首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selection favoring different alleles in different environments frequently has been suggested as an explanation for allozyme variation within and among populations. This hypothesis predicts that allozyme frequencies will be correlated with environmental variables. Previous studies on allozyme frequency-environment covariation in plants often have relied on qualitative assessments of the environment and have emphasized highly autogamous species. We have examined allozyme frequency-soil associations in Gaillardia pulchella, an obligately outcrossed annual plant, by regressing the frequencies of 15 common allozymes representing six polymorphic enzyme loci on principal components from a set of 20 quantitative soil variables. Fifty-one populations, representing four taxonomic varieties, were included in the analysis. Among the 26 populations representing the var. pulchella, allozymes Adh-2f and Pgm-1c were significantly associated with a block of highly inter-correlated soil characteristics which serve to discriminate between soils derived from calcareous vs. non-calcareous rock types. This geographically complex pattern of allozyme frequency-soil covariation is not likely to be spurious and, thus, indicates the presence of adaptively differentiated soil races, or ecotypes. However, these results are not sufficient to conclude that the allozyme frequency divergence between ecotypes was mediated by selection, either directly or through genetic hitchhiking. The pattern of allozyme frequency-soil covariation within var. pulchella was not found among the other taxonomic varieties. Patterns of genotype-environment covariation often may be recognizable only within geographically or environmentally restricted groups of populations because of the confounding influences of other environmental variables.  相似文献   

2.
Hybrid zones, where distinct populations meet and interbreed, give insight into how differences between populations are maintained despite gene flow. Studying clines in genetic loci and adaptive traits across hybrid zones is a powerful method for understanding how selection drives differentiation within a single species, but can also be used to compare parallel divergence in different species responding to a common selective pressure. Here, we study parallel divergence of wing colouration in the butterflies Heliconius erato and H. melpomene, which are distantly related Müllerian mimics which show parallel geographic variation in both discrete variation in pigmentation, and quantitative variation in structural colour. Using geographic cline analysis, we show that clines in these traits are positioned in roughly the same geographic region for both species, which is consistent with direct selection for mimicry. However, the width of the clines varies markedly between species. This difference is explained in part by variation in the strength of selection acting on colour traits within each species, but may also be influenced by differences in the dispersal rate and total strength of selection against hybrids between the species. Genotyping‐by‐sequencing also revealed weaker population structure in H. melpomene, suggesting the hybrid zones may have evolved differently in each species, which may also contribute to the patterns of phenotypic divergence in this system. Overall, we conclude that multiple factors are needed to explain patterns of clinal variation within and between these species, although mimicry has probably played a central role.  相似文献   

3.
Closely related grasshopper species of the Chorthippus albomarginatus group are notable for their extremely complex courtship songs, accompanied by a visual display. Two species of this group, Ch. albomarginatus and Ch. oschei, were previously shown to hybridize in a wide mosaic hybrid zone in Ukraine and Moldova. In this paper, variation in five courtship song characters, one character of visual display and the number of stridulatory pegs were analysed across the hybrid zone to estimate selection against hybrids and strength of assortative mating. Comparison of cline width and position across the hybrid zone showed concordant and coincident clines in four traits, such as three song characters and one morphological character, and discordant and non‐coincident clines in two other song characters and the character of visual display. Concordance of clines in different characters suggests an equal strength of selection acting on underlying loci. Increase of variance and covariance between phenotypic traits at the cline centre could more likely result from assortative mating than from selection against hybrids. Most pairwise cases showed the highest covariance for the oschei‐like, than for the albomarginatus‐like hybrid populations. This indicates that introgression of the oschei genes into the albomarginatus genome is stronger than vice versa, and may be evidence of the movement of the hybrid zone in favour of Ch. albomarginatus. Analysis of associations between phenotype and local vegetation showed that mosaic structure of the hybrid zone is explained to a great extent by habitat–phenotype associations. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 275–291.  相似文献   

