首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
TNF-alpha or IL-10 has been implicated to reversibly regulate physiological states of dendritic cells (DCs). However, little is known about dual stimulations of these cytokines on DC properties and the intracellular signaling events that are responsible for the regulation of these states. Here, we show that a family of mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase 2 (ERK2), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p38mapk, are potentially involved in IL-10-mediated selective suppression of TNF-alpha-induced changes of the monocyte-derived DC properties. TNF-alpha induced the cluster formation of the cells and the enhancement of cell surface expression levels of CD83, CD86, and HLA-DR, and T cell stimulatory capacity, whereas the capacities for the endocytosis and the chemotactic migration were suppressed in these cells. Treatment of monocyte-derived DCs with IL-10 resulted in the reduction of the cell surface expression levels of CD86, HLA-DR, and T cell stimulatory capacity, whereas both endocytic and chemotactic migratory capacities were increased by IL-10. Dual stimulations of monocyte-derived DCs with TNF-alpha and IL-10 selectively antagonized their respective effects on these DC properties. TNF-alpha induced tyrosine phosphorylation and enzymatic activation of ERK2, SAPK/JNK, and p38mapk, whereas IL-10 did not induce these events. Dual stimulations of TNF-alpha plus IL-10 abolished TNF-alpha-induced changes of these MAPKs in DCs. These results suggest that the blockage in the MAPKs cascades contributes to IL-10-mediated repression of TNF-alpha-induced changes of DC properties.  相似文献   

3.
We hypothesize that Type II epithelial cells, which line the distal airspaces of the lung, are early responders to invading pathogens and release a signal, which activates and alters the phenotype and phagocytosis properties of alveolar macrophages even at a distance. The T(7) cell line is a conditionally immortalized murine Type II epithelial cell line developed in our laboratory. Using an in vitro transwell model we have previously shown that UV-irradiated Escherichia coli (UVEC)-stimulated T(7) cells cultured in the lower transwell chamber, release a diffusible signal which activates MH-S cells (immortalized murine alveolar macrophages) cultured in the upper transwell chamber, to produce nitric oxide. Using scanning electron microscopy, we show that MH-S cells activated in this manner exhibit increased cell surface ruffling, numerous long filopodia, increased lamellipodia and cell flattening. DynaBead uptake studies show that these morphologic changes are accompanied by increased phagocytosis. These findings indicate that a diffusible signal released at a distance by UVEC-stimulated Type II epithelial cells initiates changes in morphology and phagocytosis reflective of macrophage activation concomitant with the functional activation we previously reported.  相似文献   

4.
5.
Migration of some tumor cells, and their lodgment in target organs, is dependent on the activation of cell surface CD44 receptor, usually detected by its ability to bind hyaluronic acid (HA) or other ligands. In an attempt to reveal the mechanism of tumor cell CD44 activation, we compared the physical and chemical properties of CD44 in nonactivated LB cell lymphoma with those in phorbol 12-myristate 13-acetate (PMA)-activated LB cells and of an LB cell subline (designated HA9) expressing constitutively-active CD44. In contrast to nonactivated LB cells, PMA-activated LB cells and HA9 cells displayed a CD44-dependent ability to bind HA. The ability of activated cell CD44 to bind HA was not dependent on microfilament or microtubule integrity or on changes in CD44 mobility on the membrane plane, indicating that the CD44 activation status is not associated with cytoskeleton function. Aside from the increased expression of CD44 on the surface of PMA-activated LB cells and HA9 cells, qualitative differences between the CD44 of nonactivated and activated LB cells were also detected: the CD44 of the activated lymphoma was (i) larger in molecular size, (ii) displayed a broader CD44 isoform repertoire, including a CD44 variant that binds HA, and (iii) its glycoprotein contained less sialic acid. Indeed, after removal of sialic acid from their cell surface by neuraminidase, LB cells acquired the ability to bind HA. However, a reduced dose of neuraminidase did not confer HA binding on LB cells, unless they were also activated by a low concentration of PMA, which by itself was ineffective. Similarly, under suboptimal conditions, a synergistic effect was obtained with tunicamycin and PMA: each one alone was ineffective but in combination they induced the acquisition of HA binding by the lymphoma cells, while their CD44 expression was not enhanced. Unveiling of the activation mechanism of CD44, by exposing the cells to PMA stimulation or to deglycosylation, is not only academically important, but it also has practical implications, as activated CD44 may be involved in the support of tumor progression.  相似文献   

