首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Summary Acrosome morphogenesis commences in the juxtanuclear cytoplasm at the posterior end of spermatids of Lumbricus terrestris. A dense rod-shaped structure and the Golgi apparatus together participate first in forming an acrosome vesicle that contains the acrosome granule, and somewhat later shape the conical base of the acrosome in the cytoplasm beneath the vesicle. Cytoplasmic flow may account for the migration of the immature acrosome to the apical surface of the nucleus of the spermatid. Manchette microtubules play a key role in the final modelling of the acrosome. Sheathed by the manchette the acrosome elongates to 3–4 times its pre-attachment length. The conical base of the acrosome then extends anteriorly to enclose the acrosome vesicle. A dense rod emerging from the rod-shaped granule occupies an indentation of the base of the acrosome vesicle. The mature acrosome of Lumbricus is an extremely complex structure about 5–7 microns long and is bounded by the plasmalemma of the spermatozoon.This study was supported by a research training grant GM-00582-07 from the Public Health Service.  相似文献   

2.
This study describes the morphology of the sperm cell of Maja brachydactyla, with emphasis on localizing actin and tubulin. The spermatozoon of M. brachydactyla is similar in appearance and organization to other brachyuran spermatozoa. The spermatozoon is a globular cell composed of a central acrosome, which is surrounded by a thin layer of cytoplasm and a cup‐shaped nucleus with four radiating lateral arms. The acrosome is a subspheroidal vesicle composed of three concentric zones surrounded by a capsule. The acrosome is apically covered by an operculum. The perforatorium penetrates the center of the acrosome and has granular material partially composed of actin. The cytoplasm contains one centriole in the subacrosomal region. A cytoplasmic ring encircles the acrosome in the subapical region of the cell and contains the structures‐organelles complex (SO‐complex), which is composed of a membrane system, mitochondria with few cristae, and microtubules. In the nucleus, slightly condensed chromatin extends along the lateral arms, in which no microtubules have been observed. Chromatin fibers aggregate in certain areas and are often associated with the SO‐complex. During the acrosomal reaction, the acrosome could provide support for the penetration of the sperm nucleus, the SO‐complex could serve as an anchor point for chromatin, and the lateral arms could play an important role triggering the acrosomal reaction, while slightly decondensed chromatin may be necessary for the deformation of the nucleus. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
We describe sperm ultrastructure and acrosome differentiation during spermiogenesis in Crassostrea gigas (Mollusca Bivalvia). The sperm cell is a uniflagellated cell of the primitive type. The head region contains a rounded or conical nucleus surmounted by small acrosome. This organelle consists of a membrane-bound acrosomal granule, the contents of which have a homogeneous density, except in the anterior region, which is positive for PTA. The acrosome also surrounds the perforatorium, which includes oriented fibrillar elements: this is the axial body. The middle piece contains four mitochondria encircling two perpendicular centrioles. The distal centriole is provided with a system of mechanical fixation to the plasma membrane, consisting of nine fibers in radial arrangement. The tail flagellum, about 50 m?m long, contains the usual microtubular axoneme. © 1993 Wiley-Liss, Inc.  相似文献   

4.
Summary

A vesicle which contains moderately electron-dense material has been found at the apex of mature spermatozoa in all representatives of three pleurogonan families: in Styela clava, Cnemidocarpa finmarkiensis and Botryllus schlosseri (family Styelidae), in Boltenia villosa and Herdmania momus (family Pyuridae), and in Molgula manhattensis (family Molgulidae). The vesicle described here resembles the acrosome of Ciona intestinalis spermatozoa. The Ciona acrosome shows structural changes at fertilization (Fukumoto, M., J. Ultrastruct. Res., 87 (1984) 252–262). This suggests that pleurogonan spermatozoa also have an acrosome. Some speculations are presented on ascidian fertilization.  相似文献   

5.
Summary The spermatozoon of Ascidia callosa has a head with a wedge-shaped tip. Between the nuclear envelope and the plasmalemma, at the tip of the head, there are one or two previously undescribed vesicles, 45 to 55 nm in diameter. These vesicles have the characteristics of an acrosome. Their role in the process of fertilization has not been determined. Ultrastructural studies of sperm activation are needed, but claims that the spermatozoa of ascidians do not have an acrosome should be reconsidered.Behind the tip of the sperm there are pores in the nuclear envelope. This part of the envelope also contains a dense band of amorphous material that may have a supportive function. A nearly identical structure, associated with pores has been found in the spermatozoon of Boltenia villosa. An analysis of the nuclear envelope of Ascidia callosa indicates that the same structure has previously been misinterpreted as an acrosome in the spermatozoon of Ascidia nigra.  相似文献   

