首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Buffering an Acidic Stream in New Hampshire with a Silicate Mineral   总被引:3,自引:0,他引:3  
Ground and pelletized Wollastonite (Wo; CaSiO3) was added to a 50‐m reach of an anthropogenically acidified stream within the Hubbard Brook Experimental Forest, New Hampshire, to evaluate its buffering and restoration potential. The Wo was highly effective in raising the pH, acid‐neutralizing capacity (ANC), dissolved inorganic carbon (DIC), and Ca2+ concentrations of the stream water, but during the short duration of the experiment had no discernable effect on the stream biota. After initial, spike‐like fluctuations in pH and concentrations of ANC, DIC, and Ca2+, the relatively slow dissolution rates of the Wo dampened extreme concentrations and contributed to relatively long‐lasting (4 months) amelioration of streamwater acidity. Changes in concentrations of Ca2+, dissolved Si, ANC, and DIC were inversely related to streamflow. After several high, stream‐discharge events, concentrations quickly and consistently returned to pre‐event conditions.  相似文献   

2.
Ocean acidification describes changes in the carbonate chemistry of the ocean due to the increased absorption of anthropogenically released CO2. Experiments to elucidate the biological effects of ocean acidification on algae are not straightforward because when pH is altered, the carbon speciation in seawater is altered, which has implications for photosynthesis and, for calcifying algae, calcification. Furthermore, photosynthesis, respiration, and calcification will themselves alter the pH of the seawater medium. In this review, algal physiologists and seawater carbonate chemists combine their knowledge to provide the fundamental information on carbon physiology and seawater carbonate chemistry required to comprehend the complexities of how ocean acidification might affect algae metabolism. A wide range in responses of algae to ocean acidification has been observed, which may be explained by differences in algal physiology, timescales of the responses measured, study duration, and the method employed to alter pH. Two methods have been widely used in a range of experimental systems: CO2 bubbling and HCl/NaOH additions. These methods affect the speciation of carbonate ions in the culture medium differently; we discuss how this could influence the biological responses of algae and suggest a third method based on HCl/NaHCO3 additions. We then discuss eight key points that should be considered prior to setting up experiments, including which method of manipulating pH to choose, monitoring during experiments, techniques for adding acidified seawater, biological side effects, and other environmental factors. Finally, we consider incubation timescales and prior conditioning of algae in terms of regulation, acclimation, and adaptation to ocean acidification.  相似文献   

3.
Ocean acidification (OA), caused by the dissolution of increasing concentrations of atmospheric carbon dioxide (CO2) in seawater, is projected to cause significant changes to marine ecology and biogeochemistry. Potential impacts on the microbially driven cycling of nitrogen are of particular concern. Specifically, under seawater pH levels approximating future OA scenarios, rates of ammonia oxidation (the rate-limiting first step of the nitrification pathway) have been shown to dramatically decrease in seawater, but not in underlying sediments. However, no prior study has considered the interactive effects of microbial ammonia oxidation and macrofaunal bioturbation activity, which can enhance nitrogen transformation rates. Using experimental mesocosms, we investigated the responses to OA of ammonia oxidizing microorganisms inhabiting surface sediments and sediments within burrow walls of the mud shrimp Upogebia deltaura. Seawater was acidified to one of four target pH values (pHT 7.90, 7.70, 7.35 and 6.80) in comparison with a control (pHT 8.10). At pHT 8.10, ammonia oxidation rates in burrow wall sediments were, on average, fivefold greater than in surface sediments. However, at all acidified pH values (pH ≤ 7.90), ammonia oxidation rates in burrow sediments were significantly inhibited (by 79–97%; p < 0.01), whereas rates in surface sediments were unaffected. Both bacterial and archaeal abundances increased significantly as pHT declined; by contrast, relative abundances of bacterial and archaeal ammonia oxidation (amoA) genes did not vary. This research suggests that OA could cause substantial reductions in total benthic ammonia oxidation rates in coastal bioturbated sediments, leading to corresponding changes in coupled nitrogen cycling between the benthic and pelagic realms.  相似文献   

