首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The warmer and drier climates projected for the mid‐ to late‐21st century may have particularly adverse impacts on the cool temperate rainforests of southeastern Australia. Southern beech (Nothofagus cunninghamii; Nothofagaceae), a dominant tree species in these forests, may be vulnerable to minor changes in its climate envelope, especially at the edge of the species range, with Holocene fossil evidence showing local extinction of populations in response to small climate changes. We modelled the stability of this species climate envelope using the maximum entropy algorithm implemented in Maxent and two thresholds of presence/absence by projecting the modern climate envelope onto four Global Circulation Models forecasted for two time periods (2050s and 2070s). The climate envelope, as estimated from the species present climatic range, is predicted to shrink by up to 49% by the 2050s and up to 64% by the 2070s. The greatest predicted reduction is in Victoria with 91–100% of its current range being climatically unsuitable by the 2070s. Climatically similar areas to the species present range are predicted to remain in mountainous areas of western Tasmania, the Northeast Highlands of Tasmania, and the Baw Baw Plateau in the Central Highlands of Victoria. However, region‐specific modelling approaches made very different predictions from the whole‐range based models, especially in the severity of the predicted decline for Victorian populations of N. cunninghamii which occur in much warmer climates than the rest of the species geographical range. This shows that, for widespread species that span a range of climate zones, the exposure of current populations to climate change may be better modelled using a regional based approach. How the species responds to climate change will depend on the species ability to respond to drier and warmer climates and the concomitant increase in fire intensity.  相似文献   

2.
Abstract Pollen analysis of the sediments of a small bog, supporting a stand of cool temperate rainforest in southeastern Tasmania, was undertaken in order to examine the history of the stand dominant, Nothofagus cunninghamii, presently growing outside its predicted climatic range. The pollen record covers at least the last 9000 years and reveals changes in the bog and in the surrounding vegetation, although pollen percentages of N. cunninghamii are sufficiently high to indicate that the species could have had a local presence throughout the recorded period. It is likely that this N. cunninghamii stand is relictual, surviving not only Holocene climates, but also the cool dry conditions of the last glacial period. This ability to survive changing and sometimes very unfavourable climates leads to the conclusion that great caution must be exercised in using present climates alone to predict the potential distribution of N. cunninghamii.  相似文献   

3.
High-throughput DNA extraction from forest trees   总被引:2,自引:1,他引:1  
It is difficult to extract pure high-quality DNA from trees, which may not be amenable to advances in extraction methods suitable for other plants. A new commercial high-throughput DNA extraction system, using a silica binding matrix for purification and a multisample mixer mill for tissue disruption, was evaluated for its suitability withEucalyptus spp.,Pinus spp., andAraucaria cunninghamii (hoop pine). DNA suitable for a range of molecular biology applications was successfully extracted from all genera. The method was highly reliable when tested in more than 500 preparations and could be adapted to different tree species with relatively minor modifications.  相似文献   

4.
We use fossil, sub-fossil and contemporary records of the Broad-toothed rat, Mastacomys fuscus, to model changes in its range over the last 21 thousand years. Mastacomys fuscus was exposed to, and flourished in, a much broader range of environmental conditions in the recent past than it occupies today. It also currently occupies a much smaller range than it did in the Late Pleistocene. Apart from a weak response to sea-level rise in the Holocene, the decline of M. fuscus does not correlate with known climate change. Instead, the contraction of the species' distribution on mainland Australia to high-elevation areas occurred recently and rapidly. Small changes in the 1000 year BP and present-day projected distributions imply some contraction of the area of suitable climate to higher elevations of the mainland subspecies M. f. mordicus, up to 2200 m above sea level. However, M. f. mordicus also persists near sea level at Cape Otway (southwestern Victoria) and from sea level to 1500 m above sea level at Barrington Tops (eastern New South Wales, Australia). This suggests suitable habitat may still exist in coastal Victoria and the central Tablelands/Blue Mountains areas. This research highlights the importance and value of using sub-fossil data to understand changes in the distribution and niche occupation of threatened species as the basis for conservation planning.  相似文献   

