首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In biotechnological processes, fundamental performances of microorganisms are used. The economy of these processes is essentially determined by the efficiency, velocity (productivity) and quality of the products. Therefore it is a permanent task and challenge for basic and biotechnological research to seek out measures for improving the actually attained parameters. The auxiliary substrate concept supplics an approach. It is based on the fact that chemo-organo-heterotrophic substrates differ in the carbon: energy ratio, thus, growth yield is limited in energy and/or reducing power. It says that, by simultaneous utilization of physiologically similar substrates (mixed substrates), the growth yield increases. The substrates are to combine in such a way that with their simultaneous utilization a minimum of carbon is dissimilated merely for the purpose of the generation of biologically useful energy and/or reducing power. Since all chemo-organo-heterotrophic substrates are more or less energy-deficient, an increase in growth efficiency can be expected if the individual substrates of the mixture are assimilated more efficiently than the respective substrates alone. This may result, for instance, from an immediate assimilation of a substrate (according to the “manner of finished part construction”). An increased growth rate is rather the rule than the exception in mixed substrate utilization. In product syntheses the substrates are, depending on the concrete product and metabolic pathway, either energy-excess or energy-excess or energy-deficient. or, in other words, the processes are energy-generating or energy-consuming, respectively. If this is responsible for discrepancies between the possible yields determined by the carbon metabolism and the experimentally obtained yields, the discrepancies should be able to be decreased and the yields increased by mixing substrates. The substrates are to choose and combine so that, due to simultaneous utilization, the product formation process becomes energy neutral. As a rule, the enhanced efficiency is accompanied by an increased velocity. This does not only apply to syntheses, but also to degradation (and detoxification) reactions. Even supposedly inert compounds or persistent substances can be activated by simultaneous (co-)metabolization of another (an auxiliary substrate, victim substrate or co-substrate) and converted at a considerable rate. It is of interest for syntheses of products but in particular for degradation and decontamination of harmful and waste products in the environment that the residual concentrations of the substrates are smaller than those achieved if the compounds of a mixture are metabolized separately. The auxiliary substrate concept has proven to be fruitful, both for theoretical and practical questions. It was practically already being used before it was formulated (mixed substrate utilization, cometabolism). However, an abundance of regulatory and energetic aspects are waiting to be investigated in more detail.  相似文献   

2.
Electron transfer reactions in methanogens   总被引:2,自引:0,他引:2  
Abstract Methanogenic bacteria comprise a specialized group of obligately anaerobic microorganisms able to reduce a limited number of substrates to CH4. The intermediates involved in this reduction process remain bound to a series of typical C1-carriers. Reducing equivalents are either obtained from the oxidation of H2 or from oxidation of carbon substrates to CO2. Electron transfer reactions thus constitute the very essence of the process of methanogenesis.
In recent years much progress has been made in the elucidation of the special metabolic pathways and the nature of the C1-carriers involved in methanogenic bacteria. The energy generated at the oxidoreduction reactions, notably at the methylreductase step, is conserved by ATP synthesis. The energy is used for cell carbon synthesis and, in catalytic amounts, for the reductive activation of some methanogenic enzymes. Before the condensing reaction resulting in the formation of acetyl-CoA takes place, 2 C1-units are reduced or oxidized depending on the substrate to a carbonyl and a -CH3 group. Formation of the latter proceeds via the methanogenic route. Intermediary cell carbon synthesis starting from acetyl-CoA involves reductive carboxylations and oxidoreductions by the participation of the enzymes of the tricarboxylic acid cycle.  相似文献   

3.
Growth conditions for heterotrophic bacteria in the environment are characterized by low concentrations of carbon and energy sources and complex substrate mixtures. While mechanisms of starvation-survival in the absence of carbon substrates have been studied in considerable detail, information on the physiology of slow growth under oligotrophic conditions is limited. We intended to elucidate general strategies by which Escherichia coli adapts to low concentrations of a mixed carbon and energy source pool. A new screening method based on BIOLOG AN MicroPlates, which allowed us to distinguish repressed and induced catabolic functions in E. coli, was combined with the analysis of periplasmic high-affinity binding proteins. Extending previous findings for E. coli and other microbial species, we found that numerous alternative catabolic functions and high-affinity binding proteins are derepressed under either glucose- or arabinose-limited growth conditions, in spite of the absence of the respective inducers. Escherichia coli cells growing in carbon-limited complex medium chemostat cultures exhibited an even higher degree of catabolic flexibility and were able to oxidize 43 substrates. The BIOLOG respiration pattern indicated simultaneous dissimilation of diverse sugars, amino acids and dipeptides (mixed substrate growth). The observed physiological adaptations of E. coli to low concentrations of carbon and energy substrates presumably are advantageous in many natural growth situations and also offer an explanation why many heterotrophic bacteria have and maintain such a broad carbon substrate range.  相似文献   