6.
Migration of some tumor cells, and their lodgment in target organs, is dependent on the activation of cell surface CD44 receptor, usually detected by its ability to bind hyaluronic acid (HA) or other ligands. In an attempt to reveal the mechanism of tumor cell CD44 activation, we compared the physical and chemical properties of CD44 in nonactivated LB cell lymphoma with those in phorbol 12-myristate 13-acetate (PMA)-activated LB cells and of an LB cell subline (designated HA9) expressing constitutively-active CD44. In contrast to nonactivated LB cells, PMA-activated LB cells and HA9 cells displayed a CD44-dependent ability to bind HA. The ability of activated cell CD44 to bind HA was not dependent on microfilament or microtubule integrity or on changes in CD44 mobility on the membrane plane, indicating that the CD44 activation status is not associated with cytoskeleton function. Aside from the increased expression of CD44 on the surface of PMA-activated LB cells and HA9 cells, qualitative differences between the CD44 of nonactivated and activated LB cells were also detected: the CD44 of the activated lymphoma was (i) larger in molecular size, (ii) displayed a broader CD44 isoform repertoire, including a CD44 variant that binds HA, and (iii) its glycoprotein contained less sialic acid. Indeed, after removal of sialic acid from their cell surface by neuraminidase, LB cells acquired the ability to bind HA. However, a reduced dose of neuraminidase did not confer HA binding on LB cells, unless they were also activated by a low concentration of PMA, which by itself was ineffective. Similarly, under suboptimal conditions, a synergistic effect was obtained with tunicamycin and PMA: each one alone was ineffective but in combination they induced the acquisition of HA binding by the lymphoma cells, while their CD44 expression was not enhanced. Unveiling of the activation mechanism of CD44, by exposing the cells to PMA stimulation or to deglycosylation, is not only academically important, but it also has practical implications, as activated CD44 may be involved in the support of tumor progression.  相似文献   

7.
《Cellular immunology》1987,107(2):471-478
We describe the properties of the supernatant from a murine cloned helper T cell (clone 52.3) which is able to polyclonally activate most resting B cells in the absence of any additional stimulus. We hypothesize that an activity which we call BCAF (B-cell-activating factor(s)) exists in our supernatant which can activate resting B cells alone or in conjunction with other lymphokines. In the present report, we investigate changes in the surface antigen pattern induced on resting B cells by BCAF-containing supernatant. Analysis of the cells by flow cytometry shows that transferrin receptor and IL-2 receptor expression increase on a large fraction of B cells after 2 days of activation by the T-helper-cell clone supernatant. Monoclonal anti-transferrin receptor antibody inhibits cell division but does not affect blastogenesis, while IL-2 has no effect in our experimental system. Our present results confirm that BCAF-containing supernatants can act on most resting B cells and replace helper T cells in inducing B-cell activation and proliferation.  相似文献   

