首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Offspring from half-sib and full-sib families of the hard clam, Mercenaria mercenaria were reared in five locations along the Atlantic Coast to test for the presence of genotype-environment interaction for juvenile growth rate. Location effects upon growth rate variation were prevalent; of the genetic effects, the additive genetic by location variance was predominant with the nonadditive genetic by location component contributing to a lesser degree to the interaction variance. The additive and nonadditive variation over all environments was negligible. Genotype-environment interaction was found to be at least partially due to a change in the amount of genetic variation expressed at each location; with significant additive variation detected at Charleston and Georgetown, SC sites and significant nonadditive variation at Millsboro, DE. Genetic covariance/correlation analysis indicated that reversals in relative family performance across locations were prevalent, implying the possibility of habitat specialization among genotypes. In addition, graphical analysis produced no evidence of a ubiquitously superior genotype. These analyses suggest that genotype-environment interaction should act to constrain the evolution of juvenile growth rate in Mercenaria, preserve any heritable variation associated with this trait and may lead to the development of phenotypic plasticity for growth.  相似文献   

2.
Genetic variation and co-variation among the key pulpwood selection traits for Eucalyptus globulus were estimated for a range of sites in Portugal, with the aim of improving genetic parameters used to predict breeding values and correlated response to selection. The trials comprised clonally replicated full-sib families (eight trials) and unrelated clones (17 trials), and exhibited varying levels of pedigree connectivity. The traits studied were stem diameter at breast height, Pilodyn penetration (an indirect measure of wood basic density) and near infrared reflectance predicted pulp yield. Univariate and multivariate linear mixed models were fitted within and across sites, and estimates of additive genetic, total genetic, environmental and phenotypic variances and covariances were obtained. All traits studied exhibited significant levels of additive genetic variation. The average estimated within-site narrow-sense heritability was 0.19 ± 0.03 for diameter and 0.29 ± 0.03 for Pilodyn penetration, and the pooled estimate for predicted pulp yield was 0.42 ± 0.14. When they could be tested, dominance and epistatic effects were generally not statistically significant, although broad-sense heritability estimates were slightly higher than narrow-sense heritability estimates. Averaged across trials, positive additive (0.64 ± 0.08), total genetic (0.58 ± 0.04), environmental (0.38 ± 0.03) and phenotypic (0.43 ± 0.02) correlation estimates were consistently obtained between diameter and Pilodyn penetration. This data argues for at least some form of pleiotropic relationship between these two traits and that selection for fast growth will adversely affect wood density in this population. Estimates of the across-site genetic correlations for diameter and Pilodyn penetration were high, indicating that the genotype by environment interaction is low across the range of sites tested. This result supports the use of single aggregated selection criteria for growth and wood density across planting environments in Portugal, as opposed to having to select for performance in different environments.  相似文献   

3.
Ecological specialization is an important engine of evolutionary change and adaptive radiation, but empirical evidence of local adaptation in marine environments is rare, a pattern that has been attributed to the high dispersal ability of marine taxa and limited geographic barriers to gene flow. The broad-nosed pipefish, Syngnathus typhle, is one of the most broadly distributed syngnathid species and shows pronounced variation in cranial morphology across its range, a factor that may contribute to its success in colonizing new environments. We quantified variation in cranial morphology across the species range using geometric morphometrics, and tested for evidence of trophic specialization by comparing individual-level dietary composition with the community of prey available at each site. Although the diets of juvenile pipefish from each site were qualitatively similar, ontogenetic shifts in dietary composition resulted in adult populations with distinctive diets consistent with their divergent cranial morphology. Morphological differences found in nature are maintained under common garden conditions, indicating that trophic specialization in S. typhle is a heritable trait subject to selection. Our data highlight the potential for ecological specialization in response to spatially variable selection pressures in broadly distributed marine species.  相似文献   