4.
A theoretical analysis has been made of carbon conversion efficiency during heterotrophic microbial growth. The expectation was that the maximal growth yield occurs when all the substrate is assimilated and the net flow of carbon through dissimilation is zero. This, however, is not identical to a 100% carbon conversion, since assimilatory pathways lead to a net production of CO(2). It can be shown that the amount of CO(2) produced by way of assimilatory processes is dependent upon the nature of the carbon source, but independent of its degree of reduction and varies between 12 and 29% of the substrate carbon. An analysis of published yield data reveals that nearly complete assimilation can occur during growth on substrates with a high energy content. This holds for substrates with a heat of combustion of ca. 550 kJ/mol C, or a degree of reduction higher than 5 (e.g. ethane, ethanol, and methanol). Complete assimilation can also be achieved on substrates with a lower energy content, provided that an auxiliary energy source is present that cannot be used as a carbon source. This is evident from the cell yields reported for Candida utilis grown on glucose plus formate and for Thiobacillus versutus grown on acetate plus thiosulfate. This evaluation of the carbon conversion efficiency during assimilation also made it possible to compare the energy content of the auxiliary energy substrate added with the quantity of the carbon source it had replaced. It will be shown that utilization of the auxiliary energy source may lead to extreme changes in the efficiency of dissimilatory processes.  相似文献   

5.
A simple model is developed for the energy transformation in growing microbial systems. The model is based on a linear equation for ATP consumption in the processes of growth and maintenance. A combination of this equation with macroscopic balances for the various components, the systems exchanges with the environment, and application of the concepts of the elementary balance allow the derivation of linear equations for the exchange of substrate, oxygen, and carbon dioxide with the environment. For growth on one sole carbon and energy source the model allows the definition of a critical substrate yield are expected and below which is decreasing substrate yield and energy supply growth limitation are expected. This restriction can be interpreted in a variety of other ways. It supplies a rationale for non-energy-production-coupled transfer of hydrogen to oxygen or wasteful expenditure of ATP in growth on highly reduced substrates. It also allows the formulation of a limit to the maximum yield on oxygen that can never be exceeded in growth on highly reduced substrates.  相似文献   

6.
The responses of a culture, enriched with acetone and methanol as dual carbon energy substrates, when growing in a continuous flow bioreactor are examined with respect to various imposed transient state operating conditions. The transients investigated include both removal from and addition to the process feed of acetone and methanol, step changes in the concentrations of acetone and methanol in the process feed, and step changes in the dilution rates employed. The capacity of the culture to achieve complete acetone oxidation, after step changes, was shown to be suspect, emphasizing the need to base performance criteria for biotreatment process operation on individual key component concentrations rather than on the lumped parameters widely used to describe pollutant loads in aqueous effluents.  相似文献   

7.
纤维素结合域的研究进展   总被引:1,自引:0,他引:1  
纤维资源是生物界最为丰富的有机碳源,有效酶解植物纤维资源对于减缓能源枯竭和食品危机具有重要意义。然而,天然纤维素结构上的复杂多样性为酶的攻击和可及带来巨大困难。为了克服这一问题,自然界中能够利用纤维原料的酶大多由相对独立的两种结构域、催化结构域(CD)、纤维素结合结构域(CBM)组成。其中,CBM有助于酶与不溶性底物的结合,在纤维原料酶解中具有重要作用。CBM所具备的特殊的底物特异性不仅对于提高酶与纤维的可及度,增强纤维素酶解效率,揭示纤维素酶解机制具有重要意义,而且应用在基因工程产品的分离纯化,酶制剂的品质改善及细胞固定化等领域也有很好的发展前景。本文就近年来CBM的研究现状及其发展前景进行了综述。  相似文献   