5.
There is now ample evidence of the effects of anthropogenic climate change on the distribution and abundance of species. The black-faced spoonbill (Platalea minor) is an endangered migratory species and endemic to East Asia. Using a maximum entropy approach, we predicted the potential wintering distribution for spoonbills and modeled the effects of future climate change. Elevation, human influence index and precipitation during the coldest quarter contributed most to model development. Five regions, including western Taiwan, scattered locations from eastern coastal to central mainland China, coastal areas surrounding the South China Sea, northeastern coastal areas of Vietnam and sites along the coast of Japan, were found to have a high probability of presence and showed good agreement with historical records. Assuming no limits to the spread of this species, the wintering range is predicted to increase somewhat under a changing climate. However, three currently highly suitable regions (northeastern Vietnam, Taiwan and coastal areas surrounding the South China Sea) may face strong reductions in range by 2080. We also found that the center of the predicted range of spoonbills will undergo a latitudinal shift northwards by as much as 240, 450, and 600 km by 2020, 2050 and 2080, respectively. Our findings suggest that species distribution modeling can inform the current and future management of the black-faced spoonbill throughout Asia. It is clear that a strong international strategy is needed to conserve spoonbill populations under a changing climate.  相似文献   

6.
Wang  Linlong  Zhang  Zhixin  Lin  Longshan  Peng  Xin  Lin  Li  Kang  Bin 《Hydrobiologia》2021,848(20):4919-4932

Climate change has the potential to greatly alter species distributions and threatens biodiversity in marine ecosystems. Mapping changes in species distribution patterns under climate change will help facilitate management strategies to maintain ecosystem structure and function. The lizardfish Harpadon nehereus is an aggressive predator that has experienced rapid population growth along the coast of China in recent decades, compressing the ecological niches of other marine species and disrupting food webs. If this species’ range is shifting due to climate change, it could further impact the integrity of ecological communities. To map the distribution of H. nehereus, we developed an ensemble species distribution model and projected the present and future habitat suitability in Chinese coastal waters. Annual mean benthic water temperature was identified as the most important variable affecting the projected distribution of H. nehereus, followed by water depth and salinity. Currently suitable habitats are along the coast from Guangxi Province to the southern Jiangsu Province. As climate changes, the southern portion of its distribution is predicted to recede with habitat losses, and the overall suitable habitat will shift northward. To avoid the potential impacts of H. nehereus redistribution, precautionary management based on species distribution modeling would help to maintain healthy marine ecosystems in the newly invaded areas.

  相似文献   

7.
Abstract Ferns, bryophytes and lichens are the most diverse groups of plants in wet forests in south‐eastern Australia. However, management of this diversity is limited by a lack of ecological knowledge of these groups and the difficulty in identifying species for non‐experts. These problems may be alleviated by the identification and characterization of suitable proxies for this diversity. Epiphytic substrates are potential proxies. To evaluate the significance of some epiphytic substrates, fern and bryophyte assemblages on a common tree‐fern species, Dicksonia antarctica (soft tree‐fern), were compared with those on a rare species, Cyathea cunninghamii (slender tree‐fern), in eastern Tasmania, Australia. A total of 97 fern and bryophyte species were recorded on D. antarctica from 120 trunks at 10 sites, and 64 species on C. cunninghamii from 39 trunks at four of these sites. The trunks of C. cunninghamii generally supported fewer species than D. antarctica, but two mosses (particularly Hymenodon pilifer) and one liverwort showed significant associations with this host. Several other bryophytes and epiphytic ferns showed an affinity for the trunks of D. antarctica. Species assemblages differed significantly between both sites and hosts, and the differences between hosts varied significantly among sites. The exceptionally high epiphytic diversity associated with D. antarctica suggests that it plays an important ecological role in Tasmanian forests. Evidently C. cunninghamii also supports a diverse suite of epiphytes, including at least one specialist species.  相似文献   