4.
Topmouth culter (Culter alburnus) is an ecologically and economically important species belonging to the subfamily Culterinae that is native to and widespread in East Asia. Intraspecific variation of semi-buoyant and adhesive eggs in topmouth culter provides an ideal opportunity to investigate the genetic mechanisms of spawning habits underlying the adaptive radiation of cyprinids in East Asia. In this study, we present a chromosome-level genome assembly of topmouth culter and re-sequenced 158 individuals from six locations in China covering three geographical groups and two egg type variations. The topmouth culter genome size was 1.05 Gb, with a contig N50 length of 17.8 Mb and anchored onto 24 chromosomes. Phylogenetic analysis showed that the divergence time of the Culterinae was coinciding with the time of initiation of the Asian monsoon intensification. Gene family evolutionary analysis indicated that the expanded gene families in topmouth culter were associated with dietary adaptation. Population-level genetic analysis indicated clear differentiation among the six populations, which were clustered into three distinct clusters, consistent with their geographical divergence. The historical effective population size of topmouth culter correlated with the Tibetan Plateau uplifting according to the demographic history reconstruction. A selective sweep analysis between adhesive and semi-buoyant egg populations revealed the genes associated with the hydration and adhesiveness of eggs, indicating divergent selection towards different hydrological environments. This study offers a high-resolution genetic resource for further studies on evolutionary adaptation, genetic breeding and conservation of topmouth culter, providing insights into the molecular mechanisms for egg type variation of East Asian cyprinids.  相似文献   

5.
Trade‐offs can exist within and across environments, and constrain evolutionary trajectories. To examine the effects of competition and resource availability on trade‐offs, we grew individuals of recombinant inbred lines of Impatiens capensis in a factorial combination of five densities with two light environments (full light and neutral shade) and used a Bayesian logistic growth analysis to estimate intrinsic growth rates. To estimate across‐environment constraints, we developed a variance decomposition approach to principal components analysis, which accounted for sample size, model‐fitting, and within‐RIL variation prior to eigenanalysis. We detected negative across‐environment genetic covariances in intrinsic growth rates, although only under full‐light. To evaluate the potential importance of these covariances, we surveyed natural populations of I. capensis to measure the frequency of different density environments across space and time. We combined our empirical estimates of across‐environment genetic variance–covariance matrices and frequency of selective environments with hypothetical (yet realistic) selection gradients to project evolutionary responses in multiple density environments. Selection in common environments can lead to correlated responses to selection in rare environments that oppose and counteract direct selection in those rare environments. Our results highlight the importance of considering both the frequency of selective environments and the across‐environment genetic covariances in traits simultaneously.  相似文献   

6.
Impatiens capensis displays a mixed mating system in which individual out-crossing rate is expected to increase with light and resource availability. We investigated the amount and spatial distribution of polygenic variation for 15 morphological traits within and among six natural populations of I. capensis growing in three distinct light habitats (shaded, mixed, full sun). We grew individuals from each population in uniform greenhouse conditions and detected significant genetic variation among families within populations for all the quantitative traits examined. However, only the features related to the vegetative characteristics of seedlings and sexually mature plants show also differentiation at the population level. Surprisingly, even though light availability is likely to be the most important factor affecting the mating system of I. capensis, we find that: (1) trait means of individuals from similar light environments are not more similar than those from different light environments; (2) partitioning of polygenic variance within and among families differs both among populations from the same light habitat and among characters within each population. If natural selection is maintaining such variation, it must operate primarily through heterogeneous selection pressure within, rather than between, populations.  相似文献   

7.
The adaptiveness of shade avoidance responses to density was studied in Picea omorika seedlings raised in a growth‐room. Siblings of a synthetic population comprising 117 families from six natural populations were exposed to contrasting density conditions in order to score variation in phenotypic expression of several epicotyl and bud traits included in the shade avoidance syndrome. As predicted for the adaptive plasticity to foliage shade, epicotyl elongation traits tended toward higher, while axillary bud traits toward lower values in high‐density vs. low‐density conditions. Phenotypic selection analysis revealed that the elongated plants had greater relative fitness than the suppressed ones in both density treatments which could be ascribed to the effect of direct selection on epicotyl length. There was no evidence for plasticity costs associated with the expression of the shade avoidance phenotype either under low or under high density, with only a single exception. Estimates of variance component genetic correlations across densities were significantly different from unity for the majority of the seedling traits studied, indicating the existence of heritable variation within reaction norms of these traits. However, since all these correlations were positive in sign and large in magnitude, this conclusively means that the level of the additive genetic variation for plasticity in the shade‐avoidance traits of P. omorika is rather low.  相似文献   

