首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Weiss M  Bental M  Pick U 《Plant physiology》1991,97(3):1241-1248
The effects of osmotic shocks on polyphosphates and on the vacuolar fluorescent indicator atebrin have been investigated to test whether acidic vacuoles in the halotolerant alga Dunaliella salina have a role in osmoregulation. Upshocks and downshocks induce different patterns of polyphosphate hydrolysis. Upshocks induce rapid formation of new components, tentatively identified as 5 or 6 linear polyphosphates, formed only after upshocks with NaCl and not with glycerol, indicative of compartmentation of Na+ into the vacuoles. Conversely, downshocks induce a slower transient accumulation of tripolyphosphates, indicating activation of a different hydrolytic process within the vacuoles. Osmotic shocks do not lead to release of atebrin from acidic vacuoles, indicating that they do not induce a major intravacuolar alkalinization. However, osmotic shocks induce transient permeability changes measured by amine-induced atebrin release from vacuoles. Hypoosmotic shocks transiently increase the permeability (up to 20-fold), whereas hyperosmotic shocks induce a rapid drop in permeability. Electron micrographs of osmotically shocked cells also reveal transient changes in the surface and internal organelles of D. salina cells. It is suggested that hyperosmotic and hypoosmotic shocks induce different changes within acidic vacuoles and in the organization and/or composition of the plasma membrane in Dunaliella.  相似文献   

2.
Tetrahymena pyriformis cells have been grown in media varying in NaCl concentration from 3.7 mM (normal medium) to 0.3 M and varying in CaCl2 from 0.2 mM (normal medium) to 0.1 M. Tetrahymena grown in 0.3 M NaCl showed relatively few alterations in phospholipid composition, with significant changes being found only in the cell surface membranes (pellicle), which incrased in phosphatidylethanolamine content from 39% (low Na+) to 48% (high Na+) of the total phospholipids. The small decrease in fatty acid unsaturation and increase in shorter chain fatty acids in pellicle phospholipids were not statistically significant. No significant changes in phospholipid head group composition or fatty acid distribution were observed in high Ca2+-grown cells. Complementary studies of membrane fluidity, as inferred from freeze-fracture electron microscopy analysis, indicated that membranes of high Na+-acclimated cells were similar to those of control cells, when each was measured in its respective medium. However, the outer alveolar membrane of the pellicle and the food vacuolar membrane were considerably less fluid in high-Ca2+ cells. The lower fluidity in vacuolar membranes may have been responsible for alterations in the cells' capacity to form food vacuoles.  相似文献   

3.
ABSTRACT. Various ions and treatments known to alter the availability of free Ca2+ were examined with respect to their effects on the cytopharyngeal pouch, a large prey receptacle found in the potentially carnivorous macrostomal form of Tetrahymena vorax. Addition of Ca2+, Ba2+, or Sr2+ induced the pouch to separate from the region of the cytostome, forming a large empty vacuole. Na+, alone, had no effect, but lowered the concentration of Ca2+ required to produce maximum vacuolar formation in populations of cells. Vacuolar induction was also initiated by the cation ionophore A23187 or by subjecting macrostomal cells to an electric current. In the presence of divalent cation chelators EDTA and EGTA, the cytopharyngeal pouch collapsed and was resorbed. Taken together, these results suggest that Ca2+ plays an important role during phagocytosis in this cell type.  相似文献   

4.
Stomatal apertures are regulated by morphological changes in guard cells which have been associated with guard cell vacuolar structures. To investigate the contribution of guard cell vacuoles to stomatal movement, we examined the dynamics of vacuolar membrane structures in guard cells and evaluated the changes in vacuolar volumes and surface areas during stomatal movement. Using a transgenic Arabidopsis line expressing green fluorescent protein (GFP)-AtVAM3, we have found that the guard cell vacuolar structures became complicated during stomatal closure with the appearance of numerous intra-vacuolar membrane structures. A three-dimensional (3-D) reconstruction using our originally developed software, REANT (reconstructor and analyzer of 3-D structure), and photobleaching analysis revealed the continuity of the vacuolar structures, even when they appeared to be compartmented in confocal images of closed stomata. Furthermore, calculations of the surface area by REANT revealed an increase in vacuolar surface area during stomatal closure but a decrease in the surface area of the guard cells. Movement of a vital staining dye, FM4-64, to the vacuolar membrane was accelerated during ABA-induced stomatal closure in Vicia faba. These results suggest that the guard cell vacuoles store some portion of the excess membrane materials produced during stomatal closure as intra-vacuolar structures.  相似文献   