8.
Almost all Australian tropical and subtropical regions lack annually-resolved long-term (multi-decadal to centennial scale) instrumental climate records. Reconstructing climate in these regions requires the use of sparse climate proxy records such as tree rings. Tree rings often archive annually-resolved centennial-scale climate information. However, many tropical and subtropical species have short life-spans, the timbers are poorly preserved, and there is a belief that the proxy records of these species are often compromised by ring anomalies. Additionally, for many species the relationship between climate (e.g. temperature and/or rainfall) and tree growth has not been established. These factors have led to tree-ring data being underutilized in the Australian subtropics. Trees in the Araucariaceae family, a common family in northern and eastern Australia, are both longer lived than many species in the Australian subtropics, present growth rings that are annual in nature, and their growth is known to vary with climate. In this study we examine two subtropical Araucariaceae species, Araucaria cunninghamii and Araucaria bidwillii, and quantify the relationship between their radial growth and climate variability. Ring anomalies including false, faint, locally absent, and pinching rings, are found to be present in these species, however, bomb-pulse radiocarbon dating of A. cunninghamii samples together with a whole tree approach helped to identify annual growth patterns despite such anomalous ring boundaries. Additionally, to determine which climate variables most influence growth in these species, dendrometers were installed at two locations in subtropical Southeast Queensland, Australia. We found that rainfall variability drives annual ring growth, while temperature constrains the onset and conclusion of the growth season each year. Our results demonstrate that through the use of A. cunninghamii and A. bidwillii trees which demonstrate annual growth in relation to climate variables there is potential to develop centennial scale climate reconstructions from the Australian subtropics. We provide recommendations on how to best identify ring anomalies in these species to help in the future development of long-term chronologies and climate reconstructions.  相似文献   

9.
Merremia peltata is a species with uncertain status in the island nations of the Pacific region. It has been designated introduced and invasive in some countries whereas it is considered native in others. Recent increase in its abundance across some island landscapes have led to calls for its designation as an invasive species of environmental concern with biological control being suggested as a control strategy. Climate change will add to the complications of managing this species since changes in climate will influence its range limits. In this study, we develop a process‐oriented niche model of M. peltata using CLIMEX to investigate the impacts of climate change on its potential distribution. Information on the climatic requirements of M. peltata and its current geographic distribution were used to calibrate the model. The results indicate that under current climate, 273,132 km2 of the land area in the region is climatically unsuitable or marginal for M. peltata whereas 664,524 km2 is suitable to highly suitable. Under current climate, areas of climatic suitability for M. peltata were identified on the archipelagos of Fiji, Papua New Guinea, Solomon Islands and Vanuatu. By the end of the century, some archipelagos like Fiji, Hawaii, New Caledonia and Vanuatu will probably become more suitable while PNG and Solomon Islands become less suitable for M. peltata. The results can be used to inform biosecurity planning, management and conservation strategies on islands.  相似文献   

10.
Firn J  Erskine PD  Lamb D 《Oecologia》2007,154(3):521-533
We investigated the relationship between plant diversity and ecological function (production and nutrient cycling) in tropical tree plantations. Old plantations (65–72 years) of four different species, namely Araucaria cunninghamii, Agathis robusta, Toona ciliata and Flindersia brayleyana, as well as natural secondary forest were examined at Wongabel State Forest, in the wet tropics region of Queensland, Australia. Two young plantations (23 years) of Araucaria cunninghamii and Pinus caribaea were also examined. The close proximity of the older plantations and natural forests meant they had similar edaphic and climatic conditions. All plantations had been established as monocultures, but had been colonised by a range of native woody plants from the nearby rainforest. The extent to which this had occurred varied with the identity of the plantation species (from 2 to 17 species in 0.1 ha blocks). In many cases these additional species had grown up and joined the forest canopy. This study is one of the few to find a negative relationship between overstorey plant diversity and productivity. The conversion of natural forest with highly productive, low-diversity gymnosperm-dominated plantations (young and old Araucaria cunninghamii and Pinus caribaea) was found to be associated with lower soil nutrient availability (approximately five times less phosphorus and 2.5 times less nitrogen) and lower soil pH (mean = 6.28) compared to the other, less productive plantations. The dominant effects of two species, Araucaria cunninghamii and Hodgkinsonia frutescens, indicate that ecosystem functions such as production and nutrient availability are not determined solely by the number of species, but are more likely to be determined by the characteristics of the species present. This suggests that monoculture plantations can be used to successfully restore some functions (e.g. nutrient cycling and production), but that the level to which such functions can be restored will depend upon the species chosen and site conditions. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
The pulmonate land snail, Rumina decollata, is a highly invasive gastropod adapted to arid conditions, and native from the Mediterranean area. It was recorded for the first time in Argentina in 1988, in the northeastern Pampas of the Buenos Aires Province, a region characterized by a humid mesothermal climate with no water deficit. In the present contribution, we report the finding of populations of this species in the semiarid region of La Pampa and Mendoza provinces in central-western Argentina. The present findings extend the invasive distributional range of R. decollata westwards through more than 1000 km from the site where it was detected in 1988. Although no damages to agricultural areas have been reported to the moment in Argentina, the presence of R. decollata in semiarid areas warns us about its potential as an important plague in the future.  相似文献   

