the corresponding absorption spectra by matching them in the 540–650 nm range, we obtained estimates for the fraction of total chl a that resided in PSII, the absorption of light by PSII, PSI, and photoprotective carotenoids. The in vivo red peak absorption maxima ranged from 673 to 679 nm, reflecting bonding of chl a to different pigment proteins. A simple approach is presented for quantifying intracellular self‐shading and evaluating the impact of photoacclimation on biooptical characteristics of the different PGs examined. In view of these results, parameters used in the calculation of oxygenic photosynthesis based on pulse‐amplitude‐modulated (PAM) and fast‐repetition‐rate (FRR) fluorometers are discussed, showing that the ratio between light available to PSII and total absorption, essential for the calculation of the oxygen release rate (using the PSII‐scaled fluorescence spectrum as a proxy) was dependent on species and photoacclimation state. Three subgroups of chromophytes exhibited 70%–80%, 60%–80%, and 50%–60% chl a in PSII‐LHCII; the two subgroups of chlorophytes, 70% or 80%; and cyanobacteria, only 12%. In contrast, the mean fraction for chromo‐ and chlorophytes of quanta absorbed by PSII was 73% in LL‐ and 55% in HL‐acclimated cells; thus, the corresponding ratios 0.55 and 0.73 might be used as correction factors adjusting for quanta absorbed by PSII for PAM and FRR measurements.  相似文献   

10.
By using a wild-type rice (Oryza sativa L. cv. Norin No. 8) and the chlorophyll (Chl) b-deficient mutant derived from Norin No. 8 (chlorina 11), the present study monitored the oxygen evolution, contents of Chl a and b, β-carotene, and lutein in leaf and the contents of cytochrome f, and the reaction centres of photosystem I (PSI) and photosystem II (PSII) in thylakoids. The oxygen evolution, maximal quantum yield of PSII (Fv/Fm) and Chl concentration remained constant in both Norin No. 8 and chlorina 11 under 5 and 2% of full sunlight for six days. On the other hand, on the thylakoid level, the PSII reaction centre of chlorina 11 was more stable even under high irradiance, while approximately 40% decrease in levels of the PSII reaction centre occurred under 2% of full sunlight for six days. However, under such conditions, by regulating the stoichiometry of active PSII and PSI centres, the light absorption balance in both rice types was adjusted between the two photosystems. The present study attempted to examine whether the light absorption balance between PSII and PSI is altered to effectively conduct photosynthesis in the wild-type and Chl b-deficient mutant rice seedlings.  相似文献   

11.
We hypothesized that cyclic electron flow around photosystem I (CEF-PSI) participates in the induction of non-photochemical quenching (NPQ) of chlorophyll (Chl) fluorescence when the rate of photosynthetic linear electron flow (LEF) is electron-acceptor limited. To test this hypothesis, the relationships among photosynthesis rate, electron fluxes through both PSI and PSII [Je(PSI) and Je(PSII)] and Chl fluorescence parameters were analyzed simultaneously in intact leaves of tobacco plants at several light intensities and partial pressures of ambient CO2 (Ca). At low light intensities, decreasing Ca lowered the photosynthesis rate, but Je(PSI) and Je(PSII) remained constant. Je(PSI) was larger than Je(PSII), indicating the existence of CEF-PSI. Increasing the light intensity enhanced photosynthesis and both Je(PSI) and Je (PSII). Je(PSI)/Je(PSII) also increased at high light and at high light and low Ca combined, showing a strong, positive relationship with NPQ of Chl fluorescence. These results indicated that CEF-PSI contributed to the dissipation of photon energy in excess of that consumed by photosynthesis by driving NPQ of Chl fluorescence. The main physiological function of CEF-PSI in photosynthesis of higher plants is discussed.  相似文献   

12.
C4 photosynthesis is a biochemical pathway that operates across mesophyll and bundle sheath (BS) cells to increase CO2 concentration at the site of CO2 fixation. C4 plants benefit from high irradiance but their efficiency decreases under shade, causing a loss of productivity in crop canopies. We investigated shade acclimation responses of Setaria viridis, a model monocot of NADP-dependent malic enzyme subtype, focussing on cell-specific electron transport capacity. Plants grown under low light (LL) maintained CO2 assimilation rates similar to high light plants but had an increased chlorophyll and light-harvesting-protein content, predominantly in BS cells. Photosystem II (PSII) protein abundance, oxygen-evolving activity and the PSII/PSI ratio were enhanced in LL BS cells, indicating a higher capacity for linear electron flow. Abundances of PSI, ATP synthase, Cytochrome b6f and the chloroplast NAD(P)H dehydrogenase complex, which constitute the BS cyclic electron flow machinery, were also increased in LL plants. A decline in PEP carboxylase activity in mesophyll cells and a consequent shortage of reducing power in BS chloroplasts were associated with a more oxidised plastoquinone pool in LL plants and the formation of PSII – light-harvesting complex II supercomplexes with an increased oxygen evolution rate. Our results suggest that the supramolecular composition of PSII in BS cells is adjusted according to the redox state of the plastoquinone pool. This discovery contributes to the understanding of the acclimation of PSII activity in C4 plants and will support the development of strategies for crop improvement, including the engineering of C4 photosynthesis into C3 plants.  相似文献   

