首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some aspects on the action of vegetable and animal oils and fatty acids on growth and protease synthesis of T. vulgaris were studied to interpret the stimulating effect of these substance. It was found that oil does not influence the hydrolysis of the substrate casein by the protease. However, the effect on the gas exchange during fermentation has a substantial importance. Furthermore, the metabolization of lipids shows that they play a role as carbon source.  相似文献   

2.
The effect of different quantities and kinds of vegetable and animal oils and the importance of the time of the oil addition on growth and protease synthesis by T. vulgaris was investigated. The used oils stimulate the protease production if they are added in a suitable concentration. However, the stimulation effect of each oil is different. Culture inoculation with spores gives the best results, when oil was added to the medium 1 up to 2 hours after beginning of the fermentation. The enzyme activity is equal to or lower than the control, when the oil addition was carried out before or 3 hours after starting the fermentation.  相似文献   

3.
Hydroxy fatty acids (HFA) have gained importance because of their special properties such as higher viscosity and reactivity compared with other non-hydroxy fatty acids. The bacterial isolate Pseudomonas aeruginosa (PR3) was reported to produce mono-, di-, and trihydroxy fatty acids from different unsaturated fatty acids. Of those, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) was produced with high yield from oleic acid by PR3. Up to now, the substrates used for microbial HFA production were free fatty acids. However, it is possible to utilize triacylglycerides, specifically triolein containing three oleic groups, as a substrate by microbial enzyme system involved in HFA production from oleic acid. In this study we used triolein as a substrate and firstly report that triolein could be efficiently utilized by PR3 to produce DOD. Triolein was first hydrolyzed into oleic acid by the triolein-induced lipase and then the released oleic acid was converted to DOD by PR3. Results from this study demonstrated that natural vegetable oils, without being intentionally hydrolyzed, could be used as efficient substrates for the microbial production of value-added hydroxy fatty acids.  相似文献   

4.
The enhancing effect of various concentrations of 18 oils and a silicon antifoam agent on erythromycin production by Saccharopolyspora erythraea was evaluated in a complex medium containing soybean flour and dextrin as the main substrates. The oils used consisted of sunflower, pistachio, cottonseed, melon seed, water melon seed, lard, corn, olive, soybean, hazelnut, rapeseed, sesame, shark, safflower, coconut, walnut, black cherry kernel and grape seed oils. The biomass, erythromycin, dextrin and oil concentrations and the pH value were measured. Also, the kinds and frequencies of fatty acids in the oils were determined. The productivity of erythromycin in the oil-containing media was higher than that of the control medium. However, oil was not suitable as a main carbon source for erythromycin production by S. erythraea. The highest titer of erythromycin was produced in medium containing 55 g/l black cherry kernel oil (4.5 g/l). The titers of erythromycin in the other media were also recorded, with this result: black cherry kernel > water melon seed > melon seed > walnut > rapeseed > soybean > (corn = sesame) > (olive = pistachio = lard = sunflower) > (hazelnut = cotton seed) > grape seed > (shark = safflower = coconut). In media containing various oils, the hyphae of S. erythraea were longer and remained in a vegetative form after 8 days, while in the control medium, spores were formed and hyphae were lysed.  相似文献   

5.
Sophorolipids production by the yeast Candia bombicola is most favourable when glucose is used as a carbon source in combination with a hydrophobic carbon source such as a common vegetable oil. Most vegetable oils are comprised of C16–C18 fatty acids, an ideal range for sophorolipid production. The use of oils with either shorter or longer fatty acids, such has coconut oil or meadowfoam oil, respectively, was evaluated. Such oils did not contribute to enhanced sophorolipid production when compared to cultures run on glucose as the sole carbon source. Moreover, a toxic effect of medium-chain fatty acids towards stationary C. bombicola cells was demonstrated.  相似文献   