4.
Geographical and temporal variation in gene exchange between two endemic land snail species, Mandarina aureola and Mandarina ponderosa, was studied on Hahajima Island of the Bonin Islands. Allozyme variation in modern samples, and variation in the color and shell morphology of modern and fossil samples, suggest a complex geographical and historical pattern of hybridization. These two species occur in sympatry, and their shell morphologies and protein genotypes are markedly divergent. However, many specimens of M. aureola, collected from the middle region of the island, exhibit intermediate shell morphologies and possess marker alleles of M. ponderosa. Fossil samples of the two species strongly suggest that these intermediates were hybrids with M. ponderosa that were produced since the end of the Pleistocene. Each of these species, in addition, is subdivided into two genetically and morphologically divergent parapatric races. Interspecific hybridization appears to have produced genetical and morphological admixture among these four distinctive groups of populations. The past distribution and geographic variation of M. ponderosa can be traced in the distribution of M. ponderosa-derived genotypes in current populations of M. aureola. Temporal changes of the color pattern in the fossil populations of hybrids suggest that the traits introduced from M. ponderosa to M. aureola have been affected by natural selection and could replace traits of living species when advantageous. Moreover, these introgressed genes appeared to provide novel properties that enabled M. aureola to advance into a new environment. Relatively independent change in shell color and morphology further suggests mosaic evolution following the hybridization events. Connectively, these data reveal how hybridization events may be an important source of evolutionary novelties and make it clear that the phenomenon of reticulate evolution cannot be ignored.  相似文献   

5.
We took a comparative approach utilizing clines to investigate the extent to which natural selection may have shaped population divergence in cuticular hydrocarbons (CHCs) that are also under sexual selection in Drosophila. We detected the presence of CHC clines along a latitudinal gradient on the east coast of Australia in two fly species with independent phylogenetic and population histories, suggesting adaptation to shared abiotic factors. For both species, significant associations were detected between clinal variation in CHCs and temperature variation along the gradient, suggesting temperature maxima as a candidate abiotic factor shaping CHC variation among populations. However, rainfall and humidity correlated with CHC variation to differing extents in the two species, suggesting that response to these abiotic factors may vary in a species‐specific manner. Our results suggest that natural selection, in addition to sexual selection, plays a significant role in structuring among‐population variation in sexually selected traits in Drosophila.  相似文献   

6.
To understand the evolutionary significance of geographic variation, one must identify the factors that generate phenotypic differences among populations. I examined the causes of geographic variation in and evolutionary history of number of trunk vertebrae in slender salamanders, Batrachoseps (Caudata: Plethodontidae). Number of trunk vertebrae varies at many taxonomic levels within Batrachoseps. Parallel clines in number occur along an environmental gradient in three lineages in the Coast Ranges of California. These parallel clines may signal either adaptation or a shared phenotypically plastic response to the environmental gradient. By raising eggs from 10 populations representing four species of Batrachoseps, I demonstrated that number of trunk vertebrae can be altered by the developmental temperature; however, the degree of plasticity is insufficient to account for geographic variation. Thus, the geographic variation results largely from genetic variation. Number of trunk vertebrae covaries with body size and shape in diverse vertebrate taxa, including Batrachoseps. I hypothesize that selection for different degrees of elongation, possibly related to fossoriality, has led to the extensive evolution of number of trunk vertebrae in Batrachoseps. Analysis of intrapopulational variation revealed sexual dimorphism in both body shape and number of trunk vertebrae, but no correlation between these variables in either sex. Females are more elongate than males, a pattern that has been attributed to fecundity selection in other taxa. Patterns of covariation among different classes of vertebrae suggest that some intrapopulational variation in number results from changes in vertebral identity rather than changes in segmentation.  相似文献   

