首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
31P Nuclear Magnetic Resonance (NMR) studies were performed on mono- and diisopropylphosphoryl derivatives of alpha-chymotrypsin, trypsin, and subtilisin. Questions addressed included the pKa of the active center Asp...His...Ser triad in both species. While the pKa in the diisopropylphosphoryl derivatives is near 7.4 (found in this and other laboratories earlier) and reflects a nearly normal imidazolium titration curve, the apparent pKa in the monoisopropylphosphoryl enzymes (obtained by "aging" of the diisopropylphosphoryl derivatives and monitored by 31P NMR) is between 9.7 and 11.4 depending on the protease. This latter "titration" of the 31P NMR signal is reversible and presumably reflects the interaction of the imidazolium positive charge with the monoanionic phosphodiester. Of the two tetrahedral intermediates, the properties of the monoisopropylphosphoryl enzyme are probably more representative of the tetrahedral oxyanionic intermediate invoked during peptide hydrolysis. The same NMR technique was used to determine the action of PAM (pyridine-2-aldoxime methiodide, a known "antidote" for acetylcholinesterase inactivated by diisopropylfluorophosphate), on the inactivated enzymes. It was clear that the "antidote" could reverse the diisopropylphosphorylation but was ineffective on the monoisopropylphosphoryl ("aged") enzyme. 11B NMR studies were performed on phenylboronic (PBA) acid and 3,5-bis-trifluoromethylphenylboronic acid in the absence and presence of chymotrypsin and subtilisin. At 22 degrees C the former, but not the latter, compound was in fast exchange between the free and enzyme bound states. The relaxation parameters could be calculated for the bound PBA in chymotrypsin and the fluorinated analogue in subtilisin and clearly indicated that the boron nucleus was tetrahedral in the active centers, a good analogue for the tetrahedral oxyanionic intermediate.  相似文献   

2.
G I Rhyu  W J Ray  J L Markley 《Biochemistry》1985,24(10):2536-2541
Metal binding at the activating site of rabbit muscle phosphoglucomutase has been studied by 31P, 7Li, and 113Cd NMR spectroscopy. A 7Li NMR signal of the binary Li+ complex of the phosphoenzyme was not observed probably because of rapid transverse relaxation of the bound ion due to chemical exchange with free Li+. The phosphoenzyme-Li+-glucose 6-phosphate ternary complex is more stable, kinetically, and yields a well-resolved peak from bound Li+ at -0.24 ppm from LiCl with a line width of 5 Hz and a T1 relaxation time of 0.51 +/- 0.07 s at 78 MHz. When glucose 1-phosphate was bound, instead, the chemical shift of bound 7Li+ was -0.13 ppm; and in the Li+ complex of the dephosphoenzyme and glucose bisphosphate a partially broadened 7Li+ peak appeared at -0.08 ppm. Thus, the bound metal ion has a somewhat different environment in each of these three ternary complexes. The 113Cd NMR signal of the binary Cd2+ complex of the phosphoenzyme appears at 22 ppm relative to Cd(ClO4)2 with a line width of 20 Hz at 44.4 MHz. Binding of substrate and formation of the Cd2+ complex of the dephosphoenzyme and glucose bisphosphate broaden the 113Cd NMR signal to 70 Hz and shift it to 75 ppm. The 53 ppm downfield shift upon the addition of substrate along with 1H NMR data suggests that one oxygen ligand to Cd2+ in the binary complex is replaced by a nitrogen ligand at some intermediate point in the enzymic reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A series of 2′-fluorinated adenosine compounds, dAfl, dAflp, pdAfl, dAfl-A, A-dAfl, and dAfl-dAfl, have been investigated by nmr spectroscopies. The 1H-, 19F-, and 31P-nmr data provide structural information from different parts of these moleucles. The pKa of the phosphate group of these two 2′-fluoro-2′-deoxyadenosine monophosphates was found to be the same as that of hte parent adenosine monophosphate. As for the pentose conformation, the 3E population is greatly increased as a result of the fluorine substitution at the C2′ position. However, the populations of conformers of gg (C4′-C5′) and g′g′ (C5′-O5′) and the average angle ?′(C3′-O3′) of the 2′-fluoro compounds remain unchanged as compared to the natural riboadenosine monomer and dimer (A-A). Thefefore, the backbone conformation of the 2′-fluoro-2′-deoxy-adenosine, its monophosphates and dimers, resembles that of RNA. The extent of base-base overlapping in these 2′-fluoro-2′-deoxy-adenosine-containing dimers is also found to be similar to or even greater than A-A. Thus, the conformations of these compounds can be considered as those in the RNA family. These fluorocompounds also serve as models for a careful study on the 19F-nmr in nucleic acid. The 19F chemical-shift values are sensitive to the environment of the fluorine atom such as ionic structure of the neighboring group(s) (phosphate of base), solvation, and ring-ruccent anisotropic effect from the base(s). Qualitatively, the change of the 19F chemical-shift values (up to 2 ppm) is much larger than that of 1H-nmr (up to 0.5 ppm) in the dimers. Using dAfl·poly(U), poly(dAfl)·poly(dAfl), and poly(dAfl)·poly(U) helix–coil transition as model systems, the linewidth of 19F in dAfl- residues reflects effectively the mobility of the unit in the nucleic acid complex as calibrated by uv data and by 1H-nmr. Therefore, application of 19F-nmr spectroscopy on fluorine-substituted nucleic acid can also be used to detect nucleic acid-nucleic acid interaction in complicated systems.  相似文献   