5.
The foed vacuoles of Paramecium aurelia , when examined in the electron microscope, are seen to be surrounded by small secondary vacuoles 0.05 - 0.2 μ. in diameter. Similar small vacuoles also surround the deepest part of the buccal cavity. Young focd vacuoles, i.e. those containing well preserved bacteria, are encircled by a smooth. vacuolar membrane. In older food vacuoles the vacuolar membrane in a transverse section often appears more wavy with small gulfs and protuberances. It is suggested that the small surrounding vacuoles are formed by the vacuolar membrane of older vacuoles by means of a process similar to pinocytosis. There is no evidence, however, that formation of small surrounding vacuoles takes place by pinocytosis in young food vacuoles. Examination of the cytoplasmic membrane of the deepest parts of the buccal cavity shows a similar prccess of vacuole formation by pinocytosis.  相似文献   

6.
In ciliated protozoa, most nutrients are internalized via phagocytosis by food vacuole formation at the posterior end of the buccal cavity. The uptake of small-sized molecules and external fluid through the plasma membrane is a localized process. That is because most of the cell surface is internally covered by an alveolar system and a fibrous epiplasm, so that only defined areas of the cell surface are potential substance uptake sites. The purpose of this study is to analyze, by fluorescence confocal laser scanning microscopy, the relationship between WGA (Triticum vulgaris agglutinin) and dextran internalization in Paramecium primaurelia cells blocked in the phagocytic process, so that markers could not be internalized via food vacuole formation. WGA, which binds to surface constituents of fixed and living cells, was used as a marker for membrane transport and dextran as a marker for fluid phase endocytosis. After 3 min incubation, WGA-FITC is found on plasma membrane and cilia, and successively within small cytoplasmic vesicles. After a 10-15 min chase in unlabeled medium, the marked vesicles decrease in number, increase in size and fuse with food vacuoles. This fusion was evidenced by labeling food vacuoles with BSA-Texas red. Dextran enters the cell via endocytic vesicles which first localize in the cortical region, under the plasma membrane, and then migrate in the cytoplasm and fuse with other endocytic vesicles and food vacuoles. When cells are fed with WGA-FITC and dextran-Texas red at the same time, two differently labeled vesicle populations are found. Cytosol acidification and incubation in sucrose medium or in chlorpromazine showed that WGA is internalized via clathrin vesicles, whereas fluid phase endocytosis is a clathrin-independent process.  相似文献   

7.
Tetrahymena pyriformis cells have been grown in media varying in NaCl concentration from 3.7 mM (normal medium) to 0.3 M and varying in CaCl2 from 0.2 mM (normal medium) to 0.1 M. Tetrahymena grown in 0.3 M NaCl showed relatively few alterations in phospholipid composition, with significant changes being found only in the cell surface membranes (pellicle), which increased in phosphatidylethanolamine content from 39% (low Na+) to 48% (high Na+) of the total phospholipids. The small decrease in fatty acid unsaturation and increase in shorter chain fatty acids in pellicle phospholipids were not statistically significant. No significant changes in phospholipid head group composition or fatty acid distribution were observed in high Ca2+-grown cells. Complementary studies of membrane fluidity, as inferred from freeze-fracture electron microscopy analysis, indicated that membranes of high Na+-acclimated cells were similar to those of control cells, when each was measured in its respective medium. However, the outer alveolar membrane of the pellicle and the food vacuolar membrane were considerably less fluid in high-Ca2+ cells. The lower fluidity in vacuolar membranes may have been responsible for alterations in the cells' capacity to form food vacuoles.  相似文献   