8.
In this study morphological variation and the potential for competition to affect biomass and seedling selection of the families of five populations of Rumex acetosella L. sampled along a successional old-field gradient have been investigated. Seeds from 25 families were submitted to four competitive regimes: no competition (one plant per pot), medium competition (two plants/ pot taking plants from the same population), high within-population competition (four individuals from the same population in a pot) and high between-population competition (four individuals from two different populations in a pot). Eight traits were analysed after 3 months of growth for variation among families within populations. A significant difference among families within the two older populations was recorded for sexual biomass and related components. High sensitivity of these traits to density was observed in all populations except the youngest, suggesting specialization to particular environmental conditions in late successional populations, and a good adaptive capacity to buffer environmental variation in the pioneer population. Little significant interaction between competitive regimes and families within populations was found, i.e. genotypes within each population showed little variation in their response to environmental variation. Genotypic variance decreased with increasing competitive conditions for the majority of the traits. However, the percentage of variance in sexual reproduction explained by family was stable among treatments. Tradeoffs between vegetative reproduction and sexual reproduction were recorded at the population level along the successional gradient, with increasing competitive conditions. As succession proceeds, we observed a decrease in sexual reproduction and an increase in vegetative reproduction. At the family level, correlation among traits were similar when plants were grown in the absence of competition and at high density, with a significant negative correlation between sexual reproduction and vegetative reproduction. For both sprout number and sexual biomass, the performance of families grown under all the treatments was positively correlated. Together these results indicate allocational constraints on the reproductive biology of R. acetosella that may be favoured by natural selection and have influenced population differentiation along the successional gradient. However, they also revealed that the potential exists for evolutionary specialization through plasticity, in response to variation in environmental conditions.  相似文献   

9.
Fluctuating population density in stochastic environments can contribute to maintain life‐history variation within populations via density‐dependent selection. We used individual‐based data from a population of Soay sheep to examine variation in life‐history strategies at high and low population density. We incorporated life‐history trade‐offs among survival, reproduction and body mass growth into structured population models and found support for the prediction that different life‐history strategies are optimal at low and high population densities. Shorter generation times and lower asymptotic body mass were selected for in high‐density environments even though heavier individuals had higher probabilities to survive and reproduce. In contrast, greater asymptotic body mass and longer generation times were optimal at low population density. If populations fluctuate between high density when resources are scarce, and low densities when they are abundant, the variation in density will generate fluctuating selection for different life‐history strategies, that could act to maintain life‐history variation.  相似文献   

10.
To determine the effect of growing conditions on population parameters in wild radish, (Raphanus sativus L.: Brassicaceae), we replicated maternal and paternal half-sib families of seed across three planting densities in an experimental garden. A nested breeding design performed in the greenhouse produced 1,800 F1 seeds sown in the garden. We recorded survivorship, measured phenotypic correlations among and estimated narrow-sense and broad-sense heritabilities (h2) of: days to germination, days to flowering, petal area, ovule number/flower, pollen production/flower, and modal pollen grain volume. Survivorship declined with increasing density, but the relative abundances of surviving families did not differ significantly among densities. Seeds in high-density plots germinated significantly faster than seeds sown in medium- or low-density plots, but they flowered significantly later. Plants in high-density plots had fewer ovules per flower than those in the other treatments. Petal area and pollen characters did not differ significantly among densities. Densities differed with respect to the number and sign of significant phenotypic correlations. Analyses of variance were conducted to detect additive genetic variance (Va) of each trait in each density. At low density, there were significant paternal effects on flowering time and modal pollen grain volume; in medium-density plots, germination time, flowering time and ovule number exhibited significant paternal effects; in high-density plots, only pollen grain volume differed among paternal sibships. The ability to detect maternal effects on progeny phenotype also depended on density. Narrow-sense h2 estimates differed markedly among density treatments for germination time, flowering time, ovule number and pollen grain volume. Maternal, paternal and error variance components were estimated for each trait and density to examine the sources of variation in narrow-sense h2 across densities. Variance components did not change consistently across densities; each trait behaved differently. To provide qualitative estimates of genetic correlations between characters, correlation coefficients were estimated using paternal family means; these correlations also differed among densities. These results demonstrate that: a) planting density influences the magnitude of maternal and paternal effects on progeny phenotype, and of h2 estimates, b) traits differ with respect to the density in which heritability is greatest, c) density affects the variance components that comprise heritability, but each trait behaves differently, and d) the response to selection on any target trait should result in different correlated responses of other traits, depending on density.  相似文献   