4.
Solid state and solution 51V and 13C NMR studies on four fundamental bisperoxovanadium complexes containing bidendate donor ligands were reported, together with DFT calculations of structural and NMR parameters. The 51V solid-state NMR characterization of the four complexes with [VO(O2)2L]n anion {abbr. bpVL, where L = oxalic acid dianion (ox), pyridine-2-carboxylic acid (pic), bipyridine (bipy), and 1,10-phenanthroline (phen)} show that the ligands have a significant effect on the electric-field gradient tensor, with the quadrupolar coupling constant ranging from 4.0 to 5.8 MHz. The experimental and theoretical results suggest that the vanadium center of bpVpic, bpVphen and bpVbipy in solid state and aqueous solution are all seven-coordinated except that bpVox is six-coordinated in aqueous solution. The steric space hindrance of the organic ligands and the bonding between vanadium with the coordination influences the activity of bpVL complexes.  相似文献   

5.
The crystal structure of Escherichia coli adenylate kinase (AKe) revealed three main components: a CORE domain, composed of a five-stranded parallel beta-sheet surrounded by alpha-helices, and two peripheral domains involved in covering the ATP in the active site (LID) and binding of the AMP (NMPbind). We initiated a long-term NMR study aiming to characterize the solution structure, binding mechanism and internal dynamics of the various domains. Using single (15N) and double-labeled (13C and 15N) samples and double- and triple-resonance NMR experiments we assigned 97% of the 1H, 13C and 15N backbone resonances, and proton and 13Cbeta resonances for more than 40% of the side chains in the free protein. Analysis of a 15N-labeled enzyme in complex with the bi-substrate analogue [P1,P5-bis(5'-adenosine)-pentaphosphate] (Ap5A) resulted in the assignment of 90% of the backbone 1H and 15N resonances and 42% of the side chain resonances. Based on short-range NOEs and 1H and 13C secondary chemical shifts, we identified the elements of secondary structure and the topology of the beta-strands in the unliganded form. The alpha-helices and the beta-strands of the parallel beta-sheet in solution have the same limits (+/- 1 residue) as those observed in the crystal. The first helix (alpha1) appears to have a frayed N-terminal side. Significant differences relative to the crystal were noticed in the LID domain, which in solution exhibits four antiparallel beta-strands. The secondary structure of the nucleoside-bound form, as deduced from intramolecular NOEs and the 1Halpha chemical shifts, is similar to that of the free enzyme. The largest chemical shift differences allowed us to map the regions of protein-ligand contacts. 1H/2H exchange experiments performed on free and Ap5A-bound enzymes showed a general decrease of the structural flexibility in the complex which is accompanied by a local increased flexibility on the N-side of the parallel beta-sheet.  相似文献   