4.
The unknown status of inland fish stocks hinders their sustainable management. Therefore, increasing stock status information is important for sustainable inland fisheries. Fisheries reference points were estimated for five exploited fish species (11 stocks) in the Lake Edward system, East Africa, which is one of the most productive inland water systems. The aim was to ascertain the status of the fisheries and establish reference points for effective management. The reference points were based on four linked stock assessment approaches for data-limited fisheries. Estimates showed poor stock status with the stocks defined as either collapsed, recruitment impaired or overfished. However, higher catches could be obtained under sustainable management. Estimates of maximum sustainable yield (MSY) and supporting biomass (Bmsy) are provided for 10 of the stocks as targets for rebuilding plans. The immediate target of management should be rebuilding biomass to Bmsy. Applicable measures include shifting length at first capture to the length that maximizes catch without endangering size structure and biomass, and livelihood diversification out of fisheries.  相似文献   

5.
Ocean acidification (OA) resulting from uptake of anthropogenic CO2 may negatively affect coral reefs by causing decreased rates of biogenic calcification and increased rates of CaCO3 dissolution and bioerosion. However, in addition to the gradual decrease in seawater pH and Ω a resulting from anthropogenic activities, seawater carbonate chemistry in these coastal ecosystems is also strongly influenced by the benthic metabolism which can either exacerbate or alleviate OA through net community calcification (NCC = calcification – CaCO3 dissolution) and net community organic carbon production (NCP = primary production ? respiration). Therefore, to project OA on coral reefs, it is necessary to understand how different benthic communities modify the reef seawater carbonate chemistry. In this study, we used flow-through mesocosms to investigate the modification of seawater carbonate chemistry by benthic metabolism of five distinct reef communities [carbonate sand, crustose coralline algae (CCA), corals, fleshy algae, and a mixed community] under ambient and acidified conditions during summer and winter. The results showed that different communities had distinct influences on carbonate chemistry related to the relative importance of NCC and NCP. Sand, CCA, and corals exerted relatively small influences on seawater pH and Ω a over diel cycles due to closely balanced NCC and NCP rates, whereas fleshy algae and mixed communities strongly elevated daytime pH and Ω a due to high NCP rates. Interestingly, the influence on seawater pH at night was relatively small and quite similar across communities. NCC and NCP rates were not significantly affected by short-term acidification, but larger diel variability in pH was observed due to decreased seawater buffering capacity. Except for corals, increased net dissolution was observed at night for all communities under OA, partially buffering against nighttime acidification. Thus, algal-dominated areas of coral reefs and increased net CaCO3 dissolution may partially counteract reductions in seawater pH associated with anthropogenic OA at the local scale.  相似文献   

6.
7.
Watershed 1 (W1) at the Hubbard Brook Experimental Forest in New Hampshire, with chronically low pH and acid neutralizing capacity (ANC) in surface water, was experimentally treated with calcium silicate (CaSiO3; wollastonite) in October 1999 to assess the role of calcium (Ca) supply in the structure and function of base-poor forest ecosystems. Wollastonite addition significantly increased the concentrations and fluxes of Ca, dissolved silica (Si), and ANC and decreased the concentrations and fluxes of inorganic monomeric Al (Ali) and hydrogen ion (H+) in both soil solution and stream water in all sub-watersheds of W1. Mass balances indicate that 54% of the added Ca remained undissolved or was retained by vegetation during the first 6 years after treatment. Of the remaining added Ca, 44% was retained on O horizon cation exchange sites. The Ca:Si ratio in the dissolution products was greater than 2.0, more than twice the molar ratio in the applied wollastonite. This suggests that Ca was preferentially leached from the applied wollastonite and/or Si was immobilized by secondary mineral formation. Approximately 2% of the added Ca and 7% of the added Si were exported from W1 in streamwater in the first 6 years after treatment. Watershed-scale Ca amendment with wollastonite appears to be an effective approach to mitigating effects of acidic deposition. Not only does it appear to alleviate acidification stress to forest vegetation, but it also provides for the long-term supply of ANC to acid-impacted rivers and lakes downstream.  相似文献   

8.
To obtain information on plant microtubule stability to low temperature and Ca2+, the regulatory domain of polymerized tubulin from maize (Zea mays ev. Black Mexican Sweet) was dissected by limited proteolysis with subtilisin. Tubulin in taxol-stabilized microtubules was cleaved in a subtilisin concentration- and time-dependent manner. Immunoblotting of microtubules with antibodies having mapped epitopes on α- and β-tubulins revealed that cleavage initially removed ≤15 residues from the β-tubulin carboxyl terminus to produce αβs-microtubules. Subsequent cleavage occurred at an extreme site and an internal site within the α-tubulin carboxyl terminus. Electron microscopy revealed that αβs-microtubules were ultra structurally indistinguishable from uncleaved control αβ-micro-tubules. Quantitative polymer sedimentation showed that low temperature treatment (0°C) caused significant depolymerization of αβ-microtubules, but little depolymerization of αβs-microtubules. Ca2+ enhanced the cold-induced depolymerization of both αβ- and αβs-microtubules. However, αβs-microtubules were significantly more stable to depolymerization by cold and Ca2+ than were αβ-micro-tubules. The results showed that maize microtubules containing shortened β-tubulin carboxyl termini are relatively resistant to the combined depolymerizing effects of cold and Ca2+. Thus, the extreme carboxyl terminus of β-tubulin is a crucial element of the plant tubulin regulatory domain and may be involved in the modulation of microtubule stability during the chilling response in plants.  相似文献   