12.
The platypus, Ornithorhynchus anatinus is a unique, iconic mammal endemic to Australia. Despite being listed as ‘common’ throughout its range, platypus abundance is poorly understood. Dependence on aquatic habitats in Australia renders this species potentially vulnerable to a variety of processes including drought, climate change and habitat loss. To assist with understanding population processes, 180 individuals from Tasmania and Victoria were characterised across thirteen microsatellite loci. Large genetic differences were evident between Tasmanian and Victorian O. anatinus. Within Tasmania, high levels of allelic diversity were detected with genetic differentiation identified among some populations. Similarly, allelic diversity was high within Victorian platypuses, along with significant genetic differentiation among populations. The large genetic differences found between Tasmanian and mainland platypuses indicate long-term isolation and it is likely that the lack of past/present catchment connectedness contributes to differentiation found between populations within these regions. Understanding patterns of genetic differentiation within and between catchments will help guide future conservation management decisions for platypus.  相似文献   

13.
Nothofagus cunninghamii is a long-lived, wind-pollinated tree species that dominates the cool temperate rainforests of southeastern Australia. The species'' distribution is more or less continuous in western Tasmania but is fragmented elsewhere. However, it is unknown whether this fragmentation has affected the species'' genetic architecture. Thus, we examined N. cunninghamii using 12 nuclear microsatellites and 633 individuals from 18 populations spanning the species'' natural range. Typical of wind-pollinated trees, there was low range-wide genetic structure (FST=0.04) consistent with significant gene flow across most of the species'' range. However, gene flow was not high enough to overcome the effects of drift across some disjunctions. Victorian populations (separated from Tasmania by the 240 km wide Bass Strait) formed a genetic group distinct from Tasmanian populations, had lower diversity (mean allelic richness (Ar)=5.4 in Victoria versus 6.9 in Tasmania) and were significantly more differentiated from one another than those in Tasmania (FST=0.045 in Victoria versus 0.012 in Tasmania). Evidence for bottlenecking was found in small populations that were at least 20 km from other populations. Interestingly, we found little divergence in microsatellite markers between the extremes of genetically based morphological and physiological altitudinal clines suggesting adaptive differentiation is strongly driven by selection because it is likely to be occurring in the presence of gene flow. Even though the cool temperate rainforests of Australia are highly relictual, the species is relatively robust to population fragmentation due to high levels of genetic diversity and gene flow, especially in Tasmania.  相似文献   

14.

The Chelonian lineage has been exposed to several climate change events along its evolutionary history, but the rapid contemporary change in climate patterns has the potential to erode turtle populations. This study focuses on (1) evaluating the climatically suitable area available for 15 species of mud turtles of the genus Kinosternon, and on (2) assessing whether or not these species retain their ancestral climate niche. Occurrence data was collected for these species and, using the Maxent algorithm and WorldClim bioclimatic variables, suitable present and future climatic niche areas were modeled. In addition, we also carried out climatic niche similarity analyses between pairs of species to evaluate whether these conserve their climatic niche. Our models suggest that most species of Kinosternon will lose a high proportion of their suitable habitat in the future. Most mud turtle species seem to conserve their climatic niche, suggesting the prevalence of niche conservatism in the group. Our results indicate that several mud turtle species could be at severe risk of disappearing over the next few decades due to the loss of climatically suitable areas and of the conservation of their climatic niches.