8.
Following a 1-h incubation of bovine alveolar macrophages in 1 to 2 mg/ml exogenous horseradish peroxidase (HRP), ultrathin sections revealed vacuolar interconnections among both labeled and unlabeled vacuoles constituting the lysosomal compartment. Four entire cells and their vacuolar components were subsequently computer resconstructed from serial transmission electron micrographs and measured using a morphometric technique. HRP-labeled and unlabeled vacuoles ranged in size from 0.5 micron to greater than or equal to 4.0 microns in diameter and occupied up to 25% of the cytoplasmic volume. HRP-containing vacuoles were distributed throughout each cell in a clumped distribution (P less than 0.05) and occupied up to 75% of the total vacuole compartment. Up to 60% of all vacuoles were interconnected through a series of openings formed by membrane fusions (average pore diameter 0.42 micron), which resulted in a labyrinth of vacuoles comprising up to 55% of the total volume of the lysosomal compartment. The area of open interconnections resulting from vacuolar fusions represented less than 1% of the total surface area of the lysosomal membrane. Rotation of a three-dimensionally reconstructed macrophage about the Y-axis revealed an interconnected vacuolar network of 75 fused vacuoles in a chain up to 21 microns in length. We have demonstrated that HRP-labeled vacuoles interconnect with each other as well as with preexisting unlabeled vacuoles. As a result of such interconnections, individual vacuoles become contributing members of a large, continuous, lysosomal compartment in bovine alveolar macrophages.  相似文献   

9.
Pairs of guard cells form small pores called stoma in the epidermis, and the reversible swelling and shrinking of these guard cells regulate the stomatal apertures. The well-documented changes in guard cell volume have been associated with their vacuolar structures. To investigate the contribution of the guard cell vacuoles to stomatal movement, the dynamics of these vacuolar structures were recently monitored during stomatal movement in vacuolar-membrane visualized Arabidopsis plants. Calculation of the vacuolar volume and surface area after reconstruction of three-dimensional images revealed a decrease in the vacuolar volume but an increase in the vacuolar surface area upon stomatal closure. These results implied the possible acceleration of membrane trafficking to the vacuole upon stomatal closure and membrane recycling from the vacuole to the plasma membrane upon stomatal opening. To clarify and quantify membrane trafficking during stomatal movement, we describe in this addendum our development of an improved image processing system.Key words: stomata, guard cells, vacuole, membrane traffic, image processing  相似文献   

10.
In this study, this protein was overexpressed in yeast cells grown on trehalose-containing medium to assess its impact on yeast vacuolar activity. ATH was confirmed to be located in both cell surface and vacuoles and the overexpression of ATH was observed to decrease vacuolar activity. Therefore, an assumption was suggested to explain this phenomenon as follows: when grown on containing trehalose medium, the ATH localization at cellular periplasm, but not the vacuole, is prioritized to utilize the extracellular trehalose for cell growth. The multivesicular body pathway (MVB pathway) via which ATH is transported into vacuoles is believed to be down-regulated to favor the accumulation of ATH at cell surface area. By extension, other vacuolar proteins travelling through MVB pathway to reach yeast vacuoles likely also suffer the down regulation. It can be concluded that acid trehalase may contribute down regulation of other vacuolar proteins through MVB pathway. This study suggests that it is a potential of acid trehalase (ATH) on impaired activity of yeast vacuolar.  相似文献   

11.
The chitinivorous ciliate Ascophrys, an ectosymbiont of the shrimp Palaemon serratus, is enclosed by a thick cyst wall except for a ventral hiatus exposing a circular area of exoskeleton to the interior of the cyst. The exoskeleton underlying the cyst wall remains intact, but the circular area of exoskeleton is dissolved enzymatically and ingested. The feeding ciliate forms a cavity in the exoskeleton into which it sinks. Its complex oral apparatus resembles a pump encircled by cytoplasm containing Golgi and high concentrations of coated vesicles that join pellicular pores between cilia. The ingestive apparatus is formed of microtubular lamellae that originate in the midplane of the body, descend toward a coated membrane on the surface, and ascend again as a lamellar lining to a complex food tube that ends in the middle of the body surrounded by food vacuoles. The cytoplasm enclosed between the descending lamellae and the food tube is crowded with membrane organelles that recycle as food vacuole membranes at the coated membrane. We hypothesize that vacuoles containing dissolved exoskeleton are drawn up into the oral tube and are released into the cytoplasm at the terminus of the tube, where their contents are concentrated and excess vacuolar membrane collapsed into membrane organelles.  相似文献   