6.
The identification of Diopatra species lacks of clear diagnostic features of taxonomic importance and the knowledge of their reproductive characters is scant. The spermatozoa of Diopatra neapolitana were ultrastructurally investigated by electron microscopy in order to correlate the mode of reproduction with sperm cells morphology. The mature male gamete has a depressed subspherical nucleus, a cone-like acrosome, and a long flagellum. The acrosome is conical in shape and radially symmetrical, with a base diameter twice the height. Within the acrosome vesicle, the basal region includes a very electron-dense thickened ring composed of paracrystalline substances. The subacrosomal space is filled with a poorly electron-dense material, with straight filaments axially arranged to form a perforatorium. The nucleus contains the complete axial canal, holding the hind perforatorium region. The middle piece consists of five mitochondria with well-distinct membranes and tubulo-vesicular cristae. Two centrioles are located perpendicularly to each other. The proximal one lies in the central fossa and the distal one, slightly eccentric to the sperm axis, anchors to the plasma membrane by nine satellite rays of the pericentriolar complex. The axoneme has a 9+2 arrangement of microtubules. In general, the spermatozoon of D. neapolitana conforms exteriorly to the typical ect-aquasperm; the acrosome complex ultrastructure, however, shows noticeable modifications from the basic form. This finding agrees with the previously observed reproductive pattern (broadcast spawning—free-swimming larvae) of D. neapolitana belonging to Santa Gilla population, and may be helpful to solve the taxonomic problems of the D. neapolitana complex as well.  相似文献   

7.
The sperm of Marthasterias glacialis (Linnaeus) was studied by light and electron microscopy. It is a long uniflagellated cell of the “primitive” type. The head has a spherical shape and contains a nucleus with a spheroid acrosome lying in a cup-shaped anterior fossa. The acrosome is formed by an acrosomal vesicle surrounded by the periacrosomal material. The basal specializations of the acrosomal vesicle show a clear differentiation of its constituents resembling the structure of membrane. The midpiece contains a very large annular mitochondrion which encircles two perpendicular centrioles. The distal centriole is in close association with a pericentriolar radial complex. The tail, containing a common microtubular axoneme, is projected to a variable position.  相似文献   

8.
W. G. Breed 《Acta zoologica》1998,79(4):277-285
The structural organisation of the spermatozoon from two species of bandicoot rats Bandicota bengalensis and Bandicota indica was investigated by light and electron microscopy together with the effect of incubation in Triton-X 100 and sodium dodecyl sulphate. The sperm head of B. bengalensis is invariably falciform, has a uniform electron-dense nucleus capped by an acrosome with a posteriolateral equatorial segment, a subacrosomal cytoskeleton with a large rostral perforatorium, and a sperm tail, attached to the lower concave surface of the sperm head, with typical coarse fibres and fibrous sheath. By contrast, the sperm head shapes of B. indica are generally conical or bulbous, the nucleus contains a few large vacuoles, the acrosome lacks an equatorial segment, no recognisable perforatorium occurs, and the sperm tail, which is attached basally, is very short with only modest development of coarse fibres and fibrous sheath. These results indicate that, within the genus Bandicota, huge interspecific differences in morphology of the spermatozoon have evolved. The spermatozoa of B. bengalensis are similar to those of Rattus and many other murids and thus presumably represent the ancestral condition, whereas those of B. indica (and B. savilei) are unlike spermatozoa from any other eutherian mammal so far described. © 1998 The Royal Swedish Academy of Sciences. Published by Elsevier Science Ltd. All rights reserved  相似文献   

9.
Passerine spermatozoa exhibit apomorphies that distinguish them from non‐passerine neognaths and palaeognaths. The acrosome is longer than the nucleus (excepting the suboscines, most Corvida, and a few Passerida). A perforatorium and endonuclear canals are absent. The proximal centriole is absent (except in the suboscines). The distal centriole is secondarily short, contrasting with its elongate condition in palaeognaths and Galloanserae. In the Passerida a single mitochondrial strand winds extensively along the axoneme (restricted to the anterior axoneme in suboscines and Corvida). A fibrous, or amorphous, periaxonemal sheath, seen in palaeognaths and many non‐passerines, respectively, is absent. The acrosome in Myrmecocichla formicivora and Philetairus socius is bipartite: an acrosome core is surmounted by an acrosome crest; the core is ensheathed by a layer which is a posterior extension of the crest. The acrosome helix is a lateral extension of the crest and the crest layer with (Myrmecocichla) or without (Philetairus) protrusion of material of the acrosome core into it. In M. formicivora, as in other muscicapoids, a fibrous helix is intertwined with at least the more proximal region of the mitochondrial helix. The fibrous helix is absent at maturity in Philetairus and other described passeroid spermatozoa with the possible exception of Passer italiae. In Philetairus a granular helix precedes the mitochondrial helix.  相似文献   

