首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary To assess the action of testosterone on the ontogenetic song development of canaries, silastic tubes containing testosterone propionate were implanted in 10 males at day 60. The implants were renewed at two week intervals until day 116. During the exogenous testosterone application the following time-related changes in the plasma titers were measured. The highest peaks of testosterone occurred 20 days after the first testosterone implantation. Between days 20 and 50 this concentration decreased drastically whereas DHT-concentration gradually reached a maximum. We assume that exogenous testosterone induces higher metabolic activity by converting the testosterone to DHT.  相似文献   

2.
In songbirds, the ontogeny of singing behavior shows strong parallels with human speech learning. As in humans, development of learned vocal behavior requires exposure to an acoustic model of species‐typical vocalizations, and, subsequently, a sensorimotor practice period after which the vocalization is produced in a stereotyped manner. This requires mastering motor instructions driving the vocal organ and the respiratory system. Recently, it was shown that, in the case of canaries (Serinus canaria), the diverse syllables, constituting the song, are generated with air sac pressure patterns with characteristic shapes, remarkably, those belonging to a very specific mathematical family. Here, we treated juvenile canaries with testosterone at the onset of the sensorimotor practice period. This hormone exposure accelerated the development of song into stereotyped adultlike song. After 20 days of testosterone treatment, subsyringeal air sac pressure patterns of song resembled those produced by adults, while those of untreated control birds of the same age did not. Detailed temporal structure and modulation patterns emerged rapidly with testosterone treatment, and all previously identified categories of adult song were observed. This research shows that the known effect of testosterone on the neural circuits gives rise to the stereotyped categories of respiratory motor gestures. Extensive practice of these motor patterns during the sensorimotor phase is not required for their expression. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 943–960, 2010  相似文献   

3.
In anticipation of the breeding season male songbirds of the temperate zones undergo gonadal recrudescence in early spring that lead to elevated circulating testosterone (T) levels, positively correlated with an increase in aggressive and song behaviour. However, besides seasonal changes there are also marked fluctuations of T levels and song production within the breeding season. In many species, T levels and singing activity drop after pairing or after the first clutch is laid. Domesticated canaries (Serinus canaria) are multiple‐brooded with an extended breeding season, and males continue to sing after egg‐laying. So far, studies have mainly focused on the seasonality of T levels and song behaviour whereas the pattern of change throughout the breeding period is unknown. Here, we focused on the first and on the last brood of the breeding season. We measured plasma T levels in males at the different breeding stages and assessed song characteristics of males at both times. T levels fluctuated significantly throughout brood 1, being highest during the nest building stage compared with egg‐laying and feeding of young. No such changes occurred during the last brood. Temporal song characteristics changed between brood 1 and brood 3 with song length being the main contributor to explain these changes. Our data suggest that T mainly plays a role in mate attraction and initial nesting site selection but that elevated levels are not necessary for subsequent breeding attempts. Furthermore, temporal song characteristics are maintained independently of T levels, suggesting a threshold effect. Our results demonstrate behavioural and physiological plasticity of domesticated canaries during the breeding season and are consistent with previous findings in wild songbirds.  相似文献   

4.
Summary Isolated female canaries show song activity after the end of the reproductive period. Their repertoire is similar to those of themales. However, the utterances have a much higher range of variability in females than in males. Measurements of sex steroids give no support that the song controlling brain centres are short term activated by an increased titer of testosterone. Singing females show that the neural mechanisms for singing are differentiated in females, although singing is not practised during ontogeny.  相似文献   

5.
In seasonally breeding songbirds, the brain regions that control song behavior undergo dramatic structural changes at the onset of each annual breeding season. As spring approaches and days get longer, gonadal testosterone (T) secretion increases and triggers the growth of several song control nuclei. T can be converted to androgenic and estrogenic metabolites by enzymes expressed in the brain. This opens the possibility that the effects of T may be mediated via the androgen receptor, the estrogen receptor, or both. To test this hypothesis, we examined the effects of two bioactive T metabolites on song nucleus growth and song behavior in adult male white-crowned sparrows. Castrated sparrows with regressed song control nuclei were implanted with silastic capsules containing either crystalline T, 5alpha-dihydrotestosterone (DHT), estradiol (E(2)), or a combination of DHT+E(2). Control animals received empty implants. Song production was highly variable within treatment groups. Only one of seven birds treated with E(2) alone was observed singing, whereas a majority of birds with T or DHT sang. After 37 days of exposure to sex steroids, we measured the volumes of the forebrain song nucleus HVc, the robust nucleus of the archistriatum (RA), and a basal ganglia homolog (area X). All three steroid treatments increased the volumes of these three song nuclei when compared to blank-implanted controls. These data demonstrate that androgen and estrogen receptor binding are sufficient to trigger seasonal song nucleus growth. These data also suggest that T's effects on seasonal song nucleus growth may depend, in part, upon enzymatic conversion of T to bioactive metabolites.  相似文献   