  相似文献   

15.
王灵娟  蒋鹏  徐得甲  王锐  孙权 《西北植物学报》2022,42(12):2133-2142
宁夏枸杞在中国北方广泛分布,重建宁夏枸杞的历史地理分布格局,确定其环境分布限制,为其种质资源保护和植物形成与进化趋势研究提供理论依据。该研究以宁夏枸杞(Lycium barbarum)为代表,采用MaxEnt模型对该物种228例野生有效分布点和19个环境变量进行评估,以明确影响其分布的相关环境因子;并对末次间冰期以来不同时期的地理分布格局进行建模分析,以揭示在气候变暖条件下宁夏枸杞适宜分布区的变化趋势,预测未来(2050s和2070s)在RCP2.6、RCP4.5和RCP6.0三种CO2排放情景下宁夏枸杞的潜在地理分布变化。结果表明:(1)温度对宁夏枸杞的分布至关重要,其中最冷季度平均温度是影响该物种分布最重要的气候因子。(2)所建模型对宁夏枸杞的适宜分布区的模拟结果与当今实际分布一致,但分布区域比实际分布区域大。(3)宁夏枸杞的适宜分布区面积在末次冰盛期进行了收缩,而在末次间冰期分布区面积明显扩大(最大为4.23×106 km2),并呈现出向北推进和向南退缩的趋势。(4)在未来3种气候情景下宁夏枸杞的适宜分布区面积均趋于缩小;随着气候变暖的加剧,宁夏枸杞适宜分布区将向高纬度和高海拔地区迁移,且生境破碎化现象比现在更加严重。(5)在RCP2.6 2070s情景下,宁夏枸杞质心向西迁移108.66 km;在RCP6.0 2070s情景下,宁夏枸杞质心向东北迁移30.23 km。研究认为,宁夏枸杞的分布格局对气候变化具有强烈响应,随着气候变暖,宁夏枸杞的适宜分布区将向高纬度和高海拔地区迁移。  相似文献   

16.
Recent range shifts towards higher latitudes have been reported for many animals and plants in the northern hemisphere, and are commonly attributed to changes in climate. Relatively little is known about such changes in the southern hemisphere, although it has been suggested that latitudinal distributions of the fruit‐bats Pteropus alecto and Pteropus poliocephalus changed during the 20th century in response to climate change in eastern Australia. However, historical changes in these species distributions have not been examined systematically. In this study we obtained historical locality records from a wide range of sources (including banding and museum records, government wildlife databases and unpublished records), and filtered them for reliability and spatial accuracy. The latitudinal distribution of each species was compared between eight time‐periods (1843–1920, 1921–1950, five 10‐year intervals between 1950 and 2000, and 2001–2007), using analyses of both the filtered point data (P. alecto 870 records, P. poliocephalus 2506) and presence/absence data within 50 × 50 km grid cells. The results do not support the hypothesis that either species range is shifting in a manner driven by climate change. First, neither the northern or southern range limits of P. poliocephalus (Mackay, Queensland and Melbourne, Victoria respectively) changed over time. Second, P. alecto's range limit extended southward by 1168 km (approximately 10.5 degrees latitude) during the twentieth century (from approximately Rockhampton, Queensland to Sydney, New South Wales). Within this zone of southward expansion (25–29°S), the percentage of total records that were P. alecto increased from 8% prior to 1950 to 49% in the early 2000s, and local count data showed that its abundance increased from several hundred to more than 10 000 individuals at specific roost sites, as range expansion progressed. Pteropus alecto expanded southward at about 100 km/decade, compared with the 10–26 km/decade rate of isotherm change, and analyses of historical weather data show that the species consequently moved into recently‐colder regions than it had previously occupied. Neither climate change nor habitat change could provide simple explanations to explain P. alecto's observed rapid range shift. More generally, climate change should not be uncritically inferred as a primary driver of species range shifts without careful quantitative analyses.  相似文献   

17.
Satyrium favonius ontario: (W. H. Edwards) (Lepidoptera: Lycaenidae) is considered to be a rare butterfly in the northeastern United States. It receives legal protection in the state of Massachusetts as a Species of Special Concern. We studied the ecology and natural history of a colony of S. f. ontario at Great Blue Hills Reservation in Canton, Massachusetts. In addition, we assembled a database of confirmed S. f. ontario occurrences (n?=?362) and used this along with climate and oak abundance data to build a species distribution model for the northeastern portion of the butterfly’s range in the United States. The model predicts that essentially the entirety of southern New England is suitable for the species, and thus its modeled distribution extends well north of all documented colonies/localities. Just two climate variables, precipitation seasonality and minimum temperature of the coldest month, explained 95% of the model and largely determined relative suitability predictions. We make the case that the hairstreak is a canopy-dwelling insect that sporadically makes ground-level visits, and that its assumed regional rarity is due to detection difficulties rather than demographic rarity. While the butterfly may be imperiled and worthy of legal protection in portions of its range, we question the validity of population estimates and necessity of conservation efforts based on ground-level adult sightings, and recommend larval sampling using burlap bands as a more reliable method to census this butterfly. We also discuss the possibility that other Satyrium and more distantly related hairstreaks (e.g., Callophrys hesseli and Parrhasius m-album) may be additional examples of temperate, canopy-based butterflies.  相似文献   