10.
This paper investigates by scanning and transmission electron microscopy spermiogenesis and spermatozoon morphology of the gonochoristic eutardigrade Xerobiotus pseudohufelandi (Macrobiotidae). During spermiogenesis clusters of spermatids are connected by cytoplasmic bridges that persist up to an advanced stage of maturation. Spermiogenesis is characterized by distinctive modifications of the nucleus and by the differentiation of an acrosome, tail and substantial midpiece. Testicular spermatozoa are folded with the hinge located between the head and midpiece, thus resembling a nut-cracker. The head includes a rod-shaped, bilayered acrosome and an elongated, helicoidal nucleus with condensed chromatin. The large kidney-shaped midpiece has hemispherical swellings/ovoid elements surrounding the centriole and an incomplete mitochondrial sleeve. The flagellum contains a ‘9+2’ axoneme and terminates in a tuft of microtubules. Spermathecal spermatozoa always have linear profiles. The acrosome and nucleus have the same morphological pattern as in testicular spermatozoa, whereas the midpiece is thin and lacks the hemispherical swellings, and the tail is reduced to a short stub. Functional considerations are presented, based upon this different morphology. Moreover, phyletic comparisons are made on the basis of sperm morphology, both for the family Macrobiotidae and the class Eutardigrada. J. Morphol. 234:11–24, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
A morphological comparison of the spermatozoa of the octopods Bathypolypus bairdii and B. sponsalis has been carried out by electron microscopy. Although the mature spermatozoon of B. bairdii is longer and thinner than that of B. sponsalis, its general ultrastructure is similar except for some minor differences. Their characteristic acrosomes, described here for the first time, consist of a periodically banded cone surrounded by a double helix whose arrangement has been defined by a numeric expression. The plasma membrane of sponsalis that surrounds the acrosome has many projections filled with abundant granular cytoplasm, which appears as a star‐shaped acrosome in cross‐section. The mitochondrial sheath contains 9–11 mitochondria in bairdii but only 9 in sponsalis. A comparison with other Octopodidae shows that the nucleus of both species is the largest ever seen. Our results support the capability of sperm morphology to discriminate between species and could even discern at higher taxonomic levels. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
We describe chromatin condensation and acrosome development during spermiogenesis of Ensis ensis. The overall shape of the mature spermatozoon corresponds to the primitive type. The nucleus is oval and on its superior pole there is an elongated acrosome; the middle piece contains four mitochondria around the centriolar complex. The condensation of the nuclei seems to occur in three steps: first the diameter of chromatin fibers increases slightly from 17 to 20 nm; second, in midspermatids fiber pairs coalesce; and third, the coalescence continues by addition of other fibers until the nuclei become highly compacted. Chromatin changes are related with nuclear protein composition. Small proacrosomal vesicles show two regions of different electron density. At a later stage they fuse to give a single, spherical vesicle in round spermatids, which migrates to the upper pole and transforms into a tapered acrosome (18 μm long) with a central channel filled with finely fibrous material. © 1994 Wiley-Liss, Inc.  相似文献   

13.
In this paper spermatogenesis and sperm ultrastructure of the cockle Anadara granosa are studied using transmission electron microscopy. The spermatocyte presents electron-dense vesicles and the arising axoneme that begins to form the flagellum. During spermatid differentiation, proacrosomal vesicles appear to migrate towards the presumptive anterior pole of the nucleus; eventually these vesicles become acrosome. The spermatozoon of Anadara granosa is of the primitive type. The acrosome, situated at the apex of the nucleus, is cap-shaped and deeply invaginated at the inner side. The spherical nucleus of the spermatozoon contains dense granular chromatin and shows invagination at the posterior poles. The centriole shows the classic nine triplets of microtubules. The middle piece consists of the centriolar complex surrounded by five giant mitochondria. It is shown that the ultrastructure of spermatozoa and spermiogenesis of Anadara granosa reveals a number of features that are common among bivalves. Received: 29 September 1998 / Received in revised form: 20 May 1999 / Accepted: 14 June 1999  相似文献   