8.
Superparamagnetic Iron Oxide (SPIO) complexed with cationic transfection agent is used to label various mammalian cells. Labeled cells can then be utilized as an in vivo magnetic resonance imaging (MRI) probes. However, certain number of in vivo administered labeled cells may be cleared from tissues by the host's macrophages. For successful translation to routine clinical application of SPIO labeling method it is important that this mode of in vivo clearance of iron does not elicit any diverse immunological effects. The purpose of this study was to demonstrate that SPIO agent ferumoxides-protamine sulfate (FePro) incorporation into macrophages does not alter immunological properties of these cells with regard to differentiation, chemotaxis, and ability to respond to the activation stimuli and to modulate T cell response. We used THP-1 cell line as a model for studying macrophage cell type. THP-1 cells were magnetically labeled with FePro, differentiated with 100 nM of phorbol ester, 12-Myristate-13-acetate (TPA) and stimulated with 100 ng/ml of LPS. The results showed 1) FePro labeling had no effect on the changes in morphology and expression of cell surface proteins associated with TPA induced differentiation; 2) FePro labeled cells responded to LPS with slightly higher levels of NFkappaB pathway activation, as shown by immunobloting; TNF-alpha secretion and cell surface expression levels of CD54 and CD83 activation markers, under these conditions, were still comparable to the levels observed in non-labeled cells; 3) FePro labeling exhibited differential, chemokine dependent, effect on THP-1 chemotaxis with a decrease in cell directional migration to MCP-1; 4) FePro labeling did not affect the ability of THP-1 cells to down-regulate T cell expression of CD4 and CD8 and to induce T cell proliferation. Our study demonstrated that intracellular incorporation of FePro complexes does not alter overall immunological properties of THP-1 cells. The described experiments provide the model for studying the effects of in vivo clearance of iron particles via incorporation into the host's macrophages that may follow after in vivo application of any type of magnetically labeled mammalian cells. To better mimic the complex in vivo scenario, this model may be further exploited by introducing additional cellular and biological, immunologically relevant, components.  相似文献   

9.
Ion channels control the electrical properties of neurons and other excitable cell types by selectively allowing ion to flow through the plasma membrane. To regulate neuronal excitability, the biophysical properties of ion channels are modified by signaling proteins and molecules, which often bind to the channels themselves to form a heteromeric channel complex. Traditional assays examining the interaction between channels and regulatory proteins generally provide little information on the time-course of interactions in living cells. We have now used a novel label-free technology to detect changes in the distribution of mass close to the plasma membrane following modulation of potassium channels by G protein-coupled receptors (GPCRs). This technology uses optical sensors embedded in microplates to detect changes in the refractive index at the surface of cells. Although the activation of GPCRs has been studied with this system, protein-protein interactions due to modulation of ion channels have not yet been characterized. Here we present data that the characteristic pattern of mass distribution following GPCR activation is significantly modified by the presence of a sodium-activated potassium channel, Slack-B, a channel that is known to be potently modulated by activation of these receptors.  相似文献   

10.
The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface‐exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty‐eight surface and surface‐associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis‐selective cell surface localization of protocadherin PCDH7, a member of a family with anti‐adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti‐mitotic cancer chemotherapy.  相似文献   

11.
Microviscosity (\?gh) in the surface membrane lipid layer of normal lymphocytes and malignant lymphoma cells, and in liposomes prepared from their lipid extracts, was determined with the aid of the fluorescence polarization properties of 1,6-diphenyl 1,3,5-hextriene embedded in it. The \?gh values, both in intact cells and in the liposomes, are distinctively greater for normal lymphocytes than for the lymphoma cells, whereas the fusion activation energy in both types of cells and liposomes is 8 ± 0.5 kcal/mol. Determination of cholesterol revealed that its relative amount in a lymphoma cell is about half of that of a normal lymphocyte, a difference that may account for the above difference in fluidity. This thesis is supported by the observed changes in \?gh, which follow artificial changes in cholesterol contents in the surface membrane of both cell types. Introduction of exogeneous cholesterol into the cell surface membranes was performed with lecithin-cholesterol (1:1) liposomes, and in lymphoma cells resulted in an increase of \?gh to a level of normal lymphocytes. Extraction of native cholesterol from the cell surface membranes was carried out with lecithin liposomes, and in normal lymphocytes results in a decrease of \?gh to a value similar to that of lymphoma cells. The induced changes in cholesterol contents are practically reversible for both cell types. By virtue of controlling the microviscosity of lipid layers, the level of cholesterol in cell surface membranes may play an important role in determining biological activities of normal and malignant cells.  相似文献   