6.
Physiologically relevant molecular species of plasmenylcholine and phosphatidylcholine were synthesized and their molecular dynamics and interactions with cholesterol were compared by determination of salient proton spin-lattice relaxation times and apparent activation energies for 1H-NMR observable motion. The molecular dynamics of PA PhosCho (1-hexadecanoyl-2-eicosatetra-5',8',11',14'-enoyl-sn-glycero-3-pho sphocholine) in multiple regions of the bilayer. Furthermore, the fluidity gradient of PA PhosCho was larger than that of PA PlasCho as ascertained by 1H spin-lattice relaxation time measurements. Introduction of cholesterol into each bilayer resulted in disparate effects on the dynamics of each subclass including: (1) increased motional freedom in the polar head group of PA PlasCho without substantial alterations in the dynamics of the polar head group of PA PhosCho; and (2) increased immobilization of the membrane interior in PA PlasCho in comparison to PA PhosCho. Analysis of Arrhenius plots of T1 relaxation times demonstrated that the apparent activation energies for vinyl and bisallylic methylene proton NMR observable motion in PA PhosCho were greater than that in PA PlasCho. Thus, comparisons of spin-lattice relaxation times and apparent activation energies demonstrate that vesicles comprised of PA PlasCho and PA PhosCho possess differential molecular dynamics and distinct interactions with cholesterol. Collectively, these results underscore the significance of the conjoint presence of the vinyl ether linkage and arachidonic acid as an important determinant of membrane dynamics in specialized mammalian membranes.  相似文献   

7.
Relaxation times and integrated intensities have been obtained from dipolar decoupled 13C magnetic resonance spectra of reconstituted fibrils of chick calvaria collagen enriched at the glycine Ca and C′ positions. The data obtained are consistent with a model in which collagen molecules reorient about the long axis of the helix with a rotational diffusion constant (R1) of ~107 s?1, a value similar to that expected for the helix in solution. Data obtained from natural abundance 13C spectra of native (crosslinked) calf achilles tendon and rat tail tendon provide evidence of rapid anisotropic reorientation for at least 75% of the carbons in these tissues. Hence, our preliminary data indicate that, in these materials, the intermolecular interactions in the fibrilar collagen lattice can accommodate rapid reorientation at a majority of carbon sites.  相似文献   

8.
The solution structure of human insulin-like growth factor 1 has been investigated with a combination of nuclear magnetic resonance and restrained molecular dynamics methods. The results show that the solution structure is similar to that of insulin, but minor differences exist. The regions homologous to insulin are well-defined, while the remainder of the molecule exhibits greater disorder. The resultant structures have been used to visualize the sites for interaction with a number of physiologically important proteins.  相似文献   

9.
The complete three-dimensional structure in methanol of an amphipathic alpha-helical peptide, that has been designed by taking into account the three-dimensional structures of small haemolytic peptides, secondary structure prediction algorithms and the well documented literature on alpha-helix stabilizing factors, has been elucidated by two-dimensional NMR spectroscopy. Initially various two-dimensional spectra (COSY, TOCSY, and NOESY) allowed the complete sequence specific assignment of all signals in the 1H spectrum. Consequently trial structures were generated which were then subjected to molecular dynamics simulations using 121 NOE-derived distances and 25 vicinal coupling constant values as structural restraints to give a final set of calculated structures. These structures are in complete agreement with the results of a circular dichroism study and reveal that the peptide adopted a highly ordered alpha-helical conformation. Details of the structure which throw light on future peptide/protein design are discussed.  相似文献   

