首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prediction of a protein's structure from its amino acid sequence has been a long-standing goal of molecular biology. In this work, a new set of conformational parameters for membrane spanning alpha helices was developed using the information from the topology of 70 membrane proteins. Based on these conformational parameters, a simple algorithm has been formulated to predict the transmembrane alpha helices in membrane proteins. A FORTRAN program has been developed which takes the amino acid sequence as input and gives the predicted transmembrane alpha-helices as output. The present method correctly identifies 295 transmembrane helical segments in 70 membrane proteins with only two overpredictions. Furthermore, this method predicts all 45 transmembrane helices in the photosynthetic reaction center, bacteriorhodopsin and cytochrome c oxidase to an 86% level of accuracy and so is better than all other methods published to date.  相似文献   

2.
Bacteriorhodopsin is a light-driven hydrogen-ion pump whose structure is known to about 6.0 A in three dimensions and 2.8 A in projection. It consists of seven transmembrane helices surrounding the chromophore, retinal. Halorhodopsin is a second member of the same family of membrane proteins, both of them from the cell membrane of halobacteria. Halorhodopsin is a light-driven chloride-ion pump but has very close homology to bacteriorhodopsin, especially around the retinal. In contrast, the visual opsins that are responsible for the primary step in visual transduction in all eukaryotes from Drosophila upwards, form a separate family with no direct sequence homology to the bacteriorhodopsin family. The visual opsin family now includes about 15 other receptor proteins, all of which active G-protein cascades, including the beta-adrenergic receptor as well as several others. Despite the lack of clear relations at the level of amino acid sequence, there are topographical similarities between the bacteriorhodopsin and the visual opsin families in the nature and site of chromophore attachment, the number of transmembrane helices and the positions of the amino and carboxyl termini in the membrane. These suggest that if the two were at one time closely related, they have diverged too far to have sequences that are detectably similar.  相似文献   

3.
We have isolated a retinal protein which differs from bacteriorhodopsin and archaerhodopsin and pumps out as many protons in the light as those proton pumps. We tentatively named it archaerhodopsin-2. We have cloned and sequenced the gene that encodes archaerhodopsin-2. The gene consists of 780-bp nucleotides for 259 amino acids with a molecular mass of 27,937 Da. The amino acid sequence of archaerhodopsin-2 is 56% identical to bacteriorhodopsin and 88% to archaerhodopsin, with a few gaps of a few amino acids in both cases. Although the amino acid sequence of archaerhodopsin has revealed 157 conserved residues common to bacteriorhodopsin, the sequence of archaerhodopsin-2 reduces that number to 133. Of these, 38 amino acids are also common to chloride pumps and 24 to all bacterial retinal proteins known to date.  相似文献   

4.
Thermodynamic studies of purple membrane   总被引:2,自引:0,他引:2  
Differential dilatometric and differential scanning calorimetric measurements have been made of purple membrane with an emphasis upon the temperature range 5 degrees C less than T less than 45 degrees C. The coefficient of thermal expansion alpha is about 7 X 10(-4)/Cdeg up to 30 degrees C and decreases at higher temperatures. The specific heat increases rapidly with temperature with absolute values in the range 0.30-0.45 cal/Cdeg per g. A nearly constant alpha juxtaposed with a rapidly increasing specific heat is similar to the properties of lipid bilayers in the gel phase and alkanes in the solid phase. This behavior is explained by the concept of hindered vibrations which would now appear to apply to at least one integral membrane protein. There may also be a small broad transition centered near 20-25 degrees C that would correspond to the melting of less than 25 degrees of freedom per bacteriorhodopsin molecule and associated lipids. Using our measured apparent specific volume the average thickness of purple membrane is calculated to be 43.5 A. The specific volume of interaction of lipids and proteins is estimated, using the amino acid sequence of bacteriorhodopsin and average amino acid volumes from structural studies of other proteins, to be about 11% of the specific volume of the purple membrane lipids or 4% of the volume of the bacteriorhodopsin protein. A positive volume of interaction is consistent with lipid-protein interactions being an important determinant of the thermodynamic properties of purple membrane.  相似文献   