9.
The aim of this study was to assess the combined effect of substrate acidity (pH 4.8; pH 3.8) and 1 kJm−2d−1 UV-B radiation on photosynthesis and growth of radishes (Raphanus sativus L.). Radishes were sown in a neutral pH 6.5 peat substrate. When the second true leaf unfolded, the growth substrate was acidified using different concentration of H2SO4 and exposed to UV-B radiation for a period of ten days. Gas exchange parameters were measured with the LI-6400 portable photosynthesis system. Content of chlorophyll was evaluated spectrophotometrically. The results showed that the greatest inhibition of net photosynthesis was observed when radishes were grown in an acidified pH 3.8 substrate. The decrease of the photosynthesis of radish plants treated with both investigated factors (substrate acidity and UV-B) were lower compared to the effect of substrate acidity alone. UV-B radiation stimulated both enzymatic reactions of photosynthesis and water use efficiency of radish plants grown in acidified peat substrates. Also, investigated factors had higher impact on biomass of tuber than biomass of foliage.  相似文献   

10.
In The Netherlands, there has been a dramatic decline during the last 30 years in the number of stands belonging to the phytosociological alliance Littorellion. Generally, the communities classified within this alliance occur in poorly buffered, oligotrophic waters, with very low phosphate, nitrogen and carbon dioxide levels in the water layer and considerably higher nutrient levels in the sediment. The plant species dominating these communities are isoetids such as Litoorella uniflora (L.) Aschers., Lobelia dortmanna L. and Isoetes lacustris L., which show various adaptations to make successful growth possible under these conditions.Field observations showed that the water where Littorella uniflora had disappeared or strongly decreased could be divided into two groups. A major group (77%) was characterized by the presence of submerged Juncus bulbosus L. and/or Sphagnum species. These water appeared to be strongly acidified (pH < 4.5) and had increased nitrogen levels with ammonium as the dominant N-source. Within this group, the waters with luxuriant growth of Juncus bulbosus and/or Sphagnum spp. had strongly increased carbon dioxide levels in both sediment and water.Different types of experiments proved causal relationships between the observed changes in macrophytes and the changed physico-chemical parameters. Ecophysiological experiments showed that Juncus bulbosus lacks the typical adaptations of the isoetid plant species, i.e. it uses very low amounts of sediment-CO2 and releases only a little oxygen from the roots. However, Juncus bulbosus is more able than Littorella uniflora to use CO2 from the water layer. From the nutrient-uptake experiments, the decreased nitrate and increased ammonium levels seem to be favourable to Juncus bulbosus. The culture experiments clearly demonstrated that the biomass of Juncus bulbosus only increased strongly when the sediment was poorly buffered and the pH of water was low. When combining factors like CO2 enrichment of the sediment, with and without phosphate, and/or ammonium enrichment of the water in the culture experiments, it is clearly shown that phosphate and/or ammonium enrichment without CO2 enrichment do not lead to an increase in biomass of Juncus bulbosus. Therefore, it is obvious that the changes in the macrophyte community can be ascribed primarily to changes in the carbon budget as a result of acidification.A minor group of waters (23%) was characterized by the absence of submerged Juncus bulbosus and/or Sphagnum spp. In most of these waters, submerged plant species occurred, such as Myriophyllum alterniflorum DC or non-rooted species such as Riccia fluitans L. These waters were not acidified, and generally had an increased alkalinity and higher nitrogen and phosphate levels of sediment and/or water. Culture experiments showed that phosphate enrichment of the sediment alone leads to luxuriant growth of submerged macrophyte species such as Myriophyllum alterniflorum, whereas phosphate enrichment of both sediment and water leads to mass development of non-rooted plant species such as Riccia fluitans.  相似文献   

