首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative importance of prezygotic mechanisms of gametophytic competition and selection are often unclear due to an absence of observations on the gynoecium and pollen tube growth in vivo. We used LM, SEM, and TEM to study the structure of the gynoecium and the path of pollen tube growth in Raphanus raphanistrum, a sporophytically self-incompatible annual. Wild radish has a papillate stigma and a solid style. A septum, which is characteristic of cruciferous gynoecia, is present in the ovary. After germination on the stigma, pollen tubes grow in the secretion of the transmitting tract of the style. The stylar secretion stains positive for acidic polysaccharides and insoluble carbohydrates, and negative for lipids and protein. In the ovary, the transmitting tissue is contained inside the septum. The secretion in the ovary stains positive only for acidic polysaccharides. Pollen tubes travel inside the septum as they enter the ovary and must exit to the surface of this tissue before ovule fertilization can occur. Pollen tube growth on the septum tracks the intercellular junctions of the septum epidermis where the secretion leaks out through a torn cuticle. Tubes must grow across the obturator before reaching the micropyle of an ovule. The temporal pattern with which tubes growing into the ovary exit the septum can contribute to the previously observed nonrandom patterns of fertilization (Hill and Lord, 1986).  相似文献   

2.
Wang XF  Tao YB  Lu YT 《Annals of botany》2002,89(6):791-796
Using fluorescence microscopy, deposition of pollen on stigmas and pollen tube growth in the gynoecium of Sagittaria potamogetifolia Merr., a monoecious species with an apocarpous gynoecium, were observed. The maximum rate of pollination averaged 83.9 +/- 4.7 %, and the number of pollen grains per stigma ranged from zero to 30. Pollen tubes grew through one stigma to the base of the ovary at almost the same speed, but generally only one of the pollen tubes then turned towards the ovule and finally entered the nucellus through the micropyle. The other pollen tubes grew through the ovary base and the receptacle tissue into ovules of adjacent carpels whose stigmas were not pollinated or which had been pollinated later. This phenomenon is termed pollen tube 'reallocation' by the authors. To verify the direct effect of the phenomenon on fruit set, artificial pollination experiments were conducted in which two or more pollen grains were placed onto only one stigma in each gynoecium; frequently more than one fruitlet was obtained from each flower treated. The reallocation of pollen tubes among pistils in the gynoecium could effect fertilization of ovules of unpollinated pistils and lead to an increase in sexual reproduction efficiency. It would, to some extent, also increase pollen tube competition among pistils of the whole gynoecium.  相似文献   

3.
Gametophytic competition among pollen grains has been proposed as an important mechanism of sexual selection in plants. The purpose of this paper is to examine the contribution of pollen source on in vivo pollen tube growth in Chamaecrista fasciculata. We addressed two questions: 1) Is pollen tube growth affected by the genetic relatedness between the pollen source and the pollen recipient? 2) Is there significant phenotypic variation among pollen donors for pollen tube growth? We compared pollen tube growth by measuring the number of pollen tubes which germinated, reached quarter length of style, and reached the ovary resulting from self- and outcross-pollinations. The outcross pollinations included three interplant distance classes: near (within genetic neighborhood, ca. 1 m), far (between far neighborhoods and within subpopulation, ca. 20 m), and distant (between neighborhoods and adjacent subpopulations, ca. 50–100 m). Our results show that pollen tube growth was not affected by genetic relatedness, by differences between self and outcross, nor by differences due to phenotypic variation among pollen donors. In contrast, maternal environment had a strong impact on pollen tube growth. These results suggest a lack of gametophytic competition and indicate little opportunity for sexual selection on pollen tube growth in C. fasciculata.  相似文献   

4.
In order to understand the characters on which sexual selection might operate in plants, it is critical to assess the mechanisms by which pollen competition and mate choice occur. To address this issue we measured a number of postpollination characters, ranging from pollen germination and pollen tube growth to final seed paternity, in wild radish. Crosses were performed using four pollen donors on a total of 16 maternal plants (four each from four families). Maternal plants were grown under two watering treatments to evaluate the effects of maternal tissue on the process of mating. The four pollen donors differed significantly in number of seeds sired and differed overall in the mating characters measured. However, it was difficult to associate particular mechanistic characters with ability to sire seeds, perhaps because of interactions among pollen donors within styles or among pollen donors and maternal plants. The process of pollen tube growth and fertilization differed substantially among maternal watering treatments, with many early events occurring more quickly in stressed plants. Seed paternity, however, was somewhat more even among pollen donors used on stressed maternal plants, suggesting that when maternal tissue is more competent, mating is slowed and is more selective.  相似文献   

5.