5.
Positions and rotations of two helices in the tertiary structure of bacteriorhodopsin have been studied by neutron diffraction using reconstituted, hybrid purple membrane samples. Purple membrane was biosynthetically 2H-labeled at non-exchangeable hydrogen positions of leucine and tryptophan residues. Two chymotryptic fragments were purified, encompassing either the first two or the last five of the seven putative transmembrane segments identified in the amino acid sequence of bacteriorhodopsin. The 2H-labeled fragments, diluted to variable extents with the identical, unlabeled fragment, were mixed with their unlabeled counterpart; bacteriorhodopsin was then renatured and reconstituted. The crystalline purple membrane samples thus obtained contained hybrid bacteriorhodopsin molecules in which certain transmembrane segments had been selectively 2H-labeled to various degrees. Neutron diffraction powder patterns were recorded and analyzed both by calculating difference Fourier maps and by model building. The two analyses yielded consistent results. The first and second transmembrane segments in the sequence correspond to helices 1 and 7 of the three-dimensional structure, respectively. Rotational orientations of these two helices were identified using best fits to the observed diffraction intensities. The data also put restrictions on the position of the third transmembrane segment. These observations are discussed in the context of folding models for bacteriorhodopsin, the environment of the retinal Schiff base, and site-directed mutagenesis experiments.  相似文献   

6.
Previous studies of N,N'-dicyclohexylcarbodiimide (DCCD)-modified bacteriorhodopsin (Renthal, R. et al. (1985) Biochemistry 24, 4275-4279) used reaction conditions (detergent micelles) that are not optimal for subsequent physical studies. The present work describes new conditions for reaction of bacteriorhodopsin with DCCD in intact purple membrane sheets in the presence of 4.5% (v/v) diethylether and light. Like the detergent reaction system, the reaction is light induced, incorporates approximately 1 mol [14C]DCCD per mol bacteriorhodospin, and results in a bleached chromophore. Peptide mapping indicates that the likely site of modification in intact membranes is identical to the site in the detergent reaction system: Asp 115. The retinal chromophore of DCCD-modified purple membrane has an absorbance maximum at 390 nm and very little induced circular dichroism. The retinal is easily extracted in hexane, yielding a 3:1 ratio of all-trans to 13-cis retinal. Borohydride reduces the retinal onto the protein within the 1-71 region of the amino acid sequence. These results suggest that Asp-115 is near the retinal binding cavity of bacteriorhodopsin. When DCCD reacts with Asp 115, retinal is displaced from its binding site.  相似文献   

7.
We have prepared site-specific immunological reagents to study the orientation and surface topography of the integral membrane protein bacteriorhodopsin. Monoclonal and polyclonal antibodies with strong affinity for antigenic determinants on proteolytic and cyanogen bromide fragments of bacteriorhodopsin have been isolated and characterized. Three distinct antibody binding sites have been identified on the cytoplasmic surface of bacteriorhodopsin. The first due is readily accessible in native bacteriorhodopsin and lies close to the COOH terminus. This binding site is lost when only three amino acid residues are removed from the COOH terminus. The second site, which is also near the COOH terminus, is located approximately within the 17 COOH terminal amino acid residues. The third site is in the fragment that comprises Tyr-83 to Met-118 and is probably contained in the short loop connecting the third and fourth helices. The use of COOH terminus-specific antibodies in determination of the orientation of bacteriorhodopsin molecules in the Halobacterium halobium membrane confirms the earlier conclusion that the COOH terminus is on the cytoplasmic side.  相似文献   