12.
Partitioning differences between cells in two-polymer aqueous phase systems originate from subtle differences between the surface properties of cells. Because of the exponential relation between the parameters affecting the partition ratio (P) and the P itself, differences in membrane components suspected of effecting the differential partitioning of closely related cell populations cannot be directly established by conventional chemical assay techniques. In order to study the chemical nature of the components responsible for the age-related changes in surface properties of rat red cells we have devised an approach which uses a combination of isotopic labeling of erythrocyte subpopulations of distinct cell age with different enzyme and/or chemical treatments followed by countercurrent distribution in charge-sensitive two-polymer aqueous phase systems. These studies show that: neuraminidase-susceptible sialic acid is not responsible for the cell age-related surface differences detected by partitioning; the component(s) responsible for the cell age-related surface differences can be extracted (from aldehyde-fixed red cells) with ethanol or cleaved with dilute sulfuric acid. Our data are consistent with the hypothesis that ganglioside-linked sialic acid is the chemical moiety responsible for the cell charge-associated surface differences among rat red blood cells of different ages.  相似文献   

13.
Ion channels control the electrical properties of neurons and other excitable cell types by selectively allowing ions to flow through the plasma membrane1. To regulate neuronal excitability, the biophysical properties of ion channels are modified by signaling proteins and molecules, which often bind to the channels themselves to form a heteromeric channel complex2,3. Traditional assays examining the interaction between channels and regulatory proteins require exogenous labels that can potentially alter the protein''s behavior and decrease the physiological relevance of the target, while providing little information on the time course of interactions in living cells. Optical biosensors, such as the X-BODY Biosciences BIND Scanner system, use a novel label-free technology, resonance wavelength grating (RWG) optical biosensors, to detect changes in resonant reflected light near the biosensor. This assay allows the detection of the relative change in mass within the bottom portion of living cells adherent to the biosensor surface resulting from ligand induced changes in cell adhesion and spreading, toxicity, proliferation, and changes in protein-protein interactions near the plasma membrane. RWG optical biosensors have been used to detect changes in mass near the plasma membrane of cells following activation of G protein-coupled receptors (GPCRs), receptor tyrosine kinases, and other cell surface receptors. Ligand-induced changes in ion channel-protein interactions can also be studied using this assay. In this paper, we will describe the experimental procedure used to detect the modulation of Slack-B sodium-activated potassium (KNa) channels by GPCRs.  相似文献   

14.
Centrifugal countercurrent distribution (CCCD) in aqueous two-phase systems has been proven to be a useful method to study subtle surface properties of spermatozoa. The present work shows that a short-term inhibition of the energy metabolism of sperm cells effected by incubating bovine sperm cells with KCN or ouabain, did not account for changes in the cell surface properties, as assessed either by estimation of the cell viability or by CCCD analysis. However, the short-term inhibition of energy metabolism provoked a clear decrease of cell motility, suggesting that a drop of cellular ATP levels brings about a rapid decrease of motility followed by a very delayed effect on cell surface properties. The relevance of these results on the handling of sperm and on the understanding of the molecular events underlying asthenospermia is discussed.  相似文献   