8.
Energetic yields associated with microbial growth on hydrocarbons are investigated and compared with values for other organic substrates. Both cell growth and extracellular product formation are investigated. Both carbon and energy limitations are considered in estimating theoretical yields. Carbon, available electron, and ATP balances are used in the theoretical analysis. The results indicate that the availability of carbon may limit growth and product formation.  相似文献   

9.
Electricity generation in microbial fuel cells (MFCs) has been a subject of significant research efforts. MFCs employ the ability of electricigenic bacteria to oxidize organic substrates using an electrode as an electron acceptor. While MFC application for electricity production from a variety of organic sources has been demonstrated, very little research on electricity production from carbon monoxide and synthesis gas (syngas) in an MFC has been reported. Although most of the syngas today is produced from non-renewable sources, syngas production from renewable biomass or poorly degradable organic matter makes energy generation from syngas a sustainable process, which combines energy production with the reprocessing of solid wastes. An MFC-based process of syngas conversion to electricity might offer a number of advantages such as high Coulombic efficiency and biocatalytic activity in the presence of carbon monoxide and sulfur components. This paper presents a discussion on microorganisms and reactor designs that can be used for operating an MFC on syngas.  相似文献   

10.
Activation reactions involve modification of recalcitrant substrates to forms that are more readily degradable. These reactions require specialized enzymes and cosubstrates, including molecular oxygen and reduced electron carriers. In these reactions, microorganisms invest electrons and cannot capture energy or carbon for synthesis. The subsequent degradation of the intermediates formed in activation reactions releases electrons, energy, and carbon that the organisms use for growth. The overall yield is reduced due to the required activation investments. A mathematical method to predict cell yields of oxygenase activation reactions is developed using electron and energy balances. Predicted yields are compared with experimental yields for methane, organic chelating agents, and aromatic hydrocarbons.  相似文献   

11.
Glucose, cellulose, Avicel, and Solka Floc were utilized as substrates for growth of Thermomonospora sp in order to study the induction–repression characteristics of its associated cellulase system. While glucose proved to be an effective repressor of the cellulase enzymes, the other three substrates induced relatively high levels of enzyme activity as measured by the filter paper assay. On a unit cell mass basis the highest values of cellulase activity were obtained when Avicel was utilized as the carbon and energy source. The nature of the cellulosic material and its initial concentration were identified as two very important parameters of the induction process.  相似文献   

12.
The present paper presents a generalized treatment of the principles of elemental and enthalpy balances which are applied to aerobic fermentation processes. It is shown that strict relations do exist between the various yield factors of biomass or product on substrate, oxygen, carbon dioxide, and between the various maintenance coefficients. These relations are confirmed from the existing body of literature data on yield and maintenance coefficients. Another consequences of the application of elemental balances is the existence of limits for the maximum biomass yield on substrate and oxygen, which depend on the degree of reduction of the substrates with different degree of reduction. It appears from this model that substrates with a high degree of reduction are C limited and substrates with a low degree of reduction are energy limited. Finally the effects of temperature on yield and maintenance coefficients are analyzed from the existing body of literature data. It can be concluded that the maintenance coefficients follow an Arrhenius type of relationship and that yield is temperature independent. The literature data seem to indicate that a degree of reduction of about 4 is optimal for the carbon and energy needs for biomass formation.  相似文献   

13.
Microorganisms are used in biotechnology. They are either (i) aim and purpose of a process, e.g. with the production of single cell proteins, or (ii) mean to an end insofar as they serve as a catalyst or “factory” for syntheses (e.g. of products of primary and secondary metabolism, of enzymes and antibiotics) or for the degradation and detoxification of harmful organics and inorganics. In all cases, the efficiency and velocity, finally the productivity, are parameters which essentially determine the economy of the processes. Therefore, search for approaches to optimize these processes is a permanent task and challenge for scientists and engineers. It is shown that the auxiliary substrate concept is suitable to increase the yield coefficients. It is based on the energetic evaluation of organics, on the knowledge that organics as sources of carbon and energy for growth are deficient in ATP and/or reducing equivalents, and says that it is possible to improve the carbon conversion efficiency up to the carbon metabolism determined upper limit. The latter is determined by inevitable losses of carbon along the way of assimilation and anabolism and amounts to about 85% for so‐called glycolytic substrates, e.g. glucose, methanol, and to about 75% for gluconeogenetic substrates, e.g. C2‐substrates (acetic acid, hexadecane). The approach is explained and some experimental examples are presented. By simultaneous utilization of an extra energy source (auxiliary substrate) the yield coefficient can be increased (i) in glucose from about 0.5 to 0.7 g/g (by means of formate), (ii) in acetate from 0.34–0.4 to 0.5–0.65 g/g (by means of formate and thiosulfate, respectively), and (iii) in hexadecane from about 0.94 to 1.26 g/g (by means of formate). The precalculated yield coefficients and mixing ratios agree well with the experimentally attained ones. The approach is easily feasible and economically valuable.  相似文献   