12.
ABSTRACT Netzelia tuberculata secretes a test composed of siliceous particles cemented together by organic plaques forming a single-layered spheroidal shell. The siliceous particles are produced within cytoplasmic vacuoles by three mechanisms: 1) synthesis de novo by deposition of the silica on a matrix; 2) deposition of silica on particles remaining in digestive vacuoles, including starch grains and undigested walls of yeast cells; and 3) secretion of silica as a hollow sphere at the periphery of vacuoles enclosed by the silicasecreting membrane. The silicalemma (silica-secreting membrane) originates as fibril-containing vesicles (GFV) secreted by the Golgi body. Fusion of these vesicles with membranes surrounding digestive vacuoles or with membranes surrounding specialized vacuoles containing a silica-binding matrix apparently converts the vacuole into a silica-depositing organelle. Small spherules of silica occur on the vacuolar side of the membrane surrounding the developing test granules, marking the presence of silicalemma activity. These colloidal spherules become aggregated into larger spherules that condense to form the siliceous surface of the developing test particle. Other Golgi vesicles, designated Golgi plaque vesicles (GPV), produce the organic plaques that are deposited among the siliceous particles at the periphery of the cell during new test construction during cell division. The fine structure of the GFV and GPV and their role in test wall deposition are discussed in relation to other silica-biomineralizing protozoa, including radiolaria.  相似文献   

13.
K. V. Wolf  W. Stockem 《Protoplasma》1979,99(1-2):125-138
Summary The investigation of endocytotic processes in axenically cultured microplasmodia ofPhysarum polycephalum is considerably complicated by the development of an extensive cell membrane invagination system. Cross-sections through single channels of this system are difficult to distinguish from vacuoles formed endocytotically. Therefore the whole system was labelled by staining the extracellular slime with ruthenium red or lanthanum hydroxide. In this way endosomes produced during the incubation period could be clearly identified. Aerosil andThorotrast are suitable markers for food vacuoles because they can easily be detected with the electron microscope. The application of these substances revealed that submerged cultured microplasmodia are able to form endosomes which contain material of extracellular origin. However, the endocytotic uptake of food material is of much less intensity than in normal macroplasmodia. Microplasmodia seem to cover most of their requirements for metabolic substances by active trans-membrane transport.The intracellular digestive system of microplasmodia corresponds to the vacuolar apparatus of other cells. Preexisting lysosomes originating by autophagic processes play a central role in this system: They coalesce with endosomes or secondary lysosomes thus forming digestion vacuoles. Indigestible food components are extruded together withCa-containing granules into the cell surface invagination system by defecation. The physiological significance of theCa-granules is unknown.  相似文献   

14.
Summary This study was undertaken to determine whether the numerous cytoplasmic tubules (CT) in the apical cytoplasm of goldfish hindgut absorptive cells are directly involved in the endocytotic transport of macromolecules into the cells, or whether they are derived from the intracellular membrane components. The absorptive cells were exposed to horseradish peroxidase (HRP)-containing medium in organ culture and subsequently fixed and prepared for electron microscopy. Analysis revealed that 5 sec after exposure, many vesicular structures, including coated vesicles, were labelled with reaction product whereas almost all CT were negative. After a 1-min exposure, reaction product was detected in about 11 % of the CT, and thereafter, the percentage increased to about 95% after 15 min exposure. As labelled CT increased in number, the number of densely labelled vacuoles with attached CT also increased. CT connected to vacuoles with a peripheral margin of dense reaction product were always HRP-positive, whereas those connected to vacuoles which were not distinctly labelled were themselves also devoid of HRP reaction product. This indicated that the labelling of CT was closely associated with the labelling of the inner surface of the vacuolar membrane. These results indicate that CT are probably formed by a budding off from these vacuoles, rather than being directly involved in endocytosis.  相似文献   