15.
Induction of differentiation in B lymphoma/leukemia cells with interleukins was compared with differentiation induced by phorbol ester (TPA) and pokeweed mitogen (PWM) or by 8-bromo-guanosine. Both cell surface changes and monoclonal immunoglobulin (Ig) secretion were followed as markers of differentiation. The results indicate great similarity in the differentiation patterns induced by interleukin-1 (IL-1), interleukin-2 (IL-2), and interleukin-4 (IL-4), with regard to Ig secretion and changes in surface markers. Induction of Ig secretion and surface marker changes by 8-bromo-guanosine was similar to that induced by TPA and PWM; however, for some markers, cell surface changes induced by TPA and PWM or by 8-bromo-guanosine were quite different from those induced by the three interleukins tested. Whereas all three interleukins stimulated the expression of CD5, PWM and TPA and 8-bromo-guanosine substantially decreased CD5 expression on B lymphoma cells. Differences were also observed in the effect on the expression of surface Ig and on the expression of CD19 and CD20. Interestingly, the three interleukins tested and 8-bromo-guanosine induced differentiation and Ig secretion within 24 to 48 hours with no prior activation by B-cell activators, such as anti-surface Ig antibody. These results suggest that leukemic B cells are arrested at a point distal to activation and first cell division. Moreover, the similarity in Ig secretion and surface changes induced by TPA and PWM or 8-bromo-guanosine suggest a similar pathway; however, this pathway is different from the differentiation signal induced by the three interleukins.  相似文献   

16.
The activation of plasminogen at the cell surface is a crucial step in cell migration and invasion. In the present study, the effect of membrane-bound melanotransferrin (mMTf), also known as human melanoma antigen p97, on cell surface plasminogen binding and activation was investigated by using Chinese Hamster Ovary (CHO) cells transfected with full-length melanotransferrin (MTf) cDNA and SK-MeL-28 melanoma cells. The expression of mMTf in CHO increased cell surface plasminogen binding by about 2-fold. In addition, application of the monoclonal antibody L235 against MTf as well as truncated, soluble MTf (sMTf) abolished plasminogen binding to MTf-transfected and SK-MeL-28 cells, indicating that mMTf is a potential cell surface plasminogen receptor. Moreover, mMTf expression in CHO cells stimulates plasminogen activation at the cell surface by about 2.5-fold. In addition to the induced binding and activation of plasminogen, cell motility, migration and invasion were about 3-fold higher in CHO cells expressing mMTf. Both monoclonal antibody L235 and truncated sMTf inhibited mMTf-stimulated CHO cell motility, migration and invasion. Overall, our results indicate a key role for mMTf in cell surface plasminogen binding and in activation processes involved during cell migration and invasion.  相似文献   

17.
Two major pathways, the T cell receptor and the T11 alternate pathway, allow for T cell activation. In the human thymus, the T cell antigen receptor complex is reduced or absent on immature thymocytes, whereas the T11 glycoprotein is present at high cell surface density on all thymocytes. To determine whether activation through the T11 pathway induces similar or different changes in mature and immature thymocytes, we fractionated thymocytes according to their surface expression of the T3-T cell receptor (T3/Ti) complex. We report that two populations, one with high and one with low T3/Ti expression, can be activated through the T11 pathway to undergo nuclear activation and express IL 2 receptors. Moreover, in the absence of accessory cells, only the most mature population, expressing high T3 density, could be induced to proliferate, whereas the subset representing immature cortical thymocytes required accessory cells for proliferation. These findings suggest that the cellular microenvironment may have a critical role in regulating the activation of immature cortical thymocytes and that this cell population may not represent "nonfunctional" dead end cells, but rather a valid intermediate in human thymic differentiation.  相似文献   

18.
ArtinM is a D-mannose-binding lectin extracted from Artocarpus heterophyllus that promotes interleukin-12 production by macrophages and dendritic cells. This property is considered responsible for T helper 1 immunity induced in vivo after ArtinM administration. In this study, we investigated the effect of native (jArtinM) and recombinant (rArtinM) forms of lectin on murine spleen cells and isolated T lymphocytes. We found that ArtinM binds to the surface of spleen cells. This interaction, which was blocked by D-mannose, induced cell activation, as manifested by increased mitochondrial activity, interleukin-2 production, and cell proliferation. We verified that a 30-times higher concentration of rArtinM was required to trigger optimal activation of spleen cells compared with that needed with jArtinM, although these proteins have identical sugar recognition properties and use the same signaling molecules to trigger cell activation. Because the distinction between native and recombinant is restricted to their tertiary structure (tetrameric and monomeric, respectively), we postulated that the multi-valence of jArtinM accounts for its superiority in promoting clustering of cell surface glycoreceptors and activation. The jArtinM and rArtinM activation effect exerted on spleen cells was reproduced on purified CD4+ T cells. Our results suggest that ArtinM interaction with T cells leads to responses that may act in concert with the interleukin-12 produced by antigen-presenting cells to modulate immunity toward the T helper 1 axis. Further studies are necessary to dissect ArtinM/T-cell interactions to more fully understand the immunomodulation induced by carbohydrate recognition.  相似文献   