10.
Collagen was labeled with [3,3,3-d3]alanine and with [d10]leucine via tissue culture. 2H nuclear magnetic resonance (NMR) spectra were obtained of collagen in solution and as fibrils using the quadrupolar echo technique. The 2H NMR data for [3,3,3-d3]alanine-labeled collagen fibrils were analyzed in terms of a model for motion in which the molecule is considered to jump between two sites, separated azimuthally by an angle 2 delta, in a time which is rapid compared with the residence time in both sites. The data suggest that the molecule undergoes reorientation over an angle, 2 delta, of approximately 30 degrees in the fibrils, and that the average angle between the alanine C alpha--C beta bond axis and the long axis of the helix is approximately 75 degrees. Reorientation is possibly segmental. The T2 for [3,3,3-d3]alanine-labeled collagen fibrils was estimated to be 105 mus. The 2H NMR data for the methyl groups of [d10]leucine-labeled collagen were analyzed qualitatively. These data established that for collagen in solution and as fibrils, rotation occurs about the leucine side-chain bonds, in addition to threefold methyl rotation and reorientation of the peptide backbone. The T2 for the methyl groups of leucine-labeled collagen is estimated to be approximately 130 mus. Taken together, these data provide strong evidence that both polypeptide backbone reorientation and amino acid side-chain motion occur in collagen molecules in the fibrils. Stabilizing interactions that determine fibril structure must therefore depend upon at least two sets of contacts in any given local region.  相似文献   

11.
The sophistication of the force fields, algorithms and hardware used for molecular dynamics (MD) simulations of proteins is continuously increasing. No matter how advanced the methodology, however, it is essential to evaluate the appropriateness of the structures sampled in a simulation by comparison with quantitative experimental data. Solution nuclear magnetic resonance (NMR) data are particularly useful for checking the quality of protein simulations, as they provide both structural and dynamic information on a variety of temporal and spatial scales. Here, various features and implications of using NMR data to validate and bias MD simulations are outlined, including an overview of the different types of NMR data that report directly on structural properties and of relevant simulation techniques. The focus throughout is on how to properly account for conformational averaging, particularly within the context of the assumptions inherent in the relationships that link NMR data to structural properties.  相似文献   

12.
N-linked oligosaccharides often act as ligands for receptor proteins in a variety of cell recognition processes. Knowledge of the solution conformations, as well as protein-bound conformations, of these oligosaccharides is required to understand these important interactions. In this paper we present a model for the solution conformations sampled by a simple trimannoside, methyl 3, 6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside, which contains two of the most commonly found glycosidic linkages in N-linked oligosaccharides. This model was derived from simulated annealing protocols incorporating distance restraints extracted from NOESY spectra along with torsional restraints computed from three-bond (1)H-(13)C coupling constants measured across the glycosidic bonds. The model was refined in light of unrestrained molecular dynamics simulations conducted in the presence of solvent water. The resulting model depicts a molecule undergoing conformational averaging in solution, adopting four major and two minor conformations. The four major conformations arise from a pair of two-state transitions, one each at the alpha(1-->3) and alpha(1-->6) linkages, whereas the minor conformations result from an additional transition of the alpha(1-->6) linkage. Our data also suggest that the alpha(1-->3) transition is fast and changes the molecular shape slightly, whereas the alpha(1-->6) is much slower and alters the molecular shape dramatically.  相似文献   