11.
Community dynamics of epiphytic diatoms were studied for 3 years in a chronically and an episodically acidified tributary of Buck Creek, Adirondacks. Both streams experienced pulses of acidity during hydrologic events but these pulses were more pronounced in the episodically acidified stream, where pH decreased over two units (between 4.53 and 6.62) and the acid‐neutralizing capacity (ANC) became negative. In the chronically acidified stream, pH was below 4.9 and the ANC was negative 94% of the time. In this stream, high inorganic acidity following SO42? enrichment from snowmelt or rainstorms alternated with high organic acidity derived from a headwaters wetland during base flow. The fluctuating water chemistry generated shifts in diatom community composition: from exclusive dominance of Eunotia bilunaris (Ehrenberg) Mills during periods of high inorganic acidity to proliferation of several subdominant species during periods of high organic acidity. In the episodically acidified stream, the pulses of acidity were associated with high NO3? concentrations and the corresponding high ratios of inorganic monomeric Al (Alim) to organic monomeric Al (Alom). Diatom communities there were dominated exclusively by E. exigua (Brébisson) Rabenhorst year round; however, this species peaked during periods of low acidity. Periods of high acidity and Alim:Alom ratios were marked by a decline in E. exigua and a concomitant increase in the subdominant species. Variance partitioning into terms of environmental and temporal variance, and their covariance, suggested that diatom communities in the chronically acidic stream were governed primarily by environmental factors while in the episodically acidic stream environmental and temporal factors had equal contributions.  相似文献   

12.
The following properties of food proteins polymerized by guinea pig liver transglutaminase were investigated: (1) solubility, (2) emulsifying activity and emulsion stability, and (3) unfrozen water content by pulsed NMR. Several food proteins (αsl- and k-caseins, and soybean 7S and 11S globulins) were polymerized by this enzyme. Solubility and emulsifying activity of polymerized αsl-casein were higher than those of the native protein in the range of pH 4~6. Unfrozen water contents of polymerized soybean globulins were much higher than those of the native proteins. These results suggest that transglutaminase treatment may be used for the production of new food protein material with higher hydration ability.  相似文献   

13.
Photosynthetic characteristics of carbon-dioxide limitations were analyzed for leaf tissue in a Cartesian-diver system, in which irradiance could be stringently controlled, and with whole plants in electrode macrosystems for submerged macrophytes (Juncus bulbosus L., Sphagnum auriculatum Schimp. var. inundatum (Russow) M. O. Hill) and other benthic moss and algae (Drepanocladus, Batrachospermum, and an algal mat) from acidified lakes. Light compensation points were extremely low for Juncus (1.5–6 μE m?2 s?1) and Sphagnum (3–10), and higher for shallow-inhabiting Batrachospermum (22–33). Leaf tissue, whole plants, and algal populations were rapidly limited by CO2 availability under closed submersed, acidified conditions (pH 4–6).Controlled and in situ experiments were performed, in which the rooting tissue of Juncus bulbosus was partitioned from the leaves and the rates of photosynthetic carbon fixation of the foliage, utilizing dissolved inorganic 14C-carbon from the water, were analyzed under different conditions of CO2 enhancement in the rhizosphere of the sediments. Results demonstrated that: (a) from 25 to 40% of the carbon fixed in the leaves can originate from the rhizosphere, diffuse to the leaves via internal gas lacunae, and be fixed photosynthetically; (b) photosynthetic utilization of CO2 from the water surrounding the leaves is reduced markedly when the CO2 concentration of the rhizosphere was increased by direct additions of CO2, bacteria, or organic compounds (glucose, acetate) that stimulate bacterial growth. Shifts to predominance of submersed benthic primary producers with low light compensation points and adapted to acidified lakes are related in part to circumvention of carbon limitation in the water by utilization of enhanced CO2 availability in the rhizosphere and at the sediment—water interface from bacterial degradation of organic matter, and in part to physiological mechanisms that conserve and recycle CO2 of respiration and photorespiration.  相似文献   

14.
Exposure of rounded, glass-adherent hemocytes from a Schistosoma mansoni-susceptible (PR albino) and S. mansoni-refractory (10-R2) stock of snails, Biomphalaria glabrata, to fluoresceinlabeled concanavalin A induces a redistribution of surface membrane Con A receptors. Receptor redistribution (patching and capping) on hemocytes from both snail stocks can be characterized as (1) rapid, with maximum cap formation occurring within 15 min of lectin treatment at 22°C, (2) sodium azide sensitive, but only at relatively high inhibitor concentrations (100–200 mm?N3 for capping and 200 mm?N3 for patching inhibition), (3) pronase sensitive (partial), but trypsin resistant, and (4) generally unaffected by exposure of snails to S. mansoni miracidia 60 or 180 min prior to extraction of hemolymph (hemocyte) samples for Con A testing. Although differences in the time course of receptor redistribution are exhibited between PR albino and 10-R2 snail hemocytes, the results of experiments involving sodium azide, proteolytic enzymes, and schistosome exposure strongly suggest that Con A-binding determinants and their associated membrane components on rounded hemocytes are very similar in both susceptible and refractory Biomphalaria stocks. It is concluded that if schistosome recognition in refractory 10-R2 snails is mediated through specific hemocyte membrane components, those components associated with Con A reactivity probably are not directly involved in the recognition process.  相似文献   