14.
The spermatogenesis, the spermiogenetic process and the structure of the mature spermatozoon of Acanthodasys aculeatus (Gastrotricha, Macrodasyida) are described from an ultrastructural point of view. Several spermatogonia in mitotic divisions were seen, proving that euthely of gastrotrichs does not concern gonads. Spermiogenesis is characterized by the early formation of both the acrosome and the axoneme, by the subsequent appearances of a perinuclear helix and of a complex axial tubular structure in the acrosome and by the late development of the peraxonemal striated cylinder. The mature spermatozoon is filiform, and composed of a spiralized acrosome, a helical nuclear–mitochondrial complex and a long flagellum. The acrosome contains an axial tubular structure and the spring-shaped nucleus delimits a single, long mitochondrion. A perinuclear helix formed by the pro-acrosome surrounds the nuclear–mitochondrial complex extending for its whole length. A monolayered, obliquely striated cylinder encloses the 9 × 2 + 2 axoneme; its terminal part is empty because of the shortness of the axoneme.  相似文献   

15.
A total of 17 species, in 14 genera of majids have been examined for sperm ultrastructure. The present account describes the sperm of six of these species, in two subfamilies: Pisinae—Sphenocarcinus orbiculatus and Sphenocarcinus stuckiae and Inachinae—Cyrtomaia furici, Grypacheus hyalinus, Platymaia rebierei and Macropodia longirostris. M. longirostris has the only eubrachyuran sperm in which the acrosome is known to depart radically from a subspheroidal form. The acrosome is semilunar in shape and is bordered by a very thin layer of cytoplasm and an unusually uniform, narrow band of chromatin. The apical surface of the acrosome is almost flat, though slightly concave, whereas the posterior surface forms a hemisphere, and is almost completely occupied by the thin, centrally perforate, electron dense operculum. The bulk of the acrosome consists of a homogeneous, moderately electron dense outer acrosome zone. This surrounds a small inner acrosome zone internal to which is an ellipsoidal, pale perforatorium capped by a central acrosome zone. Majid sperm are distinguished by a flattened and/or centrally depressed operculum; a further characteristic is that the pointed perforatorium is relatively short and frequently does not reach the operculum. They vary inter alia with regard to presence or absence of a posterior median process and, apparently, of centrioles and of microtubules in the nuclear arms, and in the number of these arms. Perforation of the operculum, seen in the Pisinae, is not constant in the Inachinae. Spermatozoal ultrastructure offers no certain support for a close relationship of majids with parthenopids or hymenosomatids.  相似文献   

16.
J. M. Healy 《Zoomorphology》1982,100(3):157-175
Summary Mature and developing euspermatozoa of the prosobranch gastropod Pyrazus ebeninus, have been examined using transmission electron microscopy and phase-contrast light microscopy. The head of the mature euspermatozoon consists of a conical acrosome capping a short, rod-shaped nucleus (laterally compressed posteriorly). A basal invagination in the nucleus contains the proximal portion of the axoneme and a dense attachment matrix. Four apparently non-helical mitochondrial elements (two large, two small) comprise the midpiece each being composed of curved, inclined cristal plates and a granular matrix. The structure and arrangement of the mitochondrial elements is thus distinguishable from the helical midpiece elements found in euspermatozoa of neogastropods and most mesogastropods and possibly is widespread in the Cerithiacea. A dense ring-like structure is found closely applied to the inside of the plasma membrane at the junction of midpiece and glycogen piece.Acrosome and midpiece formation and nuclear condensation have been studied in developing euspermatozoa. Acrosome development is divided into two phases: (1) a pre-attachment phase — during which a complex early acrosome is formed often at great distance from the nuclear apex, and (2) an attachment/post-attachment phase — during which the completed preattachment phase acrosome tilts into position at the nuclear apex and subsequently elongates. The nucleus passes through a recognizable sequence of condensation phases (reticular, fibrillar and lamellar phases). Microtubules surround both the nucleus and midpiece in the final phase of maturation. The four, elongate midpiece elements of the mature euspermatozoon are apparently derived from the four large, spherical mitochondria of the euspermatid.The potential usefulness of spermatozoal ultrastructure with regard to indicating affinities between groups of gastropod families is briefly discussed.Abbreviations a acrosome - ac euspermatozoon acrosomal cone - ar euspermatozoon axial rod - ax axoneme - bp basal plate - cy cytoplasmic droplet - cs cylindrical support structures of developing acrosome - dg dense granule of pre-attachment phase developing acrosome - dp dense plates of developing acrosomal cone - g glycogen granules - gp glycogen piece - G Golgi complex - j junction of midpiece and glycogen piece - l large midpiece element - m mitochondrion - M midpiece - mt microtubules - n nucleus - pm plasma membrane - sGv small Golgi vesicles - s small midpiece element  相似文献   