Background and Aims

Recent studies of reproductive biology in ancient angiosperm lineages are beginning to shed light on the early evolution of flowering plants, but comparative studies are restricted by fragmented and meagre species representation in these angiosperm clades. In the present study, the progamic phase, from pollination to fertilization, is characterized in Annona cherimola, which is a member of the Annonaceae, the largest extant family among early-divergent angiosperms. Beside interest due to its phylogenetic position, this species is also an ancient crop with a clear niche for expansion in subtropical climates.

Methods

The kinetics of the reproductive process was established following controlled pollinations and sequential fixation. Gynoecium anatomy, pollen tube pathway, embryo sac and early post-fertilization events were characterized histochemically.

Key Results

A plesiomorphic gynoecium with a semi-open carpel shows a continuous secretory papillar surface along the carpel margins, which run from the stigma down to the obturator in the ovary. The pollen grains germinate in the stigma and compete in the stigma-style interface to reach the narrow secretory area that lines the margins of the semi-open stylar canal and is able to host just one to three pollen tubes. The embryo sac has eight nuclei and is well provisioned with large starch grains that are used during early cellular endosperm development.

Conclusions

A plesiomorphic simple gynoecium hosts a simple pollen–pistil interaction, based on a support–control system of pollen tube growth. Support is provided through basipetal secretory activity in the cells that line the pollen tube pathway. Spatial constraints, favouring pollen tube competition, are mediated by a dramatic reduction in the secretory surface available for pollen tube growth at the stigma–style interface. This extramural pollen tube competition contrasts with the intrastylar competition predominant in more recently derived lineages of angiosperms.Key words: Annona cherimola, Annonaceae, embryo sac, endosperm, Magnoliid, ovule, pollen–pistil interaction, pollen tube  相似文献   

6.
Successful fertilization in animals depends on competition among millions of sperm cells, whereas double fertilization in flowering plants usually involves just one pollen tube releasing two immobile sperm cells. It is largely a mystery how the plant sperm cells fuse efficiently with their female targets within an embryo sac. We show that the initial positioning of sperm cells upon discharge from the pollen tube is usually inopportune for gamete fusions and that adjustment of sperm cell targeting occurs through release and re-adhesion of one sperm cell, while the other connected sperm cell remains in stagnation.This enables proper adhesion of each sperm cell to a female gamete and coordinates the gamete fusions. Our findings reveal inner embryo sac dynamics that ensure the reproductive success of flowering plants and suggest a requirement for sperm cell differentiation as the basis of double fertilization.  相似文献   

7.
Reproductive isolation is pivotal to maintain species separation and it can be achieved through a plethora of mechanisms. In addition, the development of barriers to gamete interaction may drive speciation. Such barriers to interspecific gamete interaction can be prezygotic or postzygotic. Considering the great diversity in animal species, it is easy to assume that regulation of the early steps of fertilization is critical to maintain species identity. One prezygotic mechanism that is often mentioned in the literature is that gamete interaction is limited to gametes of the same species. But do gametes of all animals interact in a species‐specific way? Are gamete interactions completely species‐specific or perhaps just species‐restricted? In species in which species‐restrictions have been described, is the interspecies barrier at one major step in the fertilization process or is it a combination of partially restricted steps that together lead to a block in interspecific fertilization? Are the mechanisms used to avoid interspecific crosses different between free‐spawning organisms and those with internal fertilization? This review will address these questions, focusing on prezygotic barriers, and will describe what is known about the molecular biology that may account for species‐limited gamete recognition and fertilization. Mol. Reprod. Dev. 73: 1422–1429, 2006. © 2006 Wiley‐Liss, Inc.  相似文献   

8.
Using a combination of observations of fate of ovules in matured fruits and of fluorescence techniques to study pollen tube growth and fertilization of ovules, we examined patterns of seed formation within pods in natural populations of two species of Lathyrus, L. sylvestris and L. latifolius. We also examined variation in these patterns within and among populations and between two consecutive years. In both species, only a portion of the ovules were fertilized. Fertilization occurs over a period of several days and ovules at the stigmatic end of the fruit are the first to be fertilized. Fertilized ovules farthest from the stigma are closest to the maternal nutrition. The pattern of embryo abortion is interpreted as a balance between the early start and genetic quality of embryos near the stigma, on the one hand, and the nutritional advantage of proximity to maternal nutrients, on the other. Differences between the two species in patterns of seed maturation are postulated to be related to differences in breeding system. In L. sylvestris, a higher frequency of selling leads to less genetic diversity of pollen deposited on the stigma, lower competition among potential sires, and a more nearly random pattern of ovule fertilization and maturation within the pod.  相似文献   