14.
When glaciers retreat they expose barren substrates that become colonized by organisms, beginning the process of primary succession. Recent studies reveal that heterotrophic microbial communities occur in newly exposed glacial substrates before autotrophic succession begins. This raises questions about how heterotrophic microbial communities function in the absence of carbon inputs from autotrophs. We measured patterns of soil organic matter development and changes in microbial community composition and carbon use along a 150-year chronosequence of a retreating glacier in the Austrian Alps. We found that soil microbial communities of recently deglaciated terrain differed markedly from those of later successional stages, being of lower biomass and higher abundance of bacteria relative to fungi. Moreover, we found that these initial microbial communities used ancient and recalcitrant carbon as an energy source, along with modern carbon. Only after more than 50 years of organic matter accumulation did the soil microbial community change to one supported primarily by modern carbon, most likely from recent plant production. Our findings suggest the existence of an initial stage of heterotrophic microbial community development that precedes autotrophic community assembly and is sustained, in part, by ancient carbon.  相似文献   

15.
Biomass waste, including municipal solid waste (MSW), contains lignocellulosic-containing fiber components that are not readily available as substrates for anaerobic digestion due to the physical shielding of cellulose imparted by the nondigestible lignin. Consequently, a substantial portion of the potentially available carbon is not converted to methane and the incompletely digested residues from anaerobic digestion generally require additional processing prior to their return to the environment. We investigated and developed steam pressure disruption as a treatment step to render lignocellulosic-rich biomass more digestible and as a means for increasing methane energy recovery. The rapid depressurization after steam heating (240 degrees C, 5 min.) of the nondigested residues following a 30-day primary digestion of MSW caused a visible disruption of fibers and release of soluble organic components. The disrupted material, after reinoculation, provided a rapid burst in methane production at rates double those observed in the initial digestion. This secondary digestion proceeded without a lag phase in gas production, provided approximately 40% additional methane yields, and was accompanied by a approximately 40% increase in volatile solids reduction. The secondary digestate was found to be enriched in lignin and significantly depleted in cellulose and hemi-cellulose components when compared to primary digestate. Thus, steam pressure disruption treatment rendered lignocellulosic substrates readily accessible to anaerobic digestion bacteria and improved both the kinetics of biogas production and the overall methane yield from MSW. Steam pressure disruption is central to a new anaerobic digestion process approach including sequential digestion stages and integrated energy recovery, to improve process yields, provide cogenerated energy for process needs, and to provide effective reuse and recycling of waste biomass materials.  相似文献   

16.
Pseudomonas putida KT2442 is able to accumulate medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs) as intracellular inclusions on a variety of fatty acids and many other carbon sources. Some of these substrates, such as octanoic acid, alkenoic acids, and halogenated derivatives, are toxic when present in excess. Efficient production of mcl-PHAs on such toxic substrates therefore requires control of the carbon source concentration in the supernatant. In this study, we develop a closed-loop control system based on on-line gas chromatography to maintain continuously fed substrates at desired levels. We used the graphical programming environment LABVIEW to set up a flexible process control system that allows users to perform supervisory process control and permits remote access to the fermentation system over the Internet. Single-substrate supernatant concentration in a high-cell-density fed-batch fermentation process was controlled by a proportional (P) controller (P = 50%) acting on the substrate pump feed rate. Na-octanoate concentrations oscillated around the setpoint of 10 mM and could be maintained between 0 and 25 mM at substrate uptake rates as high as 90 mmol L(-1) h(-1). Under cofeeding conditions Na-10-undecenoate and Na-octanoate could be individually controlled at 2.5 mM and 9 mM, respectively, by applying a proportional integral (PI) controller for each substrate. The resulting copolymer contained 43.5 mol% unsaturated monomers and reflected the ratio of 10-undecenoate in the feed. It was suggested that both substrates were consumed at similar rates. These results show that this control system is suitable for avoiding substrate toxicity and supplying carbon substrates for growth and mcl-PHA accumulation.  相似文献   

