首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantitative models of genetic change were analyzed to study the effect of inbreeding on the conditions for the evolution of parthenogenesis. Although inbreeding has been proposed as a key factor that may resolve the apparent paradox between the success of biparental reproduction and the genetic advantages of uniparental reproduction, the results indicate that inbreeding does not greatly change the cost of meiosis in diploids and actually increases it in haplodiploids. Inbreeding increases parent-offspring relatedness and the reproductive value of females. These direct effects act antagonistically on the cost of meiosis: higher relatedness between parents and biparentally-derived offspring promotes biparental reproduction, and high reproductive value of females promotes thelytoky. In diploids the two effects cancel one another, while in haplodiploids the latter predominates. A survey by Hamilton (1967) showed that a high proportion of haplodiploid species that undergo close inbreeding have thelytokous relatives, an association that is consistent with the result obtained here that, apart from its effect on the sex ratio, inbreeding directly promotes parthenogenesis in haplodiploids.  相似文献   

2.
Estimates of inbreeding depression obtained from the literature were used to evaluate the association between inbreeding depression and the degree of self-fertilization in natural plant populations. Theoretical models predict that the magnitude of inbreeding depression will decrease with inbreeding as deleterious recessive alleles are expressed and purged through selection. If selection acts differentially among life history stages and deleterious effects are uncorrelated among stages, then the timing of inbreeding depression may also evolve with inbreeding. Estimates of cumulative inbreeding depression and stage-specific inbreeding depression (four stages: seed production of parent, germination, juvenile survival, and growth/reproduction) were compiled for 79 populations (using means of replicates, N = 62) comprising 54 species from 23 families of vascular plants. Where available, data on the mating system also were collected and used as a measure of inbreeding history. A significant negative correlation was found between cumulative inbreeding depression and the primary selfing rate for the combined sample of angiosperms (N = 35) and gymnosperms (N = 9); the correlation was significant for angiosperms but not gymnosperms examined separately. The average inbreeding depression in predominantly selfing species (δ = 0.23) was significantly less (43%) than that in predominantly outcrossing species (δ = 0.53). These results support the theoretical prediction that selfing reduces the magnitude of inbreeding depression. Most self-fertilizing species expressed the majority of their inbreeding depression late in the life cycle, at the stage of growth/reproduction (14 of 18 species), whereas outcrossing species expressed much of their inbreeding depression either early, at seed production (17 of 40 species), or late (19 species). For species with four life stages examined, selfing and outcrossing species differed in the magnitude of inbreeding depression at the stage of seed production (selfing δ = 0.05, N = 11; outcrossing δ = 0.32, N = 31), germination (selfing δ = 0.02, outcrossing δ = 0.12), and survival to reproduction (selfing δ = 0.04, outcrossing δ = 0.15), but not at growth and reproduction (selfing δ = 0.21, outcrossing δ = 0.27); inbreeding depression in selfers relative to outcrossers increased from early to late life stages. These results support the hypothesis that most early acting inbreeding depression is due to recessive lethals and can be purged through inbreeding, whereas much of the late-acting inbreeding depression is due to weakly deleterious mutations and is very difficult to purge, even under extreme inbreeding.  相似文献   

3.
Inbreeding depression is a key factor influencing mating system evolution in plants, but current understanding of its relationship with selfing rate is limited by a sampling bias with few estimates for self‐incompatible species. We quantified inbreeding depression (δ) over two growing seasons in two populations of the self‐incompatible perennial herb Arabidopsis lyrata ssp. petraea in Scandinavia. Inbreeding depression was strong and of similar magnitude in both populations. Inbreeding depression for overall fitness across two seasons (the product of number of seeds, offspring viability, and offspring biomass) was 81% and 78% in the two populations. Chlorophyll deficiency accounted for 81% of seedling mortality in the selfing treatment, and was not observed among offspring resulting from outcrossing. The strong reduction in both early viability and late quantitative traits suggests that inbreeding depression is due to deleterious alleles of both large and small effect, and that both populations experience strong selection against the loss of self‐incompatibility. A review of available estimates suggested that inbreeding depression tends to be stronger in self‐incompatible than in self‐compatible highly outcrossing species, implying that undersampling of self‐incompatible taxa may bias estimates of the relationship between mating system and inbreeding depression.  相似文献   

4.
Gynodioecy, the co-occurrence of female and hermaphroditic individuals within a population, is an important intermediate in the evolution of separate sexes. The first step, female maintenance, requires females to have higher seed fitness compared with hermaphrodites. A common mechanism thought to increase relative female fitness is inbreeding depression avoidance, the magnitude of which depends on hermaphroditic selfing rates and the strength of inbreeding depression. Less well studied is the effect of biparental inbreeding on female fitness. Biparental inbreeding can affect relative female fitness only if its consequence or frequency differs between sexes, which could occur if sex structure and genetic