11.
Summer mortality is a phenomenon severely affecting the aquaculture production of the Pacific oyster (Crassostrea gigas). Although its causal factors are complex, resistance to mortality has been described as a highly heritable trait, and several pathogens including the virus Ostreid Herpes virus type 1 (OsHV‐1) have been associated with this phenomenon. A QTL analysis for survival of summer mortality and OsHV‐1 load, estimated using real‐time PCR, was performed using five F2 full‐sib families resulting from a divergent selection experiment for resistance to summer mortality. A consensus linkage map was built using 29 SNPs and 51 microsatellite markers. Five significant QTL were identified and assigned to linkage groups V, VI, VII and IX. Analysis of single full‐sib families revealed differential QTL segregation between families. QTL for the two‐recorded traits presented very similar locations, highlighting the interest of further study of their respective genetic controls. These QTL show substantial genetic variation in resistance to summer mortality, and present new opportunities for selection for resistance to OsHV‐1.  相似文献   

12.
Aim Across a wide variety of organisms, taxa with high local densities (abundance) have large geographical ranges (distributions). We use primatology's detailed knowledge of its taxon to investigate the form and causes of the relationship in, unusually for macroecological analysis, a tropical taxon. Location Africa, Central and South America, Asia, Madagascar. Methods To investigate the form of the density–range relationship, we regressed local density on geographical range size, and also on female body mass, because in the Primates, density correlates strongly with mass. To investigate the biological causes of the relationship, we related (1) abundance (density × range size) and (2) residuals from the density–range regression lines to various measures of (i) resource use, (ii) reproductive rate and (iii) potential specialization. All data are from the literature. Analyses were done at the level of species (n = 140), genera (n = 60) and families/subfamilies (n = 17). We present various levels of results, including for all data, after omission of outlier data, after correction for phylogenetic dependence, and after Bonferroni correction of probabilities for multiple comparisons. Results Regarding the form of the relationship, Madagascar primates are clear outliers (high densities in small ranges). Among the remaining three realms, the relation of density to range is weak or non‐existent at the level of species and genera. However, it is strong, tight and linear at the level of families/subfamilies (r2 = 0.6, F1,10 = 19, P < 0.01). Although among primates, density is very significantly related to mass, at no taxonomic level is range size related to body mass. Consequently, removing the effects of mass makes little to no difference to density–range results. Regarding the biology of the relationship, only traits indicative of specialization are associated with abundance (meaning numbers): rare taxa are more specialized than are abundant taxa. The association is largely via range size, not density. Across families, no traits correlate significantly with the density–range relationship, nor with deviations from it, despite the strength of the relationship at this taxonomic level. Main conclusions We suggest that in macroecology, analysis at taxonomic levels deeper than that of the relatively ephemeral species can be appropriate. We argue that the several purely methodological explanations for the positive density–range size relationship in primates can be rejected. Of the various biological hypotheses, those having to do with specialization–generalization seem the only applicable ones. The fact that the relationship is entirely via range size, not via density, means that while we might have a biology of range size, we do not yet have one of the density–geographical range relationship. It is probably time to search for multivariate explanations, rather than univariate ones. However, we can for the first time, for at least primates, suggest that any association of abundance or range size with specialization is via the number of different subtaxa, not the average degree of specialization of each subtaxon. The implication for conservation is obvious.  相似文献   

13.
Theory defines conditions under which sympatric speciation may occur, and several possible examples of the process in action have been identified. In most cases, organisms specialize onto habitats that fall into discrete categories, such as host species used by herbivores and parasites. Ecological specialization within a continuous habitat gradient is theoretically possible, but becomes less likely with increasing gene flow among clinal habitat types. Here, I show that habitat race formation is underway in a frog, Rana temporaria, along a continuous and spatially mosaic habitat gradient. Tadpoles from 23 populations raised in an outdoor mesocosm experiment showed adaptive phenotypic variation correlated with the predator density in their pond of origin. A survey of microsatellite markers in 48 populations found that neutral genetic divergence was enhanced between ponds with very different densities of predators. This represents a new example of habitat specialization along a continuous habitat gradient with no spatial autocorrelation in habitat.  相似文献   