13.
Changes in intracellular levels of Chl a precursors were examinedin relation to changes in the PSI/PSII stoichiometry in thecyanophyte Synechocystis PCC 6714. Protochlorophyllide (Pchlide)accumulated markedly in cells with a low PSI/PSII stoichiometrygrown under light that is absorbed by Chl a (PSI light) whereasno accumulation occurred in cells with a high PSI/PSII stoichiometrygrown under light absorbed by phycobilisomes (PSII light). Levelsof Pchlide in cells grown under PSI light decreased rapidlyupon a shift to PSII light. The rapid decrease in Pchlide accompanieda transient increase in chlorophyllide a, indicating that reductionof Pchlide was enhanced by shift to PSII light. The action spectrumindicated that the Pchlide decrease upon the shift to PSII lightdepended on excitation of Pchlide, suggesting that the accumulationof Pchllide was due to limited excitation of Pchlide, so thatPchlide photoreduction, under PSI light. However, comparisonof levels of Pchlide and the photosystem complexes in wild-typePlectonema boryanum with those in a mutant that lacked the darkPchlide reductase (YFC 1004) indicated that dark reduction compensatedfor the limited photoreduction under PSI light. Similar compensationby dark reduction was confirmed with Synechocystis PCC 6714.In cultures of Synechocystis under conditions where Pchlidecould not be photoreduced, accumulation of Pchlide and low PSI/PSIIstoichiometry occurred only when cells were illuminated withlight that preferentially excited PSI. The results indicatethat the low PSI/PSII stoichiometry in cells grown under PSIlight is not a result of inefficient synthesis of Chl a witha reduced rate of Pchlide photoreduction. They suggest furtherthat accumulation of Pchlide under PSI light results from retardationof the Chl a synthesis due to suppression of PSI synthesis. 1Present address: Tsurukawa 5-15-11, Machida, Tokyo, 195 Japan.  相似文献   

14.
Cells of the red alga Porphyridium cruentum (ATCC 50161) exposed to increasing growth irradiance exhibited up to a three-fold reduction in photosystems I and II (PSI and PSII) and phycobilisomes but little change in the relative numbers of these components. Batch cultures of P. cruentum were grown under four photon flux densities of continuous white light; 6 (low light, LL), 35 (medium light, ML), 180 (high light, HL), and 280 (very high light, VHL) microeinsteins per square meter per second and sampled in the exponential phase of growth. Ratios of PSII to PSI ranged between 0.43 and 0.54. About three PSII centers per phycobilisome were found, regardless of growth irradiance. The phycoerythrin content of phycobilisomes decreased by about 25% for HL and VHL compared to LL and ML cultures. The unit sizes of PSI (chlorophyll/P700) and PSII (chlorophyll/QA) decreased by about 20% with increase in photon flux density from 6 to 280 microeinsteins per square meter per second. A threefold reduction in cell content of chlorophyll at the higher photon flux densities was accompanied by a twofold reduction in β-carotene, and a drastic reduction in thylakoid membrane area. Cell content of zeaxanthin, the major carotenoid in P. cruentum, did not vary with growth irradiance, suggesting a role other than light-harvesting. HL cultures had a growth rate twice that of ML, eight times that of LL, and slightly greater than that of VHL cultures. Cell volume increased threefold from LL to VHL, but volume of the single chloroplast did not change. From this study it is evident that a relatively fixed stoichiometry of PSI, PSII, and phycobilisomes is maintained in the photosynthetic apparatus of this red alga over a wide range of growth irradiance.  相似文献   