13.
F Adebodun  F Jordan 《Biochemistry》1989,28(19):7524-7531
Two different nuclear magnetic resonance experiments were conducted to elucidate the properties of the Ca(II) binding locus on serine proteases in solution. Trypsin, alpha-chymotrypsin, and subtilisin were inactivated with diisopropyl fluorophosphate, and the distance of the phosphorus from Gd(III) in place of Ca(II) was determined from the lanthanide-induced relaxation on the 31P resonance. The distances found (between 20 and 21 A) were in excellent agreement with those reported in the X-ray crystallographic structures of trypsin and subtilisin, demonstrating that the method has wide applicability to systems for which no X-ray structure is available. Subsequently, the 113Cd spectra [in place of Ca(II)] were examined in the presence of the native enzymes. At ambient temperatures only a single 113Cd resonance could be observed, presumably representing the weighted average of the variously weakly bound ions and the free ion. At 280 K for trypsin and chymotrypsin, and at 268 K for subtilisin there was observed a resonance at ca. 65-70 ppm higher field than the previous averaged resonance that could be attributed to tightly bound Cd. The chemical shift of the resonance was consistent with its assignment to an octahedral environment around Cd with oxygen ligands.  相似文献   

14.
Okuyama K  Xu X  Iguchi M  Noguchi K 《Biopolymers》2006,84(2):181-191
Based on the fiber diffraction data from native collagen, Rich and Crick proposed the 10/3-helical model with a 28.6 A axial repeat in 1955 (Rich A.; Crick, F. H. C. Nature (Lond) 1955, 176, 915-916). We obtained the 7/2-helical structure with a 20 A axial repeat from the single crystal analysis of (Pro-Pro-Gly)(10). Since the latter structure could explain fiber diffraction patterns from native collagen, we proposed this structure as a new model for collagen in 1977 (Okuyama et al., Polym J 1977, 9, 341-343). These two structural models were refined against observed continuous intensity data from native collagen using a linked-atom least-squares method. It was found that the diffraction data from native collagen could be explained by the 7/2-helical model better than, or at least the same as, the prevailing 10/3-helical model. Together with the evidence that recent single crystal analyses of many model peptides have supported the 7/2-helical model and there was no such active support for the 10/3-helical model, it was concluded that the average molecular structure of native collagen seems to be closer to the 7/2-helical symmetry than the other one.  相似文献   

15.
16.
Protein structure and dynamics in nonaqueous solvents are here investigated using molecular dynamics simulation studies, by considering two model proteins (ubiquitin and cutinase) in hexane, under varying hydration conditions. Ionization of the protein groups is treated assuming "pH memory," i.e., using the ionization states characteristic of aqueous solution. Neutralization of charged groups by counterions is done by considering a counterion for each charged group that cannot be made neutral by establishing a salt bridge with another charged group; this treatment is more physically reasonable for the nonaqueous situation, contrasting with the usual procedures. Our studies show that hydration has a profound effect on protein stability and flexibility in nonaqueous solvents. The structure becomes more nativelike with increasing values of hydration, up to a certain point, when further increases render it unstable and unfolding starts to occur. There is an optimal amount of water, approximately 10% (w/w), where the protein structure and flexibility are closer to the ones found in aqueous solution. This behavior can explain the experimentally known bell-shaped dependence of enzyme catalysis on hydration, and the molecular reasons for it are examined here. Water and counterions play a fundamental and dynamic role on protein stabilization, but they also seem to be important for protein unfolding at high percentages of bound water.  相似文献   