6.
Seed oils enriched in omega‐7 monounsaturated fatty acids, including palmitoleic acid (16:1?9) and cis‐vaccenic acid (18:1?11), have nutraceutical and industrial value for polyethylene production and biofuels. Existing oilseed crops accumulate only small amounts (<2%) of these novel fatty acids in their seed oils. We demonstrate a strategy for enhanced production of omega‐7 monounsaturated fatty acids in camelina (Camelina sativa) and soybean (Glycine max) that is dependent on redirection of metabolic flux from the typical ?9 desaturation of stearoyl (18:0)‐acyl carrier protein (ACP) to ?9 desaturation of palmitoyl (16:0)‐acyl carrier protein (ACP) and coenzyme A (CoA). This was achieved by seed‐specific co‐expression of a mutant ?9‐acyl‐ACP and an acyl‐CoA desaturase with high specificity for 16:0‐ACP and CoA substrates, respectively. This strategy was most effective in camelina where seed oils with ~17% omega‐7 monounsaturated fatty acids were obtained. Further increases in omega‐7 fatty acid accumulation to 60–65% of the total fatty acids in camelina seeds were achieved by inclusion of seed‐specific suppression of 3‐keto‐acyl‐ACP synthase II and the FatB 16:0‐ACP thioesterase genes to increase substrate pool sizes of 16:0‐ACP for the ?9‐acyl‐ACP desaturase and by blocking C18 fatty acid elongation. Seeds from these lines also had total saturated fatty acids reduced to ~5% of the seed oil versus ~12% in seeds of nontransformed plants. Consistent with accumulation of triacylglycerol species with shorter fatty acid chain lengths and increased monounsaturation, seed oils from engineered lines had marked shifts in thermotropic properties that may be of value for biofuel applications.  相似文献   

7.
Omega‐3 (also called n‐3) long‐chain polyunsaturated fatty acids (≥C20; LC‐PUFAs) are of considerable interest, based on clear evidence of dietary health benefits and the concurrent decline of global sources (fish oils). Generating alternative transgenic plant sources of omega‐3 LC‐PUFAs, i.e. eicosapentaenoic acid (20:5 n‐3, EPA) and docosahexaenoic acid (22:6 n‐3, DHA) has previously proved problematic. Here we describe a set of heterologous genes capable of efficiently directing synthesis of these fatty acids in the seed oil of the crop Camelina sativa, while simultaneously avoiding accumulation of undesirable intermediate fatty acids. We describe two iterations: RRes_EPA in which seeds contain EPA levels of up to 31% (mean 24%), and RRes_DHA, in which seeds accumulate up to 12% EPA and 14% DHA (mean 11% EPA and 8% DHA). These omega‐3 LC‐PUFA levels are equivalent to those in fish oils, and represent a sustainable, terrestrial source of these fatty acids. We also describe the distribution of these non‐native fatty acids within C. sativa seed lipids, and consider these data in the context of our current understanding of acyl exchange during seed oil synthesis.  相似文献   

8.
Foam control in biopesticide production from sewage sludge   总被引:1,自引:0,他引:1  
Several antifoam agents were evaluated for the ability to control foam in the production of Bacillus thuringiensis-based biopesticides using sewage sludge as a raw material. Experiments were conducted in shake flasks as well as in 15 l fermentors with controlled parameters. Polypropylene glycol (PPG), the most commonly used antifoam agent in B. thuringiensis fermentation, inhibited cell growth, sporulation and decreased the entomotoxicity yield even at a concentration of 0.1% (v/v) in sewage sludge medium. About 40% reduction in entomotoxicity was observed when PPG was used at 0.3% (v/v). The impact of PPG on sporulation and toxin synthesis in tryptic soy yeast broth (TSYB) medium was also studied. The inhibitory effects were less severe in TSYB than in sludge medium. Another silicone-based antifoam agent, “Antifoam A”, showed less severe effect on growth and stendotoxin production. The problem of the inhibitory effect of chemical antifoam agents on growth and endotoxin production was minimised substantially with the use of vegetable oils such as canola, olive, and peanut oils. Canola and peanut oil stimulated both sporulation and δ-endotoxin synthesis. The stimulus effect varies with the monounsaturated fat contents of oils. Journal of Industrial Microbiology & Biotechnology (2000) 25, 86–92. Received 09 February 2000/ Accepted in revised form 06 June 2000  相似文献   