17.
Polyhydroxyalkanoates (PHAs) are the polymers of hydroxyalkanoates that accumulate as carbon/energy or reducing-power storage material in various microorganisms. PHAs have been attracting considerable attention as biodegradable substitutes for conventional polymers. To reduce their production cost, a great deal of effort has been devoted to developing better bacterial strains and more efficient fermentation/recovery processes. The use of mixed cultures and cheap substrates can reduce the production cost of PHA. Accumulation of PHA by mixed cultures occurs under transient conditions mainly caused by intermittent feeding and variation in the electron donor/acceptor presence. The maximum capacity for PHA storage and the PHA production rate are dependent on the substrate and the operating conditions used. This work reviews the development of PHA research. Aspects discussed include metabolism and various mechanisms for PHA production by mixed cultures; kinetics of PHA accumulation and conversion; effects of carbon source and temperature on PHA production using mixed cultures; PHA production process design; and characteristics of PHA produced by mixed cultures.  相似文献   

18.
共代谢条件下光合细菌对2-氯苯酚的生物降解   总被引:1,自引:0,他引:1  
Dong YH  Hu XM  He YD  Li L 《应用生态学报》2011,22(5):1280-1286
光合细菌PSB-1D不能利用2-氯苯酚(2-CP)作为唯一的碳源和能源.选用苹果酸、丙酸钠、乙酸钠、柠檬酸钠、苯酚、葡萄糖和可溶性淀粉等7种不同碳源作为光合细菌PSB-1D降解2-CP的共代谢基质,考察了在黑暗好氧培养条件下,不同共代谢基质对PSB-1D生长及降解2-CP效果的影响.结果表明:葡萄糖能够很好地促进PSB-1D的大量繁殖,提高降解效果,缩短降解周期,为最佳共代谢基质.对葡萄糖的投加浓度进行了优化,当葡萄糖的投加浓度为3 g·L-1时,菌株PSB-1D培养168 h后的菌体生长浓度△D560为1.749,2-CP的半衰期为3.9 d,降解速率常数为0.00864 h-1.采用SDS-PAGE对微生物全细胞蛋白质进行分析发现,在共代谢过程中当菌株PSB-1D利用葡萄糖作为底物提供能源和碳源时,可诱导产生2-CP特异性降解酶.  相似文献   

19.
Methylobacterium extorquens AM1 is a facultative methylotrophic Alphaproteobacterium and has been subject to intense study under pure methylotrophic as well as pure heterotrophic growth conditions in the past. Here, we investigated the metabolism of M. extorquens AM1 under mixed substrate conditions, i.e., in the presence of methanol plus succinate. We found that both substrates were co-consumed, and the carbon conversion was two-thirds from succinate and one-third from methanol relative to mol carbon. 13C-methanol labeling and liquid chromatography mass spectrometry analyses revealed the different fates of the carbon from the two substrates. Methanol was primarily oxidized to CO2 for energy generation. However, a portion of the methanol entered biosynthetic reactions via reactions specific to the one-carbon carrier tetrahydrofolate. In contrast, succinate was primarily used to provide precursor metabolites for bulk biomass production. This work opens new perspectives on the role of methylotrophy when substrates are simultaneously available, a situation prevailing under environmental conditions.  相似文献   

20.
我国城市发展与能源碳排放关系的面板数据分析   总被引:3,自引:0,他引:3  
城市化与城市能耗及其碳排放密切相关,城市发展过程中的人口城市化进程和产业总量与结构调整都是能源碳排放变化的主要驱动因素。以2006-2015年全国158个地级城市的面板数据为基础,从总量变化趋势和空间变化趋势两个角度分析了研究期内的我国城市发展特征及能源碳排放特征;并利用面板计量分析方法研究了城市发展因素对城市总能耗、总能耗碳排放、单位能耗碳排放量的驱动特征。结果表明:城市化每提升0.095%,总能耗上升1%。虽然城市总能耗及能耗碳排放在降低,但是单位能耗碳排放在增加;第二产业和第三产业发展对总能耗及能耗碳排放的驱动作用大;城市第三产业的发展有利于能源结构优化调整等;并基于研究发现给出一些政策建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号