7.
Strong ecological selection on a genetic locus can maintain allele frequency differences between populations in different environments, even in the face of hybridization. When alleles at divergent loci come into tight linkage disequilibrium, selection acts on them as a unit and can significantly reduce gene flow. For populations interbreeding across a hybrid zone, linkage disequilibria between loci can force clines to share the same slopes and centers. However, strong ecological selection on a locus can also pull its cline away from the others, reducing linkage disequilibrium and weakening the barrier to gene flow. We looked for this “cline uncoupling” effect in a hybrid zone between stream resident and anadromous sticklebacks at two genes known to be under divergent natural selection (Eda and ATP1a1) and five morphological traits that repeatedly evolve in freshwater stickleback. These clines were all steep and located together at the top of the estuary, such that we found no evidence for cline uncoupling. However, we did not observe the stepped shape normally associated with steep concordant clines. It thus remains possible that these clines cluster together because their individual selection regimes are identical, but this would be very surprising given their diverse roles in osmoregulation, body armor, and swimming performance.  相似文献   

8.
The colour pattern of the Gran Canarian skink is described with eight independent colour pattern characters. Significant geographic variation occurs in each character. There are generally high levels of congruence between the patterns of geographic variation in each character although some differences exist. In canonical variate analyses, the first canonical variate expresses most of the among-locality variation in colour pattern, indicating a largely unidimensional pattern. Patterns of geographic variation in the colour pattern are portrayed by contouring. This reveals north-east/south-west clines for seven of the individual characters and the generalized pattern (CV1). Four causal hypotheses were erected which predicted four different unidimensional patterns of geographic variation. Mantel tests and partial correlation analyses were used to compare the observed patterns of microgeographic variation with the four hypothesized patterns. This method suggests differential selection occurring between ecotones as the cause of the microgeographic variation. Microgeographic variation in some aspects of the colour pattern can be explained by selection for different anti-predator strategies in the hot, arid southern areas vs the cooler, lusher northern areas.  相似文献   

9.
In previous studies, we have shown that apple and hawthorn populations of Rhagoletis pomonella (Diptera: Tephritidae) represent partially reproductively isolated and genetically differentiated host races; a result consistent with predictions of sympatric speciation models. The geographic pattern of allozyme variation for these flies is complex, however, as inter-host differences are superimposed on latitudinal allele frequency clines within the races. In addition, pronounced allele frequency shifts exist among R. pomonella populations across three major ecological transition zones in the mid-western United States. This suggests that selection related to environmental heterogeneity is responsible for the allele frequency shifts, but does not rule out secondary contact as an alternative possibility. Resolution of this issue is important, because if secondary contact is involved, then we would have to reassess the relationship host race formation has with speciation in the R. pomonella group.Here, we present results from a detailed genetic analysis of fly populations spanning the deciduous/prairie transition zone near the border between the states of Wisconsin and Illinois. Allele frequencies for hawthorn populations within the zone formed spikes, rather than the expected steps, and these frequency peaks correlated with variation in local ambient temperature conditions. Ambient temperature, and not secondary contact, therefore appears to be an important determinant of the shape of R. pomonella allele frequency clines. Allele frequency heterogeneity was also observed among apple populations, but was less pronounced compared to that for hawthorn flies. This suggests that ambient temperature differentially affects the host races, possibly through differences in the fruiting phenologies of apple and hawthorn trees. Several pairs of linked loci displayed concordant allele frequency changes and were in disequilibrium among both apple and hawthorn populations along the Wisconsin/Illinois transect. Although we do not know the reason for the observed pattern of disequilibrium, site to site variation in levels of inter-host migration, coupled with selection, seem the most likely explanations. We conclude by discussing how host specific adaptations, such as those associated with ambient temperature, may interact with host recognition traits to drive the sympatric speciation process for R. pomonella group flies.  相似文献   

10.
Genetic and environmental variances were estimated for a number of characters in the annual plant Impatiens pallida by planting seed obtained through controlled crosses into their native field site or pots maintained in the greenhouse. Significant additive genetic variance was detected for three of 11 characters studied—germination date, cotyledon area, and date of first flower production. Significant dominance and/or maternal variance was found for seed weight, proportion of seeds germinating, cotyledon area, plant height, and number of leaves produced. Environmental variance was greater in the field compared with the greenhouse. Characters found to be under strong directional selection in a previous study showed no detectable additive genetic variance. While these populations exhibit conditions that in theory could contribute to the maintenance of genetic variation (limited pollen and seed dispersal distances and small-scale variation for edaphic characteristics influencing plant growth), levels of additive genetic variance for most characters were not significantly different from zero.  相似文献   