19.
Phosphosugars, such as mannose-6-phosphate (M6P), have been shown previously to display anti-inflammatory properties, notably inhibition of experimental autoimmune encephalomyelitis (EAE) and adjuvant-induced arthritis in rats. It has been proposed that M6P exerts its anti-inflammatory effect by displacing lysosomal enzymes, which are involved in T-cell extravasation into inflammatory sites, from the 300 kDa mannose-6- phosphate receptor (MPR-300) on the surface of T cells. If this model is correct MPR-300 should be selectively expressed on the surface of activated T cells, as T cell entry into the central nervous system in EAE depends on the T cells being in an activated state. Thus, the present study examines whether cell surface expression of MPR-300 by T lymphocytes correlates with their state of activation and whether T cells in inflammatory sites express the receptor. Flow cytometric studies showed MPR-300 to be absent from the surface of unstimulated rat T cells isolated from peripheral blood and lymphoid tissues, and T cells resident within the peritoneal cavity. In contrast, MPR-300 was expressed on activated T cells derived from an inflammatory peritoneal exudate. In vitro studies demonstrated transient expression of MPR-300 on the surface of splenic T cells following stimulation with Con A. MPR-300 was also induced on T-cell lines by antigen stimulation. These data demonstrate that T cells in inflammatory sites express MPR-300 on their surface and activation of T lymphocytes induces cell surface expression of MPR-300. Such findings are consistent with the hypothesis that cell surface MPR-300 is required for the entry of T cells into inflammatory sites.  相似文献   

20.
The modulation of membrane Ia on human B lymphocytes   总被引:2,自引:0,他引:2  
Using flow cytometry techniques, changes in surface Ia (DR and DS) expression on human B lymphocytes were correlated with changes in the cell cycle following stimulation with anti-mu. The effect of interleukin (IL)-1, IL-2, B-cell growth factor (BCGF), and interferons on Ia expression on resting B cells was also examined. A population of resting B lymphocytes was cultured in vitro with 100 micrograms/ml of anti-mu and immunofluorescently stained for DR and DS at various times following stimulation. Detectable increases in DR and DS expression were found within 8 hr, and the major increases (twofold and fourfold) in DR and DS expression occurred over the next 48 hr. Using cell cycle inhibitors and propidium iodide staining, it was demonstrated that the enhanced DR and DS expression following anti-mu stimulation began during G0 to G1 transition and increased as the cells progressed through G1 phase. During S and G2/M phases, there were minimal further increases in surface Ia. Although prolonged exposure of B cells to anti-mu was required for cellular activation, cell size enlargement, and progression into S phase, a brief exposure to anti-mu, insufficient for cellular activation, markedly enhanced Ia expression. Thus anti-mu-stimulated resting human B lymphocytes rapidly increase their surface Ia expression. This increase occurs predominantly prior to entrance into S phase and can occur in the absence of significant cellular activation. Interferons have been reported to modulate surface Ia expression on a human lymphoid cell line and on monocytes and supernatants with BCGF activity to enhance surface Ia expression on murine B cells; however, neither alpha-interferon, gamma-interferon, IL-1, IL-2, nor BCGF modified surface DR expression on normal resting human B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号