15.
The vacuoles of Neurospora crassa, grown in minimal medium, contain a 1:1 ratio of basic amino acids and phosphate, the latter in the form of long-chain, inorganic polyphosphate-P. Vacuoles isolated from cells depleted of polyphosphate retain basic amino acids despite the absence of over 90% of their polyphosphate. Thus, vacuolar retention of basic amino acids is not dependent upon binding to or charge neutralization by polyphosphate. Polyphosphate was found to be the only macromolecular polyanion in vacuoles of normal or phosphate-depleted cells. Gel filtration experiments revealed that about half the polyphosphate of normal vacuoles is bound strongly by vacuolar spermidine, Mg2+, and Ca2+. The polyphosphate thus occupied was not available for basic amino acid binding. We have identified about 90% of the cations of isolated vacuoles; in addition to spermidine, Mg2+, and Ca2+, the cation pool consists mainly of arginine, ornithine, histidine, lysine, and Na+, with a small amount of K+. Isolated vacuoles appear to be almost wholly impermeable to all these ions, and in vivo, vacuoles appear to be highly selective in ion uptake by an active process. The interaction of basic amino acid with the available polyphosphate was found to reduce the chemical activity of the former. In keeping with this effect, cells with abnormally high basic amino acid-polyphosphate ratios displayed greatly swollen vacuoles, indicating considerable osmotic activity of the basic amino acids and their counterions under these conditions.  相似文献   

16.
We studied the fate of different Trypanosoma cruzi trypomastigote forms after they invade Vero cells persistently colonised with Coxiella burnetii. When the invasion step was examined we found that persistent C. burnetii infection per se reduced only tissue-culture trypomastigote invasion, whereas raising vacuolar pH with Bafilomycin A1 and related drugs, increased invasion of both metacyclic and tissue-culture trypomastigotes when compared with control Vero cells. Kinetic studies of trypomastigote transfer indicated that metacyclic trypomastigotes parasitophorous vacuoles are more efficiently fused to C. burnetii vacuoles. The higher tissue-culture trypomastigote hemolysin and transialidase activities appear to facilitate their faster escape from the parasitophorous vacuole. Sialic acid deficient Lec-2 cells facilitate the escape of both forms. Endosomal-lysosomal sequential labelling with EEA1, LAMP-1, and Rab7 of the parasitophorous vacuoles formed during the entry of each infective form revealed that the phagosome maturation processes are also distinct. Measurements of C. burnetii vacuolar pH disclosed a marked preference for trypomastigote fusion with more acidic rickettsia vacuoles. Our results thus suggest that intravacuolar pH modulates the traffic of trypomastigote parasitophorous vacuoles in these doubly infected cells.  相似文献   

17.
Duan XG  Yang AF  Gao F  Zhang SL  Zhang JR 《Protoplasma》2007,232(1-2):87-95
Summary. The vacuolar H+-translocating inorganic pyrophosphatase (H+-PPase) uses pyrophosphate as substrate to generate the proton electrochemical gradient across the vacuolar membrane to acidify vacuoles in plant cells. The heterologous expression of H+-PPase genes (TsVP from Thellungiella halophila and AVP1 from Arabidopsis thaliana) improved the salt tolerance of tobacco plants. Under salt stress, the transgenic seedlings showed much better growth and greater fresh weight than wild-type plants, and their protoplasts had a normal appearance and greater vigor. The cytoplasmic and vacuolar pH in transgenic and wild-type cells were measured with a pH-sensitive fluorescence indicator. The results showed that heterologous expression of H+-PPase produced an enhanced proton electrochemical gradient across the vacuolar membrane, which accelerated the sequestration of sodium ions into the vacuole. More Na+ accumulated in the vacuoles of transgenic cells under salt (NaCl) stress, revealed by staining with the fluorescent indicator Sodium Green. It was concluded that the tonoplast-resident H+-PPase plays important roles in the maintenance of the proton gradient across the vacuolar membrane and the compartmentation of Na+ within vacuoles, and heterologous expression of this protein enhanced the electrochemical gradient across the vacuolar membrane, thereby improving the salt tolerance of tobacco cells. Correspondence: J.-R. Zhang, School of Life Science, Shandong University, 27 Shanda South Road, Jinan, People’s Republic of China 250100.  相似文献   