11.
We studied the phenotypic variation of the Atlantic Forest passerine Xiphorhynchus fuscus (Aves: Dendrocolaptidae) with the broad aim of addressing whether the history and type of forest affected the evolution of endemic taxa. We also tested whether the different subspecies and genetic lineages of X. fuscus could be considered full species. We collected plumage and body size measurements and, in combination with genetic data, used multivariate tests to evaluate the working hypotheses. Our results, combined with previous biogeographic analyses, indicate that vicariant events have been important determinants in the evolution of phenotypic characters of X. fuscus, once genetic isolation was complete. Our analysis also suggests that forest heterogeneity and ecotones are important factors in the early evolution of Atlantic Forest taxa, perhaps via divergent selection. Forest instability during the Pleistocene was critical in the evolution of phenotypic traits. We confirm that the subspecies atlanticus should be considered a full species. Other lineages or populations are also phenotypically differentiated but we do not suggest considering them as full species. They share high levels of gene flow and are part of a continuous latitudinal cline of phenotypic variation. Our study suggests that not all the historic events in the Atlantic Forest that affected the evolution of genetic lineages also influenced the evolution of phenotypic characters in the same direction and intensity. Undoubtedly, natural selection played a major role in the evolution of Atlantic Forest organisms. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 1047–1066.  相似文献   

12.
Abstract A previous study of the hybrid zone in western Panama between white‐collared (Manacus candei) and golden‐collared manakins (M. vitellinus) documented the unidirectional introgression of vitellinus male secondary sexual traits across the zone. Here, we examine the hybrid zone in greater genetic and morphological detail. Statistical comparisons of clines are performed using maximum‐likelihood and nonparametric bootstrap methods. Our results demonstrate that an array of six molecular and two morphometric markers agree in cline position and width. Clines for male collar and belly color are similar in width to the first eight clines, but are shifted in position by at least five cline widths. The result is that birds in intervening populations are genetically and morphometrically very like parental candei, but males have the plumage color of parental vitellinus. Neither neutral diffusion nor nonlinearity of color scales appear to be viable explanations for the large cline shifts. Genetic dominance of vitellinus plumage traits is another potential explanation that will require breeding experiments to test. Sexual selection remains a plausible explanation for the observed introgression of vitellinus color traits in these highly dimorphic, polygynous, lek‐mating birds. Two other clines, including a nondiagnostic isozyme locus, are similar in position to the main cluster of clines, but are broader in width. Thus, introgression at some loci is greater than that detected with diagnostic markers. Assuming that narrow clines are maintained by selection, variation in cline width indicates that selection is not uniform throughout the genome and that diagnostic markers are under more intense selective pressure. The traditional focus on diagnostic markers in studies of hybrid zones may therefore lead to underestimates of average introgression. This effect may be more pronounced in organisms with low levels of genetic divergence between hybridizing taxa.  相似文献   

13.
I applied a comparative approach to reveal correlated patterns of variation in phenology and seed production in four populations of two annual grasses Hordeum spontaneum and Avena sterilis, sampled in the same environments distributed along an aridity gradient in Israel. The steep aridity gradient in Israel represents two parallel clines of environmental productivity (annual rainfall) and predictability (variation in amount and timing of annual rainfall) that is likely to induce similar responses in natural plant populations distributed along the gradient, if (1) selection is strong, (2) species share the same ecological niche, and (3) there is genetic variation for ecologically important traits. I found in plants of both species (1) ultimate advance in onset of flowering, and (2) more but smaller seeds, with increasing aridity. The broad sense heritabilities of onset of flowering, seed size and seed yield in both species were very high, moderate and low, respectively. It appears that the observed adaptive complex of traits have evolved in both species in response to this specific array of environments.  相似文献   