9.
Baobab seed oil contains specific fatty acids. Most of the studies on baobab fatty acids have been carried out singly and in isolation from each other, making it difficult to compare results through different species. The objective of the present study is to establish the seed fatty acid composition of each Adansonia species in order to evaluate and understand the relationships between the oil chemical compositions, the baobabs’ taxonomy and, the ecological and geographical origin of each seed lot. The seed oils have been analysed using gas chromatography (GC). The oils of all baobab species contain three major fatty acids: palmitic, oleic and linoleic acids. They also contain specific fatty acids such as cyclopropenic and cyclopropanic acids, which are characteristic of the Malvaceae family seed oils. It was possible to distinguish three sections through principal components analysis using the eleven fatty acids identified by GC. The Adansonia section contains high rates of oleic acid (± 35%), the Brevitubae section is rich in palmitic acid (± 42%) and the Longitubae section contains high levels of dihydrosterulic acid (± 5%). The oil fatty acid composition, however, does not enable a definitive characterization of profiles according to species. The fatty acid composition is not significantly influenced by the geographical, soil and climate conditions of the collection sites.  相似文献   

10.
Juvenile tench (initial weight of about 57 g) were fed feed supplemented with fish oil (group FO), linseed oil (group LO), peanut oil (group PO), or rapeseed oil (group RO) containing 47% protein and 12% fat for 55 days. The inclusion of the tested oils was 50 g kg−1 (42% total crude lipids in diets). No significant differences were noted in the fish growth performance. The proximate composition of the whole fish bodies and the viscera (water, protein, fat, ash) was similar in all the dietary treatments (P > 0.05). Differences were noted only with regard to the ash content of the fillets (P < 0.05). The analysis of the fatty acids profiles of tench (whole fish) indicated there were significant differences in the total content of monoenoic and polyenoic (PUFA) acids. Significant differences were also noted with regard to n-3 PUFA and n-6 PUFA. Consequently, the ratio of n-3/n-6 acids ranged from 1.6 (group PO) to 2.08 (group LO; P < 0.05). The feed applied was not confirmed to have had an impact on the fatty acids profile of the tench fillets. There was a statistically significant intergroup difference in the content of saturated fatty acids (SFA) in tench viscera. In the fish fed vegetable oils supplemented diets, the level of SFA was lower (P < 0.05).  相似文献   

11.
This study was carried out to identify unknown allelochemicals released from Myriophyllum spicatum and to investigate their anti-cyanobacterial effects. A series of analyses of culture solutions and methanol extracts of M. spicatum using gas chromatograph equipped with a mass selective detector revealed that M. spicatum released fatty acids, specifically, nonanoic, tetradecanoic, hexadecanoic, octadecanoic, and octadecenoic acids. Nonanoic, cis-6-octadecenoic, and cis-9-octadecenoic acids significantly inhibited growth of Microcystis aeruginosa, whereas tetradecanoic, hexadecanoic, and octadecanoic acids did not show any effect. When the inhibitory effect of nonanoic acid was compared with those of 4 polyphenols and eugeniin, which are anti-cyanobacterial compounds previously reported to be released by M. spicatum, nonanoic acid was found to be the most inhibitory to M. aeruginosa. These results indicate that not only polyphenols and eugeniin but also fatty acids such as nonanoic acid must be studied to reveal how M. spicatum exerts its allelopathic effect on M. aeruginosa.  相似文献   

12.
An actinomycete producing oil‐like mixtures was isolated and characterized. The strain was isolated from sheep faeces and identified as Streptomyces sp. S161 based on 16S rRNA gene sequence analysis. The strain showed cellulase and xylanase activities. The 1H nuclear magnetic resonance (NMR) spectra of the mixtures showed that the mixtures were composed of fatty acid methyl esters (52·5), triglycerides (13·7) and monoglycerides (9·1) (mol.%). Based on the gas chromatography–mass spectrometry (GC‐MS) analysis, the fatty acid methyl esters were mainly composed of C14‐C16 long‐chain fatty acids. The results indicated that Streptomyces sp. S161 could produce fatty acid methyl esters (FAME) directly from starch. To our knowledge, this is the first isolated strain that can produce biodiesel (FAME) directly from starch.