18.
  • Changes in seed lipid composition during ageing are associated with seed viability loss in many plant species. However, due to their small seed size, this has not been previously explored in orchids. We characterized and compared the seed viability and fatty acid profiles of five orchid species before and after ageing: one tropical epiphytic orchid from Indonesia (Dendrobium strebloceras), and four temperate species from New Zealand, D. cunninghamii (epiphytic), and Gastrodia cunninghamii, Pterostylis banksii and Thelymitra nervosa (terrestrial).
  • Seeds were aged under controlled laboratory conditions (3-month storage at 60% RH and 20 °C). Seed viability was tested before and after ageing using tetrazolium chloride staining. Fatty acid methyl esters from fresh and aged seeds were extracted through trans-esterification, and then analysed using gas chromatography–mass spectrometry.
  • All species had high initial viability (>80%) and experienced significant viability loss after ageing. The saturated, polyunsaturated, monounsaturated and total fatty acid content decreased with ageing in all species, but this reduction was only significant for D. strebloceras, D. cunninghamii and G. cunninghamii.
  • Our results suggest that fatty acid degradation is a typical response to ageing in orchids, albeit with species variation in magnitude, but the link between fatty acid degradation and viability was not elucidated. Pterostylis banksii exemplified this variation; it showed marked viability loss despite not having a significant reduction in its fatty acid content after ageing. More research is required to identify the effect of ageing on fatty acid composition in orchids, and its contribution to seed viability loss.
  相似文献   

19.
  1. Being the largest extant amphibian in the world, the IUCN Critically Endangered Chinese giant salamander Andrias davidianus is a charismatic species with great international public interest. While threats such as commercial overexploitation and habitat degradation have been extensively documented to affect natural populations of A. davidianus, still no information is available about the species sensitivity to climate change.
  2. Here, we develop an ensemble of species distribution models (SDMs) for A. davidianus and projected its habitat suitability under present-day and future climate change scenarios. We based our SDMs on bioclimatic and topographic predictors, and recent (2012–2018) field-collected occurrence data across the whole distribution range of the species.
  3. The ensemble SDMs exhibited good predictive capacity and suggested that slope, maximum temperature of warmest month, precipitation of driest month, and isothermality are the most influential predictors in determining distribution patterns in this species. The projections of our models point to a pronounced impact of climate changes over A. davidianus, with more than two-thirds of its suitable range expected to be lost in all scenarios of future climates tested.
  4. In concert with the numerous other threats that are affecting this species, climate change poses a serious hindrance to the long-term survival of A. davidianus. We emphasise the urgent need of undertaking strict measures to manage this species and safeguard the few remaining available suitable habitats. We suggest that adaptive management strategies including designation of new reserves should be considered to mitigate the impacts of climate change on A. davidianus.
  相似文献   

20.
Understanding and predicting how species will respond to climate change is crucial for biodiversity conservation. Here, we assessed future climate change impacts on the distribution of a rare and endangered plant species, Davidia involucrate in China, using the most recent global circulation models developed in the sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC6). We assessed the potential range shifts in this species by using an ensemble of species distribution models (SDMs). The ensemble SDMs exhibited high predictive ability and suggested that the temperature annual range, annual mean temperature, and precipitation of the driest month are the most influential predictors in shaping distribution patterns of this species. The projections of the ensemble SDMs also suggested that D. involucrate is very vulnerable to future climate change, with at least one‐third of its suitable range expected to be lost in all future climate change scenarios and will shift to the northward of high‐latitude regions. Similarly, at least one‐fifth of the overlap area of the current nature reserve networks and projected suitable habitat is also expected to be lost. These findings suggest that it is of great importance to ensure that adaptive conservation management strategies are in place to mitigate the impacts of climate change on D. involucrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号