17.
D H Kitson  A T Hagler 《Biochemistry》1988,27(14):5246-5257
Energy minimizations and molecular dynamics simulations have been performed on the cyclic peptide cyclo-(Ala-Pro-D-Phe)2 in both the isolated and crystal states. The results of these calculations have been analyzed, both to investigate our ability to reproduce experimental data (structure and vibrational and NMR spectra) and to investigate the effects of environment on the energy, structure, and dynamics of peptides. Comparison of the minimized and time-averaged crystal systems with the experimental peptide structure shows that the calculations have closely reproduced the experimental structure. Molecular dynamics of the isolated molecule has led to a new conformation, which is approximately equal to 8.5 kcal/mol more stable than the conformation that exists in the crystal, the latter conformation being stabilized by intermolecular (packing) forces. This illustrates the considerable effect that environment can have on the conformation of peptides. The crystal environment has also been shown to significantly reduce the dynamic conformational fluctuations seen for the isolated molecule. The behavior of the peptide during the isolated simulation also supports the experimental NMR observation of a symmetric structure that differs from the asymmetric, instantaneous structures which characterize the molecule during the dynamics. Calculations of vibrational frequencies of the peptide in the crystal and isolated states show the expected shifts in bond-stretching frequencies due to intermolecular interactions. Finally, we have calculated NMR coupling constants from the dynamics simulation of the isolated peptide and have compared these with the experimental values. This has led to a possible reinterpretation of the experimental data.  相似文献   

18.
Nuclear magnetic resonance is used to investigate the backbone dynamics in 6-phosphogluconolactonase from Trypanosoma brucei (Tb6PGL) with (holo-) and without (apo-) 6-phosphogluconic acid as ligand. Relaxation data were analyzed using the model-free approach and reduced spectral density mapping. Comparison of predictions, based on 77 ns molecular dynamics simulations, with the observed relaxation rates gives insight into dynamical properties of the protein and their alteration on ligand binding. Data indicate dynamics changes in the vicinity of the binding site. More interesting is the presence of perturbations located in remote regions of this well-structured globular protein in which no large-amplitude motions are involved. This suggests that delocalized changes in dynamics that occur upon binding could be a general feature of protein-target interactions.  相似文献   

19.
We have prepared samples of (a) intact calvaria collagen (cross-linked and mineralized), (b) intact tendon collagen (cross-linked but not mineralized), and (c) reconstituted chick calvaria collagen (not cross-linked and not mineralized) containing [methyl-2H3]methionyl, [4,4-2H2]pyrrolidinyl, (4-fluorophenyl)alanyl, and [6-15N]lysyl residues. Using multinuclear magnetic resonance spectroscopy, we have investigated the molecular dynamics of the labeled amino acids. Guided by model compound studies, we reached the following conclusions regarding collagen side chain dynamics from our analysis of line shapes and relaxation rates. At 22 degrees C, imino residues in all samples have flexible rings with root mean square angular fluctuations in the 11-30 degree range. Nearly all labeled amino acid side chains reorient about at least two side chain single bonds. At temperatures below -30 degrees C, most of these side chain motions are absent in all the samples. Surprisingly, in contrast with results obtained for backbone motions, side chain motions are only marginally more hindered in mineralized samples as compared with nonmineralized samples, a result we discuss with reference to collagen-mineral interactions. We also discuss the possible relationship between collagen dynamics and function.  相似文献   

20.
The 5' d-TpG 3' element is a part of DNA sequences involved in regulation of gene expression and is also a site for intercalation of several anticancer drugs. Solution conformation of DNA duplex d-TGATCA containing this element has been investigated by two-dimensional NMR spectroscopy. Using a total of 12 torsional angles and 121 distance constraints, structural refinement has been carried out by restrained molecular dynamics (rMDs) in vacuum up to 100 ps. The structure is characterized by a large positive roll at TpG/CpA base pair step and large negative propeller twist for AT and TA base pairs. The backbone torsional angle, gamma(O5'-C5'-C4'-C3'), of T1 residue adopts a trans-conformation which is corroborated by short intra nucleotide T1H6-T1H5' (3.7A) distance in nuclear overhauser effect spectroscopy (NOESY) spectra while the backbone torsional angle, beta(P-O5'-C5'-C4'), exists in trans as well as gauche state for T1 and C5 residues. There is evidence of significant flexibility of the sugar-phosphate backbone with rapid inter-conversion between two different conformers at TpG/CpA base pair step. The base sequence dependent variations and local structural heterogeneity have important implications in specific recognition of DNA by ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号