8.
Series of uniformly and selectively 15N-labeled bacteriorhodopsins of Halobacterium halobium (strain ET 1001) were obtained and a 1H-15N-NMR study was performed in methanol/chloroform (1:1) and 0.1 M NH4CHOO, medium which mimics that in the membrane in vivo. Less than half of the cross-peaks expected from the amino acid sequence of uniformly 15N-labeled bacteriorhodopsin were observed, using heteronuclear 1H-15N coherence spectroscopy. In order to assign the observed cross-peaks, a selective 15N-labeling of amino acid residues (Tyr, Phe, Trp, Lys, Gly, Leu, Val or Ile) was carried out and 1H-15N-NMR spectra of bacteriorhodopsin and its fragments C1 (residues (72-231), C2 (residues 1-71), B1 (residues 1-155) and BP2 (residues 163-231) were investigated. By this procedure, all observed 1H-15N cross-peaks of the entire bacteriorhodopsin were found to belong to the transmembrane segments A, B and G. The cross-peaks from four (C, D, E and F) helical bundles (79-189 residues) were missed. These results clearly indicate that dynamic processes occur in the four helice bundle. The significance of this, in respect to bacteriorhodopsin functioning, is discussed.  相似文献   

9.
Summary Proteinase K digestions of bacteriorhodopsin were carried out with the aim of characterizing the membrane-embedded regions of the protein. Products of digestions for two, eight or 24 hours were separated by high-pressure liquid chromotography. A computerized search procedure was used to compare the amino acid analyses of peptide-containing peaks with segments of the bacteriorhodopsin sequence. Molecular weight distributions of the products were determined by sodium dodecylsulfate-urea polyacrylamide gel electrophoresis. The structural integrity of the protein after digestion was monitored through the visible absorption spectrum, by X-ray diffraction of partially dried membranes, and by following release of biosynthetically-incorporated3H leucine from the digested membranes.During mild proteolysis, bacteriorhodopsin was cleaved near the amino and carboxyl termini and at two internal regions previously identified as being accessible to the aqueous medium. Longer digestion resulted in cleavage at new sites. Under conditions where no fragments of bacteriorhodopsin larger than 9000 mol wt were observed, a significant proportion of the digested membranes retained diffraction patterns similar to those of native purple membranes. The harshest digestion conditions led to complete loss of the X-ray diffraction patterns and optical absorption and to release of half the hydrophobic segments of the protein from the membrane in the form of small soluble peptides. Upon cleavage of aqueous loop regions of the protein, isolated transmembrane segments may experience motion in a direction perpendicular to the plane of the membrane, allowing them access to protease.  相似文献   

10.
Iodophenyl and anthryl retinal analogues have been synthesized. Thetrans-isomers have been isolated and purified by high pressure liquid chromatography. The purified isomers have been further characterized by nuclear magnetic resonance and ultraviolet-visible spectroscopy. Incubation of these retinal analogues with apoprotein (bacterioopsin), isolated from the purple membrane ofHalobacterium halobium gave new bacteriorhodopsin analogues. These analogues have been investigated for their absorption properties and stability. The iodophenyl analogue has been found to bind to bacterioopsin rapidly. The pigment obtained from this analogue showed a dramatically altered opsin shift of 1343 cm-1. The anthryl analogue based bacteriorhodopsin, however, showed an opsin shift of 3849 cm-1. It has been found that bacteriorhodopsin is quite unrestrictive in the ionone ring site. The apoprotein seems to prefer chromophores that have the ring portion co-planar with the polyene side chain. The purple membrane has also been modified by treatment with fluorescamine, a surface active reagent specific for amino groups. Reaction under controlled stoichiometric conditions resulted in the formation of a modified pigment. The new pigment showed a band at 390 nm—indicative of fluorescamine reaction with amino group (s) of apoprotein-besides retaining its original absorption band at 560 nm. Analysis of the fluorescamine modified bacteriorhodopsin resulted in the identification of lysine 129 as the modified amino acid residue. Fluorescamine-modified-bacteriorhodopsin suspension did not release protons under photolytic conditions. However, proteoliposomes of fluorescamine-modified-bacteriorhodopsin were found to show proton uptake, though at a reduced rate. Presented at the 3rd National Symposium on Bioorganic Chemistry, 1987, Hyderabad.  相似文献   