17.
This study reports about the spermatozoal ultrastructure of three species of astacid crayfish, i.e., the stone crayfish Austropotamobius torrentium, signal crayfish Pacifastacus leniusculus, and noble crayfish Astacus astacus. The acrosome is a cup shaped and electron‐dense structure at the anterior of the spermatozoon and comprises three layers of differing electron densities filled with parallel filaments that extend from the base to the apical zone. The acrosome was significantly longer in A. astacus than in P. leniusculus and the shortest acrosome belongs to A. torrentium. The width of the acrosome was significantly narrower in A. torrentium than in P. leniusculus and the widest acrosome belongs to A. astacus. The L:W ratio was significantly greater in A. torrentium than in P. leniusculus and the lowest ratio belongs to A. astacus. Radial arms are visible on each side of the acrosome or nucleus in sagittal view and wrap around the spermatozoon. Each radial arm comprises a parallel bundle of microtubules arranged along the long axis within a sheath. The nucleus, with decondensed material, is located in the posterior of the cell. All parts of the spermatozoon are tightly enclosed within an extracellular capsule. Despite a well‐conserved general structure and similarity of pattern among these spermatozoa, differences in the dimensions of the acrosome within the studied species may be useful to help distinguish the different crayfish species. J. Morphol., 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
The structure of the spermatozoon of Acesta oophaga (Bivalvia) is described by transmission electron microscopy. This cold-seep species produces ect-aquasperm, confirming that it is a broadcast spawner. The head of the sperm consists of a small, rounded, electron-dense nucleus, capped by a short conical acrosome, the contents of which are differentiated. The mid-piece contains a pair of orthogonally arranged centrioles surrounded by five spherical mitochondria. The gonad of one individual contained eggs and sperm, which supports the hypothesis that A. oophaga is a sequential hermaphrodite.  相似文献   

19.
We studied the ultrastructure of spermatogenesis and spermatozoa in the northern quahaug, the clam Mercenaria mercenaria. Spermatogenetic cells gradually elongate. Mitochondria gradually fuse and increase in size and electron density. During spermatid differentiation, proacrosomal vesicles migrate towards the presumptive anterior pole of the nucleus and eventually form the acrosome. The spermatozoon of M. mercenaria is of a primitive type. It is composed of head, mid-piece, and tail. The acrosome shows a subacrosomal space with a short conical contour. The slightly curved nucleus of the spermatozoon contains fine-grained dense chromatin. The middle piece consists of a centriolar complex which is surrounded by four mitochondria. The flagellum has a standard “9 + 2” microtubular structure. The ultrastructure of spermatozoa and spermatogenesis of M. mercenaria shares a number of features with other species of the family Veneridae. M. mercenaria may be a suitable model species for further investigations into the mechanisms of spermatogenesis in the Bivalvia.  相似文献   

20.
Animal sperm show remarkable diversity in both morphology and molecular composition. Here we provide the first report of intense intrinsic fluorescence in an animal sperm. The sperm from a semi‐aquatic insect, the water strider, Aquarius remigis, contains an intrinsically fluorescent molecule with properties consistent with those of flavin adenine dinucleotide (FAD), which appears first in the acrosomal vesicle of round spermatids and persists in the acrosome throughout spermiogenesis. Fluorescence recovery after photobleaching reveals that the fluorescent molecule exhibits unrestricted mobility in the acrosomal vesicle of round spermatids but is completely immobile in the acrosome of mature sperm. Fluorescence polarization microscopy shows a net alignment of the fluorescent molecules in the acrosome of the mature sperm but not in the acrosomal vesicle of round spermatids. These results suggest that acrosomal molecules are rearranged in the elongating acrosome and FAD is incorporated into the acrosomal matrix during its formation. Further, we followed the fate of the acrosomal matrix in fertilization utilizing the intrinsic fluorescence. The fluorescent acrosomal matrix was observed inside the fertilized egg and remained structurally intact even after gastrulation started. This observation suggests that FAD is not released from the acrosomal matrix during the fertilization process or early development and supports an idea that FAD is involved in the formation of the acrosomal matrix. The intrinsic fluorescence of the A. remigis acrosome will be a useful marker for following spermatogenesis and fertilization. J. Cell. Physiol. 226: 999–1006, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号