18.
Abstract Cells of Porphyra umbilicalis show a biphasic osmotic regulatory response. After transfer from 1 × into 3.5 × artificial seawater medium (osmotic upshock) the protoplasts shrink rapidly, then recover their original size within 3 h and continue to increase over the next 14 d. After retransfer from 3.5 × into 1 × medium (osmotic downshock) the protoplasts swell immediately and then adjust to the normal size in 1 x medium. Parallel to the shrinkage of the protoplasts after osmotic upshocks the plasmalemma at first gets a wavy surface which becomes smooth again during the following adaptation process. Immediately after osmotic upshock the vacuolar volume increases and it decreases drastically after osmotic downshock. After osmotic upshocks only small vacuoles are present at first. In adapted plants, however, the vacuolar system is mainly composed of large vacuoles. The volume of the protoplasm without the vacuoles is regulated osmotically. Parallel to the increase in the vacuolar volume after osmotic upshocks there is an increase in the number of intramembraneous particles on the PF-face of the tonoplast. This high value is reduced rapidly to the original number after osmotic downshock. The findings are discussed in relation to the function of the vacuoles as compartments of inorganic ion accumulation during osmotic adaptation.  相似文献   

19.
J774.2 macrophages cultured in medium containing 10 mg/ml sucrose accumulate the sugar by pinocytosis and become highly vacuolated, due to the sugar's osmotic effect within the vacuolar compartment. When such cells are incubated in medium containing 0.5 mg/ml invertase, the enzyme reaches the sucrose vacuoles by pinocytosis, then cleaves the sugar to more permeant monosaccharides. Within 4 hours, the vacuoles shrink to smaller, phase-dense organelles (Cohn and Ehrenreich, 1969, J. Exp. Med., 129:201). We have used this reversible expansion of the lysosomal compartment to address two questions: (1) Does the increased size of the lysosomal compartment affect pinocytic accumulation of solute, and (2) what is the fate of the vacuolar membrane and its soluble content during invertase-induced vacuole shrinkage? Using lucifer yellow (LY) as a probe for pinocytic fluid influx and efflux, we found that vacuolated cells accumulated 30–50% less LY than controls and returned to higher rates of pinocytosis after invertase-induced vacuole shrinkage. A similar reduction in LY accumulation was achieved after feeding cells latex beads to increase the size of the lysosomal compartment. Thus, treatments that increased the size of the lysosomal compartment reduced solute accumulation via pinocytosis. A dramatic shrinkage of LY-containing sucrose vacuoles followed pinocytosis of invertase. Despite this reduction in size of the LY-containing vacuoles, the overall rate of LY efflux did not increase significantly during invertase-induced vacuole collapse. Electron microscopy revealed that during shrinkage, the excess vacuolar membrane was compressed into whorled membranous organelles (residual bodies), with fluid markers (colloidal gold and, by inference, LY) trapped inside. The trapping of LY inside lysosomes as J774.2 macrophages returned to their normal dimensions indicates that nearly all of the surplus membrane contents were removed from circulation as well.  相似文献   

20.
SYNOPSIS. A procedure was devised for the isolation of purified food vacuoles from Tetrahymena pyriformis fed particles of ferric oxide. Phospholipids extracted from vacuolar membranes were more similar in composition to the lipids of microsomes than to lipids of whole cells, cilia or post-microsomal supernatant. Fractionation of cells grown in the presence of [14C]palmitic acid or [32P]inorganic phosphate also revealed similarities in the specific radioactivities of microsomes and vacuolar membranes. The data suggested that vacuolar membranes arise from a pool of cytoplasmic membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号