11.
The integral membrane protein bacteriorhodopsin, containing a fluorescent amino acid at a specific position, was synthesized in the presence of hydrated lipid films using an in vitro translation system expanded with a four-base codon/anticodon pair. Cell-sized liposomes with the labeled protein inserted into the liposome membranes were generated after the translation reaction. This study also demonstrated that this labeling method could be used to analyze the dynamic properties of membrane proteins in situ by fluorescence correlation spectroscopy.  相似文献   

12.
Analogies between halorhodopsin and bacteriorhodopsin   总被引:6,自引:0,他引:6  
The light-activated proton-pumping bacteriorhodopsin and chloride ion-pumping halorhodopsin are compared. They belong to the family of retinal proteins, with 25% amino acid sequence homology. Both proteins have seven alpha helices across the membrane, surrounding the retinal binding pocket. Photoexcitation of all-trans retinal leads to ion transporting photocycles, which exhibit great similarities in the two proteins, despite the differences in the ion transported. The spectra of the K, L, N and O intermediates, calculated using time-resolved spectroscopic measurements, are very similar in both proteins. The absorption kinetic measurements reveal that the chloride ion transporting photocycle of halorhodopsin does not have intermediate M characteristic for deprotonated Schiff base, and intermediate L dominates the process. Energetically the photocycle of bacteriorhodopsin is driven mostly by the decrease of the entropic energy, while the photocycle of halorhodopsin is enthalpy-driven. The ion transporting steps were characterized by the electrogenicity of the intermediates, calculated from the photoinduced transient electric signal measurements. The function of both proteins could be described with the 'local access' model developed for bacteriorhodopsin. In the framework of this model it is easy to understand how bacteriorhodopsin can be converted into a chloride pump, and halorhodopsin into a proton pump, by changing the ion specificity with added ions or site-directed mutagenesis.  相似文献   

13.
2H-nuclear magnetic resonance (NMR) has been used to study the dynamics of amino acid residues in bacteriorhodopsin with results that depend on the method of sample preparation. We show here that in [2H]-leucine-labeled samples the intensity of the isotropic signal varies according to the degree of residual contamination of the sample with red membrane. We conclude that few of the surface leucine residues of bacteriorhodopsin are moving isotropically on the 2H-NMR time scale.  相似文献   

14.
The denaturation of bacteriorhodopsin by various organic solvents was studied using absorption, circular dichroism (CD) and fluorescence measurements. Organic solvents with a hydrogen-bonding group caused the release of retinal. The CD measurements showed that the helical structure was maintained even in the denatured state, whereas its tertiary structure was destroyed. The change in fluorescence intensity of tryptophan and fluorescent retinal also confirmed that the tertiary structure was destroyed. Comparison of the denaturation efficiency of various organic solvents showed that the concentration at denaturation was inversely proportional to the partition coefficient of the denaturant. This inverse proportionality clearly indicated that denaturation was determined by the concentration of denaturants which partitioned into the hydrophobic region of the membrane. It was discussed from the experimental results that the tertiary structure of bacteriorhodopsin was stabilized by the hydrogen-bonding networks between side chains of the helices. The results obtained from analysis of the amino acid sequence were also consistent with the hydrogen-bonding mechanism for the formation of the tertiary structure.  相似文献   

15.
We have cloned and sequenced the gene that encodes archaerhodopsin, a light-driven H+ pump in Halobacterium sp. aus-1 (Mukohata, Y., Sugiyama, Y., Ihara, K., and Yoshida, M. (1988) Biochem. Biophys. Res. Commun. 151, 1339-1345). The nucleotide sequence of this gene contained an open reading frame which corresponded to a protein of 260 amino acids with a molecular mass of 27,851 daltons, including a precursor sequence of 6 amino acids at the amino terminus and 2 amino acids at the carboxyl terminus. The deduced amino acid sequence of archaerhodopsin exhibited 59 and 32% homology to the sequences of bacteriorhodopsin and halorhodopsin, respectively, from Halobacterium halobium. Three charged residues (Asp-121, Asp-218, and Lys-222) are conserved in the transmembrane segments among the three retinal proteins. Residues Asp-91 and Asp-102 which, it has been suggested, may be essential for the pumping of protons (Mogi, T., Stern, L. J., Marti, T., Chao, B. H., and Khorana, H. G. (1988) Proc. Natl. Acad. Sci. U. S. A. 85,4148-4152) are conserved between archaerhodopsin and bacteriorhodopsin.  相似文献   