15.
The effect of anthocyanic cells of the epidermal layer was investigated on photosynthetic activity of the higher plant Tradescantia pallida. To determine the possible indirect role of anthocyanin in photosynthesis, analysis was done on intact leaves and leaves where anthocyanic epidermal layer was removed. Energy dissipation processes related to Photosystem II (PSII) and Photosystem I (PSI) activity was done using simultaneously Chlorophyll a (Chl a) fluorescence and P700 transmittance signals change. In anthocyanic epidermal-less leaves, PSII photochemical activity was more decreased in dependence to increasing light irradiance exposure. We found that photoinhibition of PSII decreased PSI activity by reducing the electron flow toward PSI, especially under high light intensities. Under those conditions, it resulted in the accumulation of oxidized PSI reaction centers, which was stronger in leaves where the anthocyanic epidermal layer was removed. In conclusion, our results showed that the anthocyanic epidermal layer had a photoprotective effect only on the PSII and not on the PSI of T. pallida leaves, supporting the role of anthocyanin pigments in the regulation of photosynthesis for excess absorbed light irradiance.  相似文献   

16.
The aim of this study was to examine the role of brassinosteroids (BRs) in protecting the photosynthetic apparatus from cold‐induced damage in cucumber (Cucumis sativus) plants. Recovery at both high light (HL) and low light (LL) after a cooling at 10/7°C induced irreversible inhibition of CO2 assimilation, photoinhibition at photosystem I (PSI) and inhibition of enzyme activities of Calvin cycle and ascorbate (AsA)‐reduced glutathione (GSH) cycle, followed by accumulation of H2O2 and malondialdehyde. However, cold‐induced photoinhibition at PSII was fully recovered at LL but not at HL. Meanwhile, recovery at HL increased electron flux to O2‐dependent alternative pathway [Ja(O2‐dependent)]. Foliar application of 24‐epibrassinolide (EBR) accelerated recovery from photoinhibition of PSII but not of PSI. EBR also significantly increased CO2 assimilation, activity of Calvin cycle enzymes and electron flux to carbon reduction [Je(PCR)], with a concomitant decrease in Ja(O2‐dependent); meanwhile EBR increased the activity of enzymes in AsA‐GSH cycle and cellular redox states. However, the positive effect of EBR on plant recovery was observed only at HL, but not LL. These results indicate that BR accelerates the recovery of photosynthetic apparatus at HL by activation of enzymes in Calvin cycle and increasing the antioxidant capacity, which in turn mitigate the photooxidative stress and the inhibition of plant growth during the recovery.  相似文献   

17.
A proper spatial distribution of photosynthetic pigment‐protein complexes – PPCs (photosystems, light‐harvesting antennas) is crucial for photosynthesis. In plants, photosystems I and II (PSI and PSII) are heterogeneously distributed between granal and stromal thylakoids. Here we have described similar heterogeneity in the PSI, PSII and phycobilisomes (PBSs) distribution in cyanobacteria thylakoids into microdomains by applying a new image processing method suitable for the Synechocystis sp. PCC6803 strain with yellow fluorescent protein‐tagged PSI. The new image processing method is able to analyze the fluorescence ratios of PPCs on a single‐cell level, pixel per pixel. Each cell pixel is plotted in CIE1931 color space by forming a pixel‐color distribution of the cell. The most common position in CIE1931 is then defined as protein arrangement (PA) factor with xy coordinates. The PA‐factor represents the most abundant fluorescence ratio of PSI/PSII/PBS, the ‘mode color’ of studied cell. We proved that a shift of the PA‐factor from the center of the cell‐pixel distribution (the ‘median’ cell color) is an indicator of the presence of special subcellular microdomain(s) with a unique PSI/PSII/PBS fluorescence ratio in comparison to other parts of the cell. Furthermore, during a 6‐h high‐light (HL) treatment, ‘median’ and ‘mode’ color (PA‐factor) of the cell changed similarly on the population level, indicating that such microdomains with unique PSI/PSII/PBS fluorescence were not formed during HL (i.e. fluorescence changed equally in the whole cell). However, the PA‐factor was very sensitive in characterizing the fluorescence ratios of PSI/PSII/PBS in cyanobacterial cells during HL by depicting a 4‐phase acclimation to HL, and their physiological interpretation has been discussed.  相似文献   