15.
China has a large area of inland saline-alkali land, equivalent to 40% of the total cultivated land in the country. The principal features of these lands are high salt content, high pH, and poor soil structure with low water infiltration and poor drainage. These conditions effectively prevent the exploitation of such land for agriculture. In this study, we have compared 17 soil conditioning agents for their abilities to promote seed germination and growth under both laboratory and field conditions. One of these, Hydrolyzed Polymaleic Anhydride (HPMA), was identified as a highly effective agent for soil improvement. Laboratory germination experiments and laboratory and field cultivation of a variety of plants both showed that addition of HPMA could significantly increase the germination percentage and plant growth rate. Distinct from other Ca-carrier agents such as gypsum, HPMA increases the dissolution of CaCO3, which is abundant in the calcareous saline-alkali soils. This allows Ca2+ in soil solution to displace the over-abundant Na+ in the soil colloids. This process greatly improves soil properties such as the bulk density, which decreased, and the capillary soil rise height of water and soil water infiltration rate, which increased. Direct SEM and AFM imagery showed flocculent soil precipitation (soil aggregates) after HPMA addition, and a looser structure of those aggregates. The addition of HPMA also reduced the soil pH and EC. These changes in soil chemical and physical properties are a likely explanation for the soil improvement effected by HPMA. The high content of insoluble CaCO3 in saline-alkali land such as that in northeastern China (up to 13%) favors the further exploration of HPMA as an ameliorative agent.  相似文献   

16.
Tea microshoots excised from well-established multiple shoot cultures grown in vitro and 8-week-old, three- to five-leaved seedlings from a local chinery stock (Banuri-96) and UPASI-9 (from southern India) were selected as scions and root stocks, respectively, for grafting. In addition, 4-month- and 12-month-old seedlings of Banuri-96 were also used as root stocks. Cut ends of root stocks and scions were pretreated with varying concentrations of BAP and NAA for 10 min. A treatment of BAP (5 mg/l) and NAA (5 mg/l) to both scion and stocks in water renewed foliar development at a relatively early stage (40–60 days). The grafted plants were kept in hardening chambers with CO2-enriched air. No significant difference was observed between autograft (scion and root stock of Banuri clone) and heterograft (scion of the Banuri clone and root stock of UPASI-9). Of the three types (in terms of age) of seedling-raised root stocks employed, grafts on young tea (4-month-old) performed the best (88.33%). Grafts made in early summer established relatively faster and at a high rate of success. The percentage survival of plants transferred to the field was 88.33%. Received: 21 May 1998 / Revision received: 17 December 1998 / Accepted: 15 January 1999  相似文献   

17.
The acidophilic diatom Asterionella ralfsii cf. var. americana Körn. was grown in continuous culture to examine the influences of both pH and Al on Si-limited growth and uptake kinetics. In contrast to nutrient-replete cultures of A. ralfsii, lowering pH from approximately 6 to 5 reduced algal cell density, chlorophyll a concentration, and intensity of in vivo fluorescence (IVF) at steady state. The lower pH treatments were also characterized by lower Si cell quotas and higher residual dissolved Si concentrations in chemostats with similar nutrient supply rates. Physiological responses to Al stress differed from those to pH reduction when cultures were Si-limited. Nominal Al additions of 20 μmol·L?1 reduced chlorophyll a concentration and IVF values at higher pH, but all other biomass and chemical parameters remained constant at steady state. The combined efects of Al and reduced pH were more severe than either stress alone, inducing culture washout at pH 4.8. Short-term Si uptake experiments performed at pH 6 showed that Al influenced Michaelis-Menten parameter estimates. Half-saturation (Ks and maximum uptake rate (Vm) constants increased approximately 8- and 2-fold in the presence of Al, respectively, but this difference was only significant for Vm. Similar to previously observed effects of Al on cell morphology in A. ralfsii, Si uptake kinetics were more sensitive to Al additions than to Silimited growth per se.  相似文献   