Significance and Impact of the Study

Nowadays, production of biodiesel is based on plant oils, animal fats, algal oils and microbial oils. Lipid mostly consists of triacylglycerols (TAG), and conversion of these lipids into fatty acid short‐chain alcohol esters (methanol or ethanol) is the final step in biodiesel production. In this study, an oil‐producing Streptomyces strain was isolated from sheep faeces. The oil was composed of C14‐C16 long‐chain fatty acid methyl esters, triglycerides and monoglycerides. This is the first isolated strain‐producing biodiesel (FAME) directly from starch. Due to showing cellulase and xylanase activities, the strain would be helpful for converting renewable lignocellulose into biodiesel directly.  相似文献   

13.
Candida bombicola can synthesize monohydroxy fatty acid as a moiety of sophorose lipids. The hydroxy fatty acids contained in a major lactone were identified by GC-MS, after culturing with natural oils such as coconut, rapeseed, olive, and soybean oils. Hydroxy fatty acids of C18 and C16 were always synthesized, but differences were observed among the oils regarding the positions of hydroxyl groups, unsaturation, and composition of the fatty acids. A new C17 hydroxy acid was found without addition of oil.  相似文献   

14.
Oil plants in Middle Europe Renewable resources have an increasing impact on industry and technology. Oil plants supply vegetable oil, which is important for our nutrition but can also be used as an industrial resource. Plant oils have many non‐food uses. They are not only used as Biofuels, but can also be found in many technical products including industrial lubricants, hydraulic oils, washing agents, paints and varnishes, and much else. In Europe rapeseed, sunflower, and olive are the primary oil plants. Rapeseed oil is newly recommended for infant nutrition, as it contains a high concentration of α‐linolenic acid, which is an important building block in brain development.  相似文献   

15.
In the food industry, quince seeds are discarded as waste in the production process. Their use therefore creates added value and opens up the possibility of using no‐waste processing technologies. Three types of waste were investigated: after juicing, after the manufacture of puree and syrup. The results showed that the yield of quince seeds (Chaenomeles japonica (Thunb .) Lindl . ex Spach from waste left after different production methods varies from 29.8 to 38.3 %. The cold pressed oil yield ranges from 4.9±0.03 to 7.1±0.06 %. The oil yield obtained by Soxhlet extraction varies from 14.6±0.64 to 17.3±0.9 %. Unsaturated fatty acid, especially polyunsaturated fatty acid is predominant in quince seed oil. The linoleic acid content of the quince seed oils was between 47.12 % and 58.49 % of the total fatty acids. The fatty acid composition of oils from post‐industrial waste is more appropriate in the skin care industry than in the food industry because of the high ratio of omega‐6/omega‐3 and high linoleic acid content.  相似文献   