18.
Cyanobacterial Acclimation to Photosystem I or Photosystem II Light   总被引:9,自引:4,他引:5       下载免费PDF全文
The organization and function of the photochemical apparatus of Synechococcus 6301 was investigated in cells grown under yellow and red light regimes. Broadband yellow illumination is absorbed preferentially by the phycobilisome (PBS) whereas red light is absorbed primarily by the chlorophyll (Chl) pigment beds. Since PBSs are associated exclusively with photosystem II (PSII) and most of the Chl with photosystem I (PSI), it follows that yellow and red light regimes will create an imbalance of light absorption by the two photosystems. The cause and effect relationship between light quality and photosystem stoichiometry in Synechococcus was investigated. Cells grown under red light compensated for the excitation imbalance by synthesis/assembly of more PBS-PSII complexes resulting in high PSII/PSI = 0.71 and high bilin/Chl = 1.30. The adjustment of the photosystem stoichiometry in red light-grown cells was necessary and sufficient to establish an overall balanced absorption of red light by PSII and PSI. Cells grown under yellow light compensated for this excitation imbalance by assembly of more PSI complexes, resulting in low PSII/PSI = 0.27 and low bilin/Chl = 0.42. This adjustment of the photosystem stoichiometry in yellow light-grown cells was necessary but not quite sufficient to balance the absorption of yellow light by the PBS and the Chl pigment beds. A novel excitation quenching process was identified in yellow light-grown cells which dissipated approximately 40% of the PBS excitation, thus preventing over-excitation of PSII under yellow light conditions. It is hypothesized that State transitions in O2 evolving photosynthetic organisms may serve as the signal for change in the stoichiometry of photochemical complexes in response to light quality conditions.  相似文献   

19.
In this study, we have compared the photosynthetic characteristics of two contrasting species of Tradescantia plants, T. fluminensis (shade-tolerant species), and T. sillamontana (light-resistant species), grown under the low light (LL, 50–125 µmol photons m?2 s?1) or high light (HL, 875–1000 µmol photons m?2 s?1) conditions during their entire growth period. For monitoring the functional state of photosynthetic apparatus (PSA), we measured chlorophyll (Chl) a emission fluorescence spectra and kinetics of light-induced changes in the heights of fluorescence peaks at 685 and 740 nm (F 685 and F 740). We also compared the light-induced oxidation of P700 and assayed the composition of carotenoids in Tradescantia leaves grown under the LL and HL conditions. The analyses of slow induction of Chl a fluorescence (SIF) uncovered different traits in the LL- and HL-grown plants of ecologically contrasting Tradescantia species, which may have potential ecophysiological significance with respect to their tolerance to HL stress. The fluorometry and EPR studies of induction events in chloroplasts in situ demonstrated that acclimation of both Tradescantia species to HL conditions promoted faster responses of their PSA as compared to LL-grown plants. Acclimation of both species to HL also caused marked changes in the leaf anatomy and carotenoid composition (an increase in Violaxanthin?+?Antheraxantin?+?Zeaxanthin and Lutein pools), suggesting enhanced photoprotective capacity of the carotenoids in the plants grown in nature under high irradiance. Collectively, the results of the present work suggest that the mechanisms of long-term PSA photoprotection in Tradescantia are based predominantly on the light-induced remodeling of pigment-protein complexes in chloroplasts.  相似文献   

20.
《BBA》2020,1861(4):148064
Some cyanobacteria remodel their photosynthetic apparatus by a process known as Far-Red Light Photoacclimation (FaRLiP). Specific subunits of the phycobilisome (PBS), photosystem I (PSI), and photosystem II (PSII) complexes produced in visible light are replaced by paralogous subunits encoded within a conserved FaRLiP gene cluster when cells are grown in far-red light (FRL; λ = 700–800 nm). FRL-PSII complexes from the FaRLiP cyanobacterium, Synechococcus sp. PCC 7335, were purified and shown to contain Chl a, Chl d, Chl f, and pheophytin a, while FRL-PSI complexes contained only Chl a and Chl f. The spectroscopic properties of purified photosynthetic complexes from Synechococcus sp. PCC 7335 were determined individually, and energy transfer kinetics among PBS, PSII, and PSI were analyzed by time-resolved fluorescence (TRF) spectroscopy. Direct energy transfer from PSII to PSI was observed in cells (and thylakoids) grown in red light (RL), and possible routes of energy transfer in both RL- and FRL-grown cells were inferred. Three structural arrangements for RL-PSI were observed by atomic force microscopy of thylakoid membranes, but only arrays of trimeric FRL-PSI were observed in thylakoids from FRL-grown cells. Cells grown in FRL synthesized the FRL-specific complexes but also continued to synthesize some PBS and PSII complexes identical to those produced in RL. Although the light-harvesting efficiency of photosynthetic complexes produced in FRL might be lower in white light than the complexes produced in cells acclimated to white light, the FRL-complexes provide cells with the flexibility to utilize both visible and FRL to support oxygenic photosynthesis.This article is part of a Special Issue entitled Light harvesting, edited by Dr. Roberta Croce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号