9.
Fertilization in both animals and plants relies on the correct targeting of the male gametes to the female gametes. In flowering plants, the pollen tube carries two male gametes through the maternal reproductive tissues to the embryo sac, which contains two female gametes. The pollen tube then releases its two male gametes into a specialized receptor cell of the embryo sac, the synergid cell. The mechanisms controlling this critical step of gamete delivery are unknown. Here, data based on the new sirène (srn) mutant of Arabidopsis thaliana provide the first evidence for female control over male gamete delivery. Live imaging of fertilization shows that wild-type pollen tubes do not stop their growth and do not deliver their contents in srn embryo sacs.  相似文献   

10.
An increasing number of molecular studies are indicating that, in a wide variety of species, genes directly related to fertilization evolve at extraordinarily high rates. We try to gain insight into the dynamics of this rapid evolution and its underlying mechanisms by means of a simple theoretical model. In the model, sexual selection and sympatric speciation act together in order to drive rapid divergence of gamete recognition proteins. In this process, intraspecific competition for fertilizations enlarges male gamete protein variation by means of evolutionary branching, which initiates sympatric speciation. In addition, avoidance of competition for fertilizations between the incipient species drives the rapid evolution of gamete recognition proteins. This mechanism can account for both strong stabilizing selection on gamete recognition proteins within species and rapid divergence between species. Moreover, it can explain the empirical finding that the rate of divergence of fertilization genes is not constant, but highest between closely related species.  相似文献   

11.
Our understanding of natural patterns of fertilization in seaweeds has increased substantially over the last 10 years due to new approaches and methods to characterize the nature and frequency of fertilization processes in situ, to recognize the conditions and mechanisms enhancing fertilization success, and to anticipate population and community consequences of the patterns of natural fertilization. Successful reproduction in many species depends on a delicate juxtaposition of abiotic and biotic conditions. Important abiotic factors are those triggering gamete release (e.g. single or interacting effects of light quality and water movement) and those affecting gamete viability or concentrations (e.g. salinity effects on polyspermy blocks; gamete dilution due to water movement). Examples of important biotic components are synchronous gamete release, efficiency of polyspermy‐blocking mechanisms, population density of sexually fertile thalli, interparent distances, and male‐to‐female ratios. Field data indicate fertilization frequencies of 70%–100% in broadcasting‐type seaweeds (e.g. fucoids) and 30%–80% in brooding‐type (red) algae. Red algal values are higher than previously thought and challenge presently accepted explanations for their complex life histories. Important population and community questions raised by the recent findings relate to the magnitude of gene flow and exchange occurring in many micropopulations that seemingly breed during periods of isolation, the physiological basis and population effects of male‐to‐male competition and sexual selection during fertilization of brooding seaweeds, and the effects of massive gamete release, especially in holocarpic seaweeds, on benthic and planktonic communities. Comparative studies in other algal groups are now needed to test the generality of the above patterns, to provide critical pieces of information still missing in our understanding of natural fertilization processes, and to elucidate the evolutionary consequences of the different modes of reproduction (e.g. brooders vs. broadcasters).  相似文献   

12.
The Nicotiana tabacum transmitting tissue is a highly specialized file of metabolically active cells that is the pathway for pollen tubes from the stigma to the ovules where fertilization occurs. It is thought to be essential to pollen tube growth because of the nutrients and guidance it provides to the pollen tubes. It also regulates gametophytic self-incompatibility in the style. To test the function of the transmitting tissue in pollen tube growth and to determine its role in regulating prezygotic interspecific incompatibility, genetic ablation was used to eliminate the mature transmitting tissue, producing a hollow style. Despite the absence of the mature transmitting tissue and greatly reduced transmitting-tissue-specific gene expression, self-pollen tubes had growth to the end of the style. Pollen tubes grew at a slower rate in the transmitting-tissue-ablated line during the first 24 h post-pollination. However, pollen tubes grew to a similar length 40 h post-pollination with and without a transmitting tissue. Ablation of the N. tabacum transmitting tissue significantly altered interspecific pollen tube growth. These results implicate the N. tabacum transmitting tissue in facilitating or inhibiting interspecific pollen tube growth in a species-dependent manner and in controlling prezygotic reproductive barriers.  相似文献   