16.
Introduction – Aconitum szechenyianum Gay. is a traditional Chinese medicinal herb with the detumescent and styptic effects and antitumor activity. There have been only a few researches on its chemical components, but no detailed report has appeared on its fatty acids. Objective – To develop a simple and effective method for the extraction of fatty acids from A. zechenyianum Gay. and then to investigate the fatty acid components. Methodology – Microwave‐assisted extraction (MAE) was optimized with response surface methodology, and the fatty acid compositions of extract were determined by GC–MS with previous derivatisation to fatty acid methyl esters (FAMEs). The results were compared with that obtained by classical Soxhlet extraction (SE). Results – Compared with SE, MAE showed significantly higher fatty acid yields, shorter extraction time, and lower energy and solvent consumption. The major fatty acids in A. szechenyianum Gay. are linoleic acid, palmitic acid, linolenic acid, oleic acid and stearic acid, and the unsaturated fatty acids occupy 66.4% of the total fatty acids. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Medium‐chain fatty acids (MCFA, C6‐14 fatty acids) are an ideal feedstock for biodiesel and broader oleochemicals. In recent decades, several studies have used transgenic engineering to produce MCFA in seeds oils, although these modifications result in unbalance membrane lipid profiles that impair oil yields and agronomic performance. Given the ability to engineer nonseed organs to produce oils, we have previously demonstrated that MCFA profiles can be produced in leaves, but this also results in unbalanced membrane lipid profiles and undesirable chlorosis and cell death. Here we demonstrate that the introduction of a diacylglycerol acyltransferase from oil palm, EgDGAT1, was necessary to channel nascent MCFA directly into leaf oils and therefore bypassing MCFA residing in membrane lipids. This pathway resulted in increased flux towards MCFA rich leaf oils, reduced MCFA in leaf membrane lipids and, crucially, the alleviation of chlorosis. Deep sequencing of African oil palm (Elaeis guineensis) and coconut palm (Cocos nucifera) generated candidate genes of interest, which were then tested for their ability to improve oil accumulation. Thioesterases were explored for the production of lauric acid (C12:0) and myristic (C14:0). The thioesterases from Umbellularia californica and Cinnamomum camphora produced a total of 52% C12:0 and 40% C14:0, respectively, in transient leaf assays. This study demonstrated that the introduction of a complete acyl‐CoA‐dependent pathway for the synthesis of MFCA‐rich oils avoided disturbing membrane homoeostasis and cell death phenotypes. This study outlines a transgenic strategy for the engineering of biomass crops with high levels of MCFA rich leaf oils.  相似文献   

18.
Plant oilseeds are a major source of nutritional oils. Their fatty acid composition, especially the proportion of saturated and unsaturated fatty acids, has important effects on human health. Because intake of saturated fats is correlated with the incidence of cardiovascular disease and diabetes, a goal of metabolic engineering is to develop oils low in saturated fatty acids. Palmitic acid (16:0) is the most abundant saturated fatty acid in the seeds of many oilseed crops and in Arabidopsis thaliana. We expressed FAT–5, a membrane‐bound desaturase cloned from Caenorhabditis elegans, in Arabidopsis using a strong seed‐specific promoter. The FAT‐5 enzyme is highly specific to 16:0 as substrate, converting it to 16:1?9; expression of fat‐5 reduced the 16:0 content of the seed by two‐thirds. Decreased 16:0 and elevated 16:1 levels were evident both in the storage and membrane lipids of seeds. Regiochemical analysis of phosphatidylcholine showed that 16:1 was distributed at both positions on the glycerolipid backbone, unlike 16:0, which is predominately found at the sn‐1 position. Seeds from a plant line homozygous for FAT–5 expression were comparable to wild type with respect to seed set and germination, while oil content and weight were somewhat reduced. These experiments demonstrate that targeted heterologous expression of a desaturase in oilseeds can reduce the level of saturated fatty acids in the oil, significantly improving its nutritional value.  相似文献   

19.
20.
The current study investigated the effect of developmental stages on the chemical composition and the antioxidant activity of fifteen crude oil samples obtained from Pistacia atlantica Desf. leaves, galls, and fruits. Twelve fatty acids were detected by GC/FID, linolenic acid (C18 : 3) was the major fatty acid detected in leaves crude oils that registered [41.73 % (P<0.05)] on the last stage. The best content of tocopherols and carotenoids was recorded at the last stage for leaves and galls oils, respectively, with values of [1.530±0.01, 0.52±0.01 (P<0.05) mg α‐tocopherol equivalent/g DW] and [86.60±0.95, 69.15±0.13 (P<0.05) μg β‐carotene equivalent/g DW]. For fruits oils, the content varied depending on the levels of fruits maturation. The results from DPPH, FRAP, and ABTS assays revealed that the antioxidant activity increased with the increasing content of tocopherols and carotenoids in leaves and galls oils during development stages, and varied for fruits oils depending on the ripening stages. Moreover, according to PCA analysis, the best phytoconstituent content and antioxidant activity were attributed to P. atlantica Desf. fruit's crude oils. Also, a strong relationship was found between the antioxidant activity and bioactive phytochemical components, such as tocopherols, carotenoids, and omega‐three fatty acid, which confirmed that P. atlantica Desf. crude oils present a valuable source of natural antioxidant that could be used for pharmaceutical and food industries purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号