6.
We tested the sexual responsiveness of female canaries, Serinus canaria, to two sets of different types of female conspecific songs versus an adult male conspecific song. Female songs were either spontaneously emitted (‘S-songs’) or were testosterone-induced (‘T-songs’). Copulation-solicitation displays (CSD) were used as an index of female sexual response. Playbacks were performed several days before and during egg laying, a period of natural sexual responsiveness of the females to song. We demonstrated that the weaker sexual displays of female canaries were recorded to S-songs, thus suggesting that these types of female songs do not contain fully functional sexual releasers. Three T-songs elicited high levels of sexual displays, thus demonstrating that testosterone treatment may induce sexual release quality in the female songs. Study of the phonology of these three T-songs strongly suggested that special song phrases may be good candidates as powerful sexual releasers. To test the sexual value of these female song phrases, we carried out a third experiment, using hybrid songs where each of these special T-song phrase types was included in a well-known heterospecific context. Two phrases elicited high levels of sexual responses in females. Essential features of the male full song, such as broadband rapid frequency modulations and high repetition rate, are retrieved in both female song phrases. Taken together, these data demonstrate that testosterone treatment not only induces a male-like structure in the songs of females, but also induces functionally ‘male-like’ songs. This result allows features of the vocal control network of testosterone-treated females to be compared with those of adult males singing full songs, to distinguish neural correlates of testosterone-dependent full songs. However, because testosterone does not induce functionally male-like songs in all the females, neuroanatomical structure-function correlations need detailed behavioural analysis.  相似文献   

7.
Most songbirds learn their songs from adult tutors, who can be their father or other male conspecifics. However, the variables that control song learning in a natural social context are largely unknown. We investigated whether the time of hatching of male domesticated canaries has an impact on their song development and on the neuroendocrine parameters of the song control system. Average age difference between early- and late-hatched males was 50 days with a maximum of 90 days. Song activity of adult tutor males decreased significantly during the breeding season. While early-hatched males were exposed to tutor songs for on average the first 99 days, late-hatched peers heard adult song only during the first 48 days of life. Remarkably, although hatching late in the season negatively affected body condition, no differences between both groups of males were found in song characteristics either in autumn or in the following spring. Similarly, hatching date had no effect on song nucleus size and circulating testosterone levels. Our data suggest that late-hatched males must have undergone accelerated song development. Furthermore, the limited tutor song exposure did not affect adult song organization and song performance.  相似文献   

8.
Temperate zone songbirds that breed seasonally exhibit pronounced differences in reproductive behaviors including song inside and outside the breeding season. Springlike long daylengths are associated with increases in plasma testosterone (T) concentrations, as well as with increases in singing and in the volume of several brain nuclei known to control this behavior. The mechanisms whereby T can induce changes in behavior and brain, and whether or not these effects are differentially regulated, have recently begun to be examined, as has the question of the relative contributions of T and its androgenic and estrogenic metabolites to the regulation of this seasonal behavioral and neural plasticity. In this experiment, we examined the effects of T, 5alpha-dihydrotestosterone, or 17beta-estradiol treatment on castrated male canaries housed on short days and compared neural and behavioral effects in these males to similarly-housed males given only blank implants. We observed that only T treatment was effective in eliciting significant increases in singing behavior after 11 days of hormone exposure. In addition, T alone was effective in increasing the volume of a key song production nucleus, HVC. However, at this time, none of the steroids had any effects on the volumes of two other song control nuclei, Area X of the medial striatum and the robust nucleus of the arcopallium (RA), that are efferent targets of HVC, known to be regulated by androgen in canaries and also to play a role in the control of adult song. T can thus enhance singing well before concomitant androgen-induced changes in the song control system are complete.  相似文献   