14.
Parasite–host relationships create strong selection pressures that can lead to adaptation and increasing specialization of parasites to their hosts. Even in relatively loose host–parasite relationships, such as between generalist ectoparasites and their hosts, we may observe some degree of specialization of parasite populations to one of the multiple potential hosts. Salivary proteins are used by blood‐feeding ectoparasites to prevent hemostasis in the host and maximize energy intake. We investigated the influence of association with specific host species on allele frequencies of salivary protein genes in Cimex adjunctus, a generalist blood‐feeding ectoparasite of bats in North America. We analysed two salivary protein genes: an apyrase, which hydrolyses ATP at the feeding site and thus inhibits platelet aggregation, and a nitrophorin, which brings nitrous oxide to the feeding site, inhibiting platelet aggregation and vasoconstriction. We observed more variation at both salivary protein genes among parasite populations associated with different host species than among populations from different spatial locations associated with the same host species. The variation in salivary protein genes among populations on different host species was also greater than expected under a neutral scenario of genetic drift and gene flow. Finally, host species was an important predictor of allelic divergence in genotypes of individual C. adjunctus at both salivary protein genes. Our results suggest differing selection pressures on these two salivary protein genes in C. adjunctus depending on the host species.  相似文献   

15.
Several ecological and genetic factors affect the diet specialization of insect herbivores. The evolution of specialization may be constrained by lack of genetic variation in herbivore performance on different food‐plant species. By traditional view, trade‐offs, that is, negative genetic correlations between the performance of the herbivores on different food‐plant species favour the evolution of specialization. To investigate whether there is genetic variation or trade‐offs in herbivore performance between different food plants that may influence specialization of the oligophagous seed‐eating herbivore, Lygaeus equestris (Heteroptera), we conducted a feeding trial in laboratory using four food‐plant species. Although L. equestris is specialized on Vincetoxicum hirundinaria (Apocynaceae) to some degree, it occasionally feeds on alternative food‐plant species. We did not find significant negative genetic correlations between mortality, developmental time and adult biomass of L. equestris on the different food‐plant species. We found genetic variation in mortality and developmental time of L. equestris on some of the food plants, but not in adult biomass. Our results suggest that trade‐offs do not affect adaptation and specialization of L. equestris to current and novel food‐plant species, but the lack of genetic variation may restrict food‐plant utilization. As food‐plant specialization of herbivores may have wide‐ranging effects, for instance, on coevolving plant–herbivore interactions and speciation, it is essential to thoroughly understand the factors behind the specialization process. Our findings provide valuable information about the role of genetic factors in food‐plant specialization of this oligophagous herbivore.  相似文献   

16.
A multivariate selection analysis has been implemented for testing the adaptiveness of life history plasticity to irradiance during the seedling establishment in Picea omorika plants raised in a growth-room. Siblings of a synthetic population comprising 21 families from six natural populations were exposed to contrasting light levels to explore variation in phenotypic expression of three seedling traits: days from germination to cotyledon opening (DGTOC), days from cotyledon opening to epicotyl appearance (DCTOE), and epicotyl length at 6 weeks (EPL6). Ambient light conditions significantly affected DCTOE and EPL6, but not DGTOC. Phenotypic selection analysis revealed that DGTOC was under negative directional selection in both radiation environments, suggesting that canalization of DGTOC was promoted across different light conditions, as well as that the observed pattern of canalization might be regarded as adaptive. DCTOE was also found to be under negative directional selection in both light treatments, but the plastic responses of this trait were opposite to the values favoured by selection within environments. Since there was evidence for selection against plasticity in DCTOE, the pattern of plastic responses in DCTOE to variation in light conditions could be diagnosed as maladaptive. Multiple regression analysis revealed a cost of canalization in DGTOC regardless of light environment, as well as a cost of plasticity in DCTOE under high light intensity. All genetic correlations across light environments were significantly different from unity, indicating the existence of heritable variation for plasticity in these traits. However, since DGTOC and DCTOE were involved in a genetic trade-off with respect to both trait mean and plasticity, these early life histories would never reach their optimal values across radiation environments.  相似文献   