13.
Competition among many microgametophytes for a limited number of ovules can lead to both nonrandom fertilization by pollen genotypes and selection for greater sporophytic vigor. The evolutionary implications of this process depend on the extent of heritable genetic variation for pollen competitive ability. Using flower color in wild radish as a genetic marker, we demonstrate differences among pollen donors in competitive ability. Significant differences were found in four out of five pairs of donors. For three pairs of donors, competitive differences were observed in certain maternal plants but not others. To test for heritability of pollen performance, we conducted a selection experiment. We manipulated the intensity of pollen competition for two generations and then tested for differences in the performance of pollen from two selected lines. Competitive ability of pollen derived from each line was assessed relative to a standard unrelated pollen donor, using pollen mixtures on six wild maternal plants. The intensity of previous pollen competition had no overall effect on the proportion of seeds sired by each selected line. In two maternal plants, pollen from intense previous competition was actually inferior, contrary to expectation. Thus, we found no evidence for heritable variation in this trait. Other factors, such as male-female interactions, may influence the outcome of pollen competition. Prevailing theory on the genetic basis of effects of pollen competition on subsequent generations is not supported by our results. Improved protocols for future experiments are discussed.  相似文献   

14.
A remarkable number of the defining features of flowering plants are expressed during the life history stage between pollination and fertilization. Hand pollinations of Amborella trichopoda (Amborellaceae) in New Caledonia show that when the stigma is first receptive, the female gametophyte is near maturity. Pollen germinates within 2 h, and pollen tubes with callose walls and plugs grow entirely within secretions from stigma to stylar canal and ovarian cavity. Pollen tubes enter the micropyle within 14 h, and double fertilization occurs within 24 h. Hundreds of pollen tubes grow to the base of the stigma, but few enter the open stylar canal. New data from Amborella, combined with a review of fertilization biology of other early-divergent angiosperms, show that an evolutionary transition from slow reproduction to rapid reproduction occurred early in angiosperm history. I identify increased pollen tube growth rates within novel secretory carpel tissues as the primary mechanism for such a shift. The opportunity for prezygotic selection through interactions with the stigma is also an important innovation. Pollen tube wall construction and substantial modifications of the ovule and its associated structures greatly facilitated a new kind of reproductive biology.  相似文献   

15.
Reinforcement, a process whereby natural selection strengthens prezygotic isolation between sympatric taxa, has gained increasing attention from evolutionary biologists over the past decade. This resurgence of interest is remarkable given that, in the 1980s, most evolutionary biologists considered reinforcement to be, at best, a process that rarely occurred in nature. Although studies of reinforcement are now an important component of speciation research, we still lack a clear understanding of when reinforcement should occur. Theoretical models have suggested that genetic architecture, population structure and the type of selection influence the action of reinforcement. Still to be considered are the consequences of variation in mating system and patterns of sperm or pollen utilization on the likelihood of reinforcement. We argue that traveling down The Road Not Taken (apologies to Frost), that is, taking into consideration mating system and patterns of gamete utilization, leads to novel and more precise predictions of the circumstances under which reinforcement should occur.  相似文献   

16.
BACKGROUND AND AIMS: Illicium floridanum, a species belonging to the basal extant angiosperm taxon Illiciaceae, reportedly exhibits self-incompatibility (SI). To date, the site and timing of SI within the carpel of this species remains unidentified. Thus, the objective of this research was to determine the cellular and temporal aspects of SI in I. floridanum. METHODS: Following controlled application of cross- and self-pollen in natural populations of I. floridanum, embryo sac development and temporal aspects of stigma receptivity, as well as pollen tube growth, fertilization, and embryo and endosperm development, were investigated with the aid of light and fluorescence microscopy. KEY RESULTS: Flowers of I. floridanum exhibited complete dichogamy whereby stigmas only supported cross- and self-pollen tube growth prior to anther dehiscence. In contrast to earlier reports of SI in this species, a prezygotic SI resulting in rejection of self-pollen tube growth at the stigma was absent and there were no significant differences between cross- versus self-pollen germination and pollen tube growth within the style and ovary during the first 5 d after pollination. Structural development of the four-celled embryo sac was not differentially influenced by pollen type as noted to occur in other angiosperms with late-acting ovarian SI. The ovule micropyle and embryo sac were penetrated equally by cross- and self-pollen tubes. In addition, there were no statistically significant differences in cross- versus self-fertilization. A resting zygote and multicellular endosperm at a variety of developmental stages was present by 30 d after application of cross- or self-pollen. CONCLUSIONS: In the clear absence of a prezygotic SI that was previously reported to result in differential self-pollen tube growth at the stigma, self- sterility in I. floridanum is likely due to early-acting inbreeding depression, although late-acting post-zygotic ovarian SI cannot be ruled out.  相似文献   