9.
In seasonally breeding songbirds, the brain regions that control song behavior undergo dramatic structural changes at the onset of each annual breeding season. As spring approaches and days get longer, gonadal testosterone (T) secretion increases and triggers the growth of several song control nuclei. T can be converted to androgenic and estrogenic metabolites by enzymes expressed in the brain. This opens the possibility that the effects of T may be mediated via the androgen receptor, the estrogen receptor, or both. To test this hypothesis, we examined the effects of two bioactive T metabolites on song nucleus growth and song behavior in adult male white‐crowned sparrows. Castrated sparrows with regressed song control nuclei were implanted with silastic capsules containing either crystalline T, 5α‐dihydrotestosterone (DHT), estradiol (E2), or a combination of DHT+E2. Control animals received empty implants. Song production was highly variable within treatment groups. Only one of seven birds treated with E2 alone was observed singing, whereas a majority of birds with T or DHT sang. After 37 days of exposure to sex steroids, we measured the volumes of the forebrain song nucleus HVc, the robust nucleus of the archistriatum (RA), and a basal ganglia homolog (area X). All three steroid treatments increased the volumes of these three song nuclei when compared to blank‐implanted controls. These data demonstrate that androgen and estrogen receptor binding are sufficient to trigger seasonal song nucleus growth. These data also suggest that T's effects on seasonal song nucleus growth may depend, in part, upon enzymatic conversion of T to bioactive metabolites. © 2003 Wiley Periodicals, Inc. J Neurobiol 57:130–140, 2003  相似文献   

10.
Mockingbirds (Mimus polyglottos) show intense territorial activity in the autumn as newcomers attempt to establish space within resident populations. Examination of autumnal territorial behavior showed that unmated males sing more and engage in more territorial fights than mated males. Newcomers that have just acquired space also sing more and show more territorial fights than birds resident to the population for at least one prior season. Among established residents, the average number of territorial fights was greater in birds that shared more territory boundaries with new residents. Radioimmunoassay of plasma samples taken from males during the molt and following the onset of territorial defense showed that during both periods plasma concentrations of testosterone (T), dihydrotestosterone (DHT), and estradiol were basal or below the sensitivity of the assay system. Moreover, groups of males that differed in song and territorial aggression did not differ in plasma concentrations of T, DHT, or luteinizing hormone (LH). Hormone analyses confirm measurements on several other avian species suggesting that sex steroid concentrations are low in the fall and winter and that variations in aggressive behavior at this time of year may be unrelated to LH and androgen levels. Our observations contribute to a growing body of work in temperate passerines indicating that the role of androgens in mediating aggressive challenge may be restricted to the breeding season. The possible hormonal basis (if any) of song and territorial aggression in mockingbirds outside the breeding season remains obscure.  相似文献   

11.
This study addressed the role of testosterone (T) in the development of sexually dimorphic behavior in the green anole lizard, Anolis carolinensis. We documented the pattern of endogenous T concentrations during ontogeny and we determined the behavioral effects of experimentally elevated T in juvenile males and females. T concentrations were measured in the plasma of hatchlings from eggs incubated in the laboratory, in juveniles of all sizes sampled in the field, and in the yolks of freshly laid eggs in the laboratory and were compared to plasma T in adult females (measured in this study) and adult males. There were no sex differences in plasma T in hatchling and small juvenile (<26-mm snout-vent length, SVL; <14 days old) males and females, concentrations of which in both sexes tended to decline over the 14-day posthatching period. Plasma T sharply increased in juvenile males, but not females, after approximately 14 days posthatching (>25-mm SVL), and it became significantly higher after approximately 38 days posthatching (>30-mm SVL). Plasma T for juvenile males was within the range detected in breeding adult females, but it was 20- to 45-fold lower than that of adult males, breeding or postbreeding. All eggs contained detectable yolk T, but eggs that gave rise to males contained nearly twice as much yolk T as those that gave rise to females. We do not know whether this yolk T comes from the mother, embryo, or both. In behavior trials conducted in the laboratory, juveniles (36- to 42-mm SVL) with T implants, regardless of whether they were male or female, had increased activity levels compared to juveniles with blank implants, due to increased rates of nearly every behavior monitored. These results are discussed in the context of the organization-activation theory of sexual differentiation and the particular life history of A. carolinensis.  相似文献   

12.
Sexual dimorphism can evolve when males and females differ in phenotypic optima. Genetic constraints can, however, limit the evolution of sexual dimorphism. One possible constraint is derived from alleles expressed in both sexes. Because males and females share most of their genome, shared alleles with different fitness effects between sexes are faced with intralocus sexual conflict. Another potential constraint is derived from genetic correlations between developmental stages. Sexually dimorphic traits are often favoured at adult stages, but selected against as juvenile, so developmental decoupling of traits between ontogenetic stages may be necessary for the evolution of sexual dimorphism in adults. Resolving intralocus conflicts between sexes and ages is therefore a key to the evolution of age‐specific expression of sexual dimorphism. We investigated the genetic architecture of divergence in the ontogeny of sexual dimorphism between two populations of the Japanese medaka (Oryzias latipes) that differ in the magnitude of dimorphism in anal and dorsal fin length. Quantitative trait loci (QTL) mapping revealed that few QTL had consistent effects throughout ontogenetic stages and the majority of QTL change the sizes and directions of effects on fin growth rates during ontogeny. We also found that most QTL were sex‐specific, suggesting that intralocus sexual conflict is almost resolved. Our results indicate that sex‐ and age‐specific QTL enable the populations to achieve optimal developmental trajectories of sexually dimorphic traits in response to complex natural and sexual selection.  相似文献   

13.
Effect of a vasotocin analog on singing behavior in the canary.   总被引:3,自引:0,他引:3  
Groups of juvenile and 1-year-old male canaries were treated briefly with the vasotocin (VT) analog desGly(NH2)9d(CH2)5-[Tyr(Me)2,Thr4, Orn8]VT (dGVTA) during four time intervals between September and February. The canaries received subcutaneously testosterone-containing silastic implants at the start of the VT analog treatment to assure that despite age and season differences the birds would all have comparable plasma levels of testosterone. The VT analog was administered subcutaneously (0.7 micrograms/100 microliters) during the first 3 days (3 injections daily) of chronic testosterone treatment. Observations on the singing behavior were carried out between Day 8 and Day 30 after implantation of the testosterone-filled silastic tubing. The short-term administration of the VT analog influenced the amount of singing behavior during a 30-min observation interval measured 1 to 4 weeks later. Despite age differences the effect of dGVTA held and seemed more related to season than to age. The song duration (seconds of song/30 min) was affected in a dual mode. In early autumn the VT analog enhanced song duration of testosterone-primed canaries, but the same VT analog decreased song duration in the period November/January. These results suggest that the neuropeptide VT is implicated in control of seasonal changes in singing behavior.  相似文献   

14.
This study tested the hypothesis that the relative proportion of neurons that are hormone sensitive in avian song control nuclei is related to the basic motor ability to sing, whereas the absolute number of such neurons is related to the complexity of song behavior. Either [3H]testosterone (T) or estradiol (E2) was injected into male and female rufous and white wrens (Thryothorus rufalbus), a tropical species in which females sing duets with males but have smaller song repertoires than males. Autoradiographic analysis indicated that there were no sex differences in the proportions of T or E2 target cells in two song nuclei: the high vocal center (HVC) and the lateral portion of the magnocellular nucleus of the anterior neostriatum (IMAN). The density of labeled cells per unit volume of tissue did not differ between the sexes in either song nucleus. Males have larger song nuclei, however, which is consistent with their more complex song behavior, and therefore have a greater total number of hormone-sensitive neurons in these regions than do females. Comparison of these results with measures of hormone accumulation in zebra finches, canaries, and bay wrens supports the hypothesis presented. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
[3H]Testosterone (T) was injected into male and female canaries (Serinus canarius), a species in which females are able to sing but do so more rarely and more simply than males. Autoradiographic analysis revealed that males and females have equal proportions of cells labeled by T or its metabolites in four song control nuclei: the high vocal center (HVC), the lateral portion of the magnocellular nucleus of the anterior neostriatum (IMAN), the robust nucleus of the archistriatum (RA), and the hypoglossal motor nucleus (nXII). Labeled cells were also observed in both sexes in the medial portion of MAN, and in hypothalamic nuclei. In both sexes, labeled cells in HVC, IMAN, RA, and nXII were larger than unlabeled cells. There were no sex differences in the size of either labeled or unlabeled cells in these song nuclei. The density of labeled cells per unit volume of tissue did not differ between the sexes in any song nucleus analyzed. However, because males have larger HVC and RA than females, males have a greater total number of hormone-sensitive cells in these regions than do females. Comparison of these results with measures of hormone accumulation in zebra finches and tropical duetting wrens suggests that the complexity of song that a bird can produce is correlated with the total number of hormone-sensitive cells in song nuclei.  相似文献   

16.
Adult male canaries learn to produce high-amplitude complex courtship songs each breeding season, whereas females do not, and brain nuclei involved with the production of song behavior are much larger in breeding males than in nonbreeding males or females (Nottebohm, 1980, 1981). However, treatment of adult females with testosterone (T) causes them to produce male-like song and stimulates pronounced growth of some song-control brain nuclei such as the caudal nucleus of the ventral hyperstriatum (HVc). We reexamined the effects of T on song-control nuclei in deafened birds. In order to examine whether the pattern of hormone accumulation varies as a function of circulating testosterone levels we described the distribution of testosterone-concentrating cells in HVc and the magnocellular nucleus of the anterior neostriatum (MAN) in hearing adult male, female, and T-treated female canaries, as well as in deaf T-treated and untreated females. In contrast to our previous findings (Bottjer, Schoonmaker, and Arnold, 1986a), we observed no tendency in this study for testosterone-induced growth of HVc to be attenuated in deafened birds. There was no difference between deaf and hearing birds in the incidence of labeled cells within HVc. We also observed no sex or hormone-induced differences in the percentage of hormone-concentrating cells in HVc: normal females have approximately the same proportion of hormone target cells as do males and T-treated females. However, males normally have many more neurons in HVc than do control females, and systemic exposure to testosterone induces a pronounced increase in the number of HVc neurons of adult females. Therefore, the absolute number of hormone target cells in HVc is likely to be much greater in males and T-treated females than in normal females. As in HVc, there were no differences among groups in the proportion of labeled cells within lateral MAN (IMAN), a nucleus that has been implicated in song learning (Bottjer, Miesner and Arnold, 1984). In contrast, the incidence of hormone target cells in medial MAN (mMAN) did vary as a function of hormonal condition: although mMAN of normal females is rarely visible in Nissl-stained sections and cells in this region are not hormone labeled, mMAN is clearly visible in Nisslstained sections of males and T-treated females and contains many hormone-labeled cells. This testosterone-induced change in the phenotype of mMAN cells suggests a possible role for mMAN in learned song behavior.  相似文献   

17.
Adult male canaries learn to produce high-amplitude complex courtship songs each breeding season, whereas females do not, and brain nuclei involved with the production of song behavior are much larger in breeding males than in nonbreeding males or females (Nottebohm, 1980, 1981). However, treatment of adult females with testosterone (T) causes them to produce male-like song and stimulates pronounced growth of some song-control brain nuclei such as the caudal nucleus of the ventral hyperstriatum (HVc). We reexamined the effects of T on song-control nuclei in deafened birds. In order to examine whether the pattern of hormone accumulation varies as a function of circulating testosterone levels we described the distribution of testosterone-concentrating cells in HVc and the magnocellular nucleus of the anterior neostriatum (MAN) in hearing adult male, female, and T-treated female canaries, as well as in deaf T-treated and untreated females. In contrast to our previous findings (Bottjer, Schoonmaker, and Arnold, 1986a), we observed no tendency in this study for testosterone-induced growth of HVc to be attenuated in deafened birds. There was no difference between deaf and hearing birds in the incidence of labeled cells within HVc. We also observed no sex or hormone-induced differences in the percentage of hormone-concentrating cells in HVc: normal females have approximately the same proportion of hormone target cells as do males and T-treated females. However, males normally have many more neurons in HVc than do control females, and systemic exposure to testosterone induces a pronounced increase in the number of HVc neurons of adult females. Therefore, the absolute number of hormone target cells in HVc is likely to be much greater in males and T-treated females than in normal females. As in HVc, there were no differences among groups in the proportion of labeled cells within lateral MAN (IMAN), a nucleus that has been implicated in song learning (Bottjer, Miesner and Arnold, 1984). In contrast, the incidence of hormone target cells in medial MAN (mMAN) did vary as a function of hormonal condition: although mMAN of normal females is rarely visible in Nissl-stained sections and cells in this region are not hormone labeled, mMAN is clearly visible in Nissl-stained sections of males and T-treated females and contains many hormone-labeled cells. This testosterone-induced change in the phenotype of mMAN cells suggests a possible role for mMAN in learned song behavior.  相似文献   

18.
Song in male songbirds is activated by the sex steroid testosterone (T). Using male song sparrows (Melospiza melodia), we compared effects of T in the normal spring state of photosensitivity (i.e., when the pituitary-gonadal axis is sensitive to stimulation by increasing daylength) and in the late summer-early fall state of photorefractoriness (i.e., when they are insensitive to increasing daylength). Photosensitive males experienced short days for 8 weeks and then long days for another 22 weeks to induce photorefractoriness. T implants were given to the birds twice, first when on short days and photosensitive, and second when on long days and photorefractory. Song rates were compared among 5 conditions: (1) photosensitive, short days, low T titers; (2) photosensitive, short days, high T titers; (3) photosensitive, long days, high T titers; (4) photorefractory, long days, low T titers; and (5) photorefractory, long days, high T titers. Plasma levels of T were monitored throughout the experiment by radioimmunoassay. T was equally effective in inducing song in both the photosensitive and photorefractory conditions. Thus, no seasonal change was found in the sensitivity to hormone action of the neural target sites mediating this behavior in song sparrows. Photosensitive birds sang at a higher rate when on long days than when on short days, however, even though there was no concomitant increase in plasma levels of T. This finding suggests that environmental factors can alter the expression of song activated by similar levels of T.  相似文献   

19.
Brain nuclei that control song are larger in male canaries, which sing, than in females, which sing rarely or not at all. Treatment of adult female canaries with testosterone (T) induces song production and causes song-control nuclei to grow, approaching the volumes observed in males. For example, the higher vocal center (HVC) of adult females approximately doubles in size by 1 month following the onset of T treatment. Male HVC projects to a second telencephalic nucleus, RA (the robust nucleus of the archistriatum), which projects in turn to the vocal motor neurons. Whether HVC makes a similar connection in female canaries is not known, although HVC and RA are not functionally connected in female zebra finches, a species in which testosterone does not induce neural or behavioral changes in the adult song system. This experiment investigated whether HVC makes an efferent projection to RA in normal adult female canaries, or if T is necessary to induce the growth of this connection. In addition, we examined whether T-induced changes in adult female canary brain are reversible. Adult female canaries received systemic T implants that were removed after 4 weeks; these birds were killed 4 weeks after T removal (Testosterone-Removal, T-R). Separate groups of control birds received either (a) T implants for 4 weeks which were not removed (Testosterone-Control, T-C) or (b) empty implants (Untreated Control, øO-C). Crystals of the fluorescent tracer DiI were placed in the song-control nucleus HVC in order to anterogradely label both efferent targets of HVC, RA and Area X. Projections from HVC to RA and Area X were present in all treatment groups including untreated controls, and did not appear to differ either qualitatively or quantitatively. Thus, formation of efferent connections from HVC may be prerequisite to hormone-induced expression of song behavior in adult songbirds. The volumes of RA and Area X were measured using the distribution of anterograde label as well as their appearance in Nissl-stained tissue. RA was larger in T-treated control birds than in untreated controls. Experimental birds in which T was given and then removed (T-R) had RA volumes closer in size to untreated controls (ø-C). Because the volume of RA in T-treated controls (T-C) was larger than that of birds that did not receive T (ø-C), we conclude that the volume of RA increased in both T-C and T-R birds but regressed upon removal of T in T-R birds. Surprisingly, the volume of Area X did not increase in T-treated birds. Birds in this study were maintained on short days, suggesting that T-induced growth of Area X reported previously may have resulted from an interaction between T and another seasonal or photoperiodic factor induced by exposure to long daylengths. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
[3H]Testosterone (T) was injected into male and female canaries (Serinus canarius), a species in which females are able to sing but do so more rarely and more simply than males. Autoradiographic analysis revealed that males and females have equal proportions of cells labeled by T or its metabolites in four song control nuclei: the high vocal center (HVC), the lateral portion of the magnocellular nucleus of the anterior neostriatum (IMAN), the robust nucleus of the archistriatum (RA), and the hypoglossal motor nucleus (nXII). Labeled cells were also observed in both sexes in the medial portion of MAN, and in hypothalamic nuclei. In both sexes, labeled cells in HVC, IMAN, RA, and nXII were larger than unlabeled cells. There were no sex differences in the size of either labeled or unlabeled cells in these song nuclei. The density of labeled cells per unit volume of tissue did not differ between the sexes in any song nucleus analyzed. However, because males have larger HVC and RA than females, males have a greater total number of hormone-sensitive cells in these regions than do females. Comparison of these results with measures of hormone accumulation in zebra finches and tropical duetting wrens suggests that the complexity of song that a bird can produce is correlated with the total number of hormone-sensitive cells in song nuclei. © 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号