18.
To solve serious environmental problems caused by the acidification of pond and lake water by acid rain, remediation methods must be used to keep water pH values neutral. In this study, a microbial method to neutralize acidified water was developed. The neutralization activities of 30 strains of bacteria, yeasts and fungi were measured with a medium adjusted to pH 3.0. Because fungi showed high neutralization properties, the Rhizopus delemar fungus was used to study the characteristics of acidified water neutralization. When R. delemar cells were cultured in a media acidified with nitric, sulfuric and hydrochloric acids, the cells neutralized acids by secreting basic compounds including ammonia. The cells also assimilated nitric acid. R. delemar was used to neutralize pond water adjusted to pH 4.0 with nitric acid. R. delemar cells increased the pH value of pond water from 4.0 to around 7.0 within 2 days, although indigenous microorganisms had not been able to neutralize the same pond water. In this study, R. delemar immobilized in a cellulose tube neutralized acidified water repeatedly by the draw-fill method.  相似文献   

19.
Chemical weathering of fluorine-bearing minerals is widely accepted as the main mechanism for the release of fluorine (F) to groundwater. Here, we propose a potential mechanism of F release via microbial dissolution of fluorapatite (Ca5(PO4)3F), which has been neglected previously. Batch culture experiments were conducted at 30°C with a phosphate-solubilizing bacteria strain, Pseudomonas fluorescens P35, and rock phosphates as the sole source of phosphate for microbial growth in parallel with abiotic controls. Rock phosphates consisted of 55–91% of fluorapatite and 5–10% of dolomite before microbial dissolution as indicated by X-ray diffraction (XRD). Mineral composition and morphology changed after microbial dissolution characterized by the disappearance of dolomite and the development of etched cavities on rock phosphate surfaces. The pH of media used was approximately 7.4 at the beginning and increased gradually to 7.7 in abiotic controls; with the inoculum, the pH decreased to acidic values of 3.7–3.8 after 27 h. Phosphate, calcium, and fluoride were released from the rock phosphate to the acidified medium. At 42 h, the concentration of F reached 8.1–10.3 mg L?1. The elevated F concentration was two times higher than the F levels in groundwater in regions diagnosed with fluorosis, and was toxic to the bacteria, as demonstrated by a precipitous decrease in live cells. Geochemical modeling demonstrated that the oxidation of glucose (the carbon source for microbial growth in the medium) to gluconic acid could decrease the pH to 3.7–3.8 and result in the dissolution of fluorapatite and dolomite. Dolomite and fluorapatite remained unsaturated, while concentrations of dissolved phosphorus (P), calcium (Ca), and F increased throughout the time course Fluorite reached saturation [saturation index (SI) 0.22–0.42] after 42 h in rock phosphate–amended biotic systems. However, fluorite was not detected in XRD patterns of the final residue from microcosms. Given that phosphate-solubilizing bacteria are ubiquitous in soil and groundwater ecosystems, they could play an important role in fluorapatite dissolution and the release of F to groundwater.  相似文献   

20.

Aims

Most cereals accumulate Si in their shoots. Soil bioavailability of Si may be a constraint on the beneficial role of silica in cereals but it is not yet well supported by field data. The aim of this study is to evaluate the long-term impact of wheat straw exports on the pool of soil phytoliths, which, it is suggested, represents the most labile and renewable pool of soil Si.

Methods

We measured the amorphous Si (ASi) in soils from several experiments at Rothamsted Research (UK), which provided long-term soil data back to the middle of the 19th century, using two alternative extraction techniques: Na2CO3 (referred to as ASnc) or zinc bromide extraction (referred to as ASizb).

Results

All samples showed a similar range of ASnc and ASizb but low values (0.1–3.4?mg?g?1 DW) compared to published data on natural ecosystems. In the Broadbalk experiment, a decrease over time in ASi in the topsoil samples is in good agreement with the hypothesis that cropping and exports of straw leads to depletion of soil phytoliths. A decrease in Si concentration in straw samples was observed between 1883 and 1944. From 1944 to the present, Si concentration increased irregularly in the straw, probably as the result of liming, which enhanced the dissolution of the remaining phytoliths through increasing pH. In the reforested Geescroft field the higher phytolith concentration in the modern topsoil samples is in good agreement with a re-building of phytolith storage from litter input in an acidic environment.

Conclusions

Our results therefore support the hypothesis that export of wheat straw leads to a decrease in bioavailable Si.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号