17.
Abstract We studied the evolutionary response to novel environments by applying artificial selection for total progeny biomass in populations of Drosophila melanogaster maintained at three different larval population densities. We found the relative amount of genetic variability for characters related with biomass to be lower and the correlation between them more negative at the intermediate density, and that selection resulted in changes in phenotypic plasticity and in patterns of resource allocation between traits. We found some evidence for tradeoffs between densities, which suggests that populations living at heterogeneous densities might be subject to disruptive selection. Our results show that adaptation to new environments may be a complex process, involving not only changes in trait means, but also in correlations between traits and between environments.  相似文献   

18.
Natural populations often show genetic variation in pathogen resistance, which is paradoxal because natural selection is expected to erode genetic variation in fitness‐related traits. Several different factors have been suggested to maintain such variation, but their relative importance is still poorly understood. Here we examined if environmental heterogeneity and genetic trade‐offs could contribute to the maintenance of genetic variation in immune function of a freshwater snail Lymnaea stagnalis. We assessed the immunocompetence of snails originating from different families and maintained in different feeding treatments (ad libitum feeding, no food) by measuring the density of circulating hemocytes, phenoloxidase activity, and antibacterial activity of snail hemolymph. Food limitation reduced snail immune function, and we found significant among‐family variation in hemocyte concentration and PO activity, but not in antibacterial activity. Interestingly, food availability modified the family‐level variation observed in PO activity so that the relative immunocompetence of different snail families changed over environmental conditions (G × E interaction). We found no evidence for genetic trade‐offs between snail growth and immune defense nor among immune traits. Thus, our findings support the idea that environmental heterogeneity may promote maintenance of genetic variation in immune defense, but also suggest that different immune traits might not respond similarly to environmental variation.  相似文献   

19.
Habitat use and ecological specialization within lake Daphnia populations   总被引:2,自引:0,他引:2  
Many species of planktonic cladocerans display substantial variation in habitat use (mean depth and diel vertical migration), both among and within populations. We examined whether clonal segregation and specialization contributes to such behavioral variation within several lake populations of the cladoceran, Daphnia pulicaria. Electrophoretic and quantitative genetic analysis of clonal lines isolated from different depths at night revealed that clonal habitat specialization was common. Clones that utilized shallow water at night were genetically smaller at maturity and lower fecundity under standard laboratory conditions than the deep-water clones. The magnitude of this clonal habitat specialization varied among lakes: populations displaying broad use of depth habitats contained greater genetic variance than populations with more constrained habitat use. These results are consistent with known differences in selective factors in different depth habitats and suggest that substantial clonal specialization can occur within single populations. Since previous work has discovered a heritable basis to habitat selection in several Daphnia species, including D. pulicaria in our study lakes, it is likely that clonal/depth specialization is an important factor affecting the trophic ecology of Daphnia. Received: 18 April 1996 / Accepted: 25 September 1996  相似文献   

20.
  • 1 Adjacent populations of the copepod Cyclops scutifer Sars living in lakes in southern Norway exhibit remarkably different life cycles. A series of laboratory-common environment experiments were used to partition variance in one life cycle trait—time to metamorphosis—among and within five populations of C. scutifer, to examine the extent to which variation in this trait has a generic basis and to test whether populations are polymorphic for development rates. The experimental populations exhibit a variety of life cycles in the field and occupy environments that represent a broad range of conditions.
  • 2 Populations with different life cycles in the field continued to express differences in time to metamorphosis in the laboratory, indicating a genetic contribution to life cycle variation. Differences in developmental rates in the laboratory were smaller, however, than differences observed in the field, suggesting that environmental conditions also contribute to observed life cycle variation.
  • 3 In addition to interpopulation variation, each population maintained substantial intrapopulation variation in time to metamorphosis; differences between individuals from the same population were often as large as or larger than differences between populations.
  • 4 Individual females in most populations produced highly variable offspring, and there often was little difference in time to metamorphosis among families within a population.
  • 5 Cyclops scutifer exhibits a hierarchy of variation in time to metamorphosis, with a major portion of this variation expressed among siblings. Intrapopulation life history variation important to natural selection may be maintained by different processes among the major groups of freshwater zooplankton.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号