17.
A positive correlation between the speed of pollen tube growth and the quality of the resulting progeny in several species of flowering plants has traditionally been explained as being caused by an overlap in gene expression between gametophytes and sporophytes. We experimentally manipulated the pollen tube growth rates of pollen donors, such that the genotype controlling the rate was uncoupled from the phenotype, to test the alternative hypothesis that the correlation arises because ovules fertilized early are better provisioned by the maternal plant than later-fertilized ovules. Crosses using Silene vulgaris individuals bearing distinctive genetic markers revealed a correlation between the order of fertilization by pollen grains and vigour of the resulting sporophytes, which was independent of the speed of growth of the pollen tubes. Seeds sired by donors with relatively fast-growing pollen germinated earlier and grew larger than those sired by slow-growing pollen when pollen from the two donors was applied simultaneously. Reversing the order of arrival in the ovary by placing slow-growing pollen on the styles earlier and closer to the ovary led to reverse results. These results suggest that differential provisioning by the maternal plant can lead to differences in progeny vigour following pollen competition.  相似文献   

18.
Ticodendron incognitum is the sole species of the Ticodendraceae, which was established as a new family in the Fagales less than 20 years ago. Considering the diverse modes of pollen tube growth observed in other Fagales, we investigated the growth of pollen tubes in the pistil of Ticodendron. At the time of pollination, T. incognitum had four immature ovules in a bilocular ovary, thus exhibiting delayed fertilization, as in other Fagales. During the period when fertilization was delayed, pollen tube growth in the pistil was intermittent, consisting of five steps associated with development of the ovules and embryo sacs. Four cessation sites occurred: in the style, in the tissue of the upper part of the ovary, inside and outside of the funicle and at the chalaza. A single pollen tube eventually reaches a mature embryo sac through the chalaza in one of the four ovules. While both delayed fertilization and intermittent pollen tube growth play a role in male and female gametophyte selection, as in other Fagales, the five‐step process of pollen tube growth through the chalaza (i.e. chalazogamy) is characteristic of lineages of the Casuarinaceae, Ticodendraceae and Betulaceae (the latter with the loss of one step). © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 157 , 621–631.  相似文献   

19.
The gynoecium of Phaseolus acutifolius var. latifolius, a self-compatible legume, is characterized by a wet non-papillate stigma, an intermeditae hollow/solid style type, and secretory cells on the ventral surface of the ovary which direct pollen tube growth. The stigma is initially receptive 5–6 days prior to anthesis. Production of stigmatic secretions, composed primarily of carbohydrates and lipids, fragment the cuticle covering epidermal cells of the stigma early in ontogeny; the lipidic aspect of the copious secretions apparently serves to inhibit desiccation after the cuticle is ruptured. Stylar canal development occurs as a combination of elongation of a basal canal present early in development, and dissolution of part of a solid transmitting tract tissue just below the stigma. Anthers dehisce and the tricolporate pollen is released onto the receptive stigma one day before anthesis. Following initial growth in intercellular spaces in the transmitting tract of the stigma, pollen tubes adhere to epidermal secretory cells along the ventral side of the stylar canal and upper ovary; here the transmitting tract is apparently limited in the number of tubes it can accommodate, providing a possible site of selection of male gametes.  相似文献   

20.
The concept that pollen selection is an important force driving angiosperm evolution has received a lot of attention in recent years. In order for pollen competition to have evolutionary significance, heritable variation for pollen tube growth rate must exist. In this study, I tested the clonal repeatability, a measure of broad-sense heritability, of in vitro pollen tube growth rate in Oenothera organensis. Although I found significant phenotypic differences in pollen tube growth rate, the calculated clonal repeatability value of 9.4% indicates that heritability of pollen tube growth rate in this species is quite low. In contrast, both flower identity and plant identity had highly significant effects on pollen tube growth rate, suggesting that the environment may be more important than genotype in determining pollen performance in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号