16.
Previously, kinetic resonance Raman measurements as a function of pH have been used to demonstrate that, microseconds after light absorption, the pK of Schiff base deprotonation during the bacteriorhodopsin photocycle is 10.2 ± 0.3, whereas before the light event, the pK is > 12 (2). In this investigation, we have iodinated purple membrane suspensions and have found that the pK of Schiff base deprotonation in the photocycle has been lowered to between 7 and 8 for iodinated bacteriorhodopsin. These results, together with our previous data on the pK of Schiff base deprotonation, suggest that the amino acid tyrosine could be a critical component in the deprotonation mechanism.  相似文献   

17.
Specific amino acid sequence segments have been assigned to locations in the structural map of bacteriorhodopsin using two-dimensional neutron diffraction data and a model building analysis. Models are constructed computationally by building specific regions of the amino acid sequence as alpha helices and then positioning the helices on axes indicated by the density map of Henderson and Unwin (Nature [Lond.]. 1975, 257:28-32). Neutron diffraction data were collected from samples of stacked, oriented "native" purple membranes as well as purple membranes containing different kinds of deuterated amino acids. Models differing in the assignments of helices to specific axes and in rotations of the helices about those axes were tested against the neutron data using a weighted residual factor to rank the models. This residual factor was calculated between observed and predicted intensity differences for pairs of data sets. Using this approach, a small set of related models has been found that predicts the observed intensity changes between five independent data sets. These models are inconsistent with the proposed locations of the retinal chromophore and the carboxyl terminus and with any of the previously proposed models for bacteriorhodopsin.  相似文献   

18.
The action of thermally activated tritium on the purple membrane and delipidated bacteriorhodopsin fragments has been studied, tritium incorporation into specified amino acid residues being quantified by Edman degradation. The membrane environment was found to affect the accessibility of amino acid residues for tritium. Bacteriorhodopsin fragments 14-31, 45-63, 81-89, 171-179, and 210-225 were localized to the membrane interior while fragments 4-12, 32-44, 64-65, 73-80, and 156-170 should lie outside or close to membrane surface. It was demonstrated that the peptide fragments joining transmembrane rods are not fully exposed to the solution.  相似文献   

19.
Protonation changes of the protein occur during the reconstitution of bacteriorhodopsin from bacterio-opsin and all-trans retinal in the purple membrane of Halobacterium halobium. The protonation changes are conveniently determined from measures of the pH changes after photoisomerisation of 9-cis retinal in apomembrane preparations, which induces the reconstitution. In addition, to the omega-amino group of the lysine which is involved in the condensation of retinal and bacterio-opsin, the dissociation equilibria of at least two other amino acid residues are changed during the reconstitution. The results are consistent with a proposed model of chromophore structure in which an interaction of the Schiff's base occurs with two protonable amino acid residues.  相似文献   

20.
Assignments were made for helical regions in several integral membrane proteins using an algorithm devised to delineate the transmembrane helices in bacteriorhodopsin (Eur. J. Biochem. 182 (1982) 565-575). A new conformational preference parameter for membrane-buried helices was obtained. The use of this parameter to predict helices in membrane proteins is discussed. When applied to the L and M subunits of Rhodopseudomonas sphaeroides, five helices were predicted, which is consistent with the three-dimensional X-ray crystal structure. Data on signal sequences and amino acid exchanges in membrane proteins are also analysed and discussed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号