14.
The little greenbul, a common rainforest passerine from sub‐Saharan Africa, has been the subject of long‐term evolutionary studies to understand the mechanisms leading to rainforest speciation. Previous research found morphological and behavioural divergence across rainforest–savannah transition zones (ecotones), and a pattern of divergence with gene flow suggesting divergent natural selection has contributed to adaptive divergence and ecotones could be important areas for rainforests speciation. Recent advances in genomics and environmental modelling make it possible to examine patterns of genetic divergence in a more comprehensive fashion. To assess the extent to which natural selection may drive patterns of differentiation, here we investigate patterns of genomic differentiation among populations across environmental gradients and regions. We find compelling evidence that individuals form discrete genetic clusters corresponding to distinctive environmental characteristics and habitat types. Pairwise FST between populations in different habitats is significantly higher than within habitats, and this differentiation is greater than what is expected from geographic distance alone. Moreover, we identified 140 SNPs that showed extreme differentiation among populations through a genomewide selection scan. These outliers were significantly enriched in exonic and coding regions, suggesting their functional importance. Environmental association analysis of SNP variation indicates that several environmental variables, including temperature and elevation, play important roles in driving the pattern of genomic diversification. Results lend important new genomic evidence for environmental gradients being important in population differentiation.  相似文献   

15.
Local adaptation along environmental gradients may drive plant species radiation within the Cape Floristic Region (CFR), yet few studies examine the role of ecologically based divergent selection within CFR clades. In this study, we ask whether populations within the monophyletic white protea clade (Protea section Exsertae, Proteaceae) differ in key functional traits along environmental gradients and whether differences are consistent with local adaptation. Using seven taxa, we measured trait–environment associations and selection gradients across 35 populations of wild adults and their offspring grown in two common gardens. Focal traits were leaf size and shape, specific leaf area (SLA), stomatal density, growth, and photosynthetic rate. Analyses on wild and common garden plants revealed heritable trait differences that were associated with gradients in rainfall seasonality, drought stress, cold stress, and less frequently, soil fertility. Divergent selection between gardens generally matched trait–environment correlations and literature‐based predictions, yet variation in selection regimes among wild populations generally did not. Thus, selection via seedling survival may promote gradient‐wide differences in SLA and leaf area more than does selection via adult fecundity. By focusing on the traits, life stages, and environmental clines that drive divergent selection, our study uniquely demonstrates adaptive differentiation among plant populations in the CFR.  相似文献   

16.
Genetic divergence for characters pertaining to reproductive isolation is of considerable interest in evolutionary biology. Since most studies concentrate on sibling species (for recent reviews, see Wu et al. 1996), we would like to know how much genetic variation exists between populations that are at an incipient stage of speciation. To answer this question, we have begun measuring variations in mating preference among natural isolates of Drosophila melanogaster, represented by the cosmopolitan and Zimbabwe sexual races. We quantify the variation in mating preference and success in both sexes by using a multiple-choice design and an index that is suited to cases of strong asymmetry in mate choice. Different designs and indices for measuring sexual isolation are also discussed. These sexual traits are entirely genetically determined. Surveying four populations in southern Africa and additional cosmopolitan lines, we observe extensive genetic variation in sexual characters as well as strong correlation between sexes. The populations are highly differentiated and represent various stages of evolution between the African and the cosmopolitan type of sexual behaviors. The genetic variation and correlation for these sexual characters coupled with their geographical pattern have interesting implications for models of speciation by sexual selection.  相似文献   

17.
Soil heterogeneity is an important driver of divergent natural selection in plants. Neotropical forests have the highest tree diversity on earth, and frequently, soil specialist congeners are distributed parapatrically. While the role of edaphic heterogeneity in the origin and maintenance of tropical tree diversity is unknown, it has been posited that natural selection across the patchwork of soils in the Amazon rainforest is important in driving and maintaining tree diversity. We examined genetic and morphological differentiation among populations of the tropical tree Protium subserratum growing parapatrically on the mosaic of white‐sand, brown‐sand and clay soils found throughout western Amazonia. Nuclear microsatellites and leaf morphology were used to (i) quantify the extent of phenotypic and genetic divergence across habitat types, (ii) assess the importance of natural selection vs. drift in population divergence, (iii) determine the extent of hybridization and introgression across habitat types, (iv) estimate migration rates among populations. We found significant morphological variation correlated with soil type. Higher levels of genetic differentiation and lower migration rates were observed between adjacent populations found on different soil types than between geographically distant populations on the same soil type. PSTFST comparisons indicate a role for natural selection in population divergence among soil types. A small number of hybrids were detected suggesting that gene flow among soil specialist populations may occur at low frequencies. Our results suggest that edaphic specialization has occurred multiple times in P. subserratum and that divergent natural selection across edaphic boundaries may be a general mechanism promoting and maintaining Amazonian tree diversity.  相似文献   

18.
Although hybridization frequently occurs among plant species, hybrid zones of divergent lineages formed at species boundaries are less common and may not be apparent in later generations of hybrids with more parental‐like phenotypes, as a consequence of backcrossing. To determine the effects of dispersal and selection on species boundaries, we compared clines in leaf traits and molecular hybrid index along two hybrid zones on Yakushima Island, Japan, in which a temperate (Rubus palmatus) and subtropical (Rubus grayanus) species of wild raspberry are found. Leaf sinus depth in the two hybrid zones had narrower clines at 600 m a.s.l. than the molecular hybrid index and common garden tests confirmed that some leaf traits, including leaf sinus depth that is a major trait used in species identification, are genetically divergent between these closely related species. The sharp transition in leaf phenotypic traits compared to molecular markers indicated divergent selection pressure on the hybrid zone structure. We suggest that species boundaries based on neutral molecular data may differ from those based on observed morphological traits.  相似文献   

19.
In this study we address the question of how much of the covariation among phenotypic characters observed in natural populations is adaptive. We examine covariation among a set of phenotypic characters that describe the wing-melanization pattern of Pieris butterflies. Previous functional analyses of thermoregulatory performance allow us to predict a priori whether and how different wing melanic characters should be correlated. We quantify and analyze the variation in the wing-melanization pattern within species for a series of Pieris populations from relatively cool environments in North America and compare these results with the predictions based on our adaptive hypothesis. We consider adaptive covariation both for biogeographic variation among populations and for seasonal polyphenism (phenotypic plasticity) within populations. Our hypothesis correctly predicts many of the qualitative features of covariation in melanization among major regions of the wings, at the level of biogeographic variation among populations, for both males and females of Pieris occidentalis. When within-population variation is considered, agreement with the adaptive predictions varies considerably in different populations for both P. occidentalis and P. napi males and females. Agreement for P. napi, particularly the females, is generally poorer than for P. occidentalis. In both species, there is a consistent difference in melanization pattern between alpine and arctic sites; this difference is discussed in relation to the differences in the radiative environment between these two types of “cold” habitats. Our results suggest that some important aspects of phenotypic correlation among wing melanic characters in Pieris are adaptive. We emphasize the important distinction between covariation and co-occurrence of characters, and we discuss these results in relation to the extensive biogeographic variation and phenotypic plasticity (seasonal polyphenism) in Pieris wing-melanization patterns.  相似文献   

20.
New G-banded karyotypes from populations of the common shrew Sorex araneus Linnaeus, 1758 provide a clearer picture of the distribution of chromosome races in central Europe. As expected according to their occurrence in neighbouring countries, the Jutland (kq, no), Laska (k/o) and Drnholec (ko, nr) races are also found in Germany. A new chromosome race “Rügen” (kq) is described from this Baltic Island. Together with the previously recorded races Ulm and Mooswald (kr), six chromosome races are now known from Germany. The resulting distribution pattern is characterized by high frequencies of different race-specific metacentrics at the periphery of the country and clines with decreasing frequencies towards the centre which is occupied by the Ulm race. This race is acrocentric for all chromosome arms involved in the observed race-specific fusions and represents a buffer between the surrounding, more metacentric races. According to the present distribution of these metacentrics, a scenario for the postglacial recolonization of central Europe by S.araneus populations on three different routes is proposed: from the east along the northern slopes of the Carpathian Arc, from the south-east along the Danube Valley and from the south-west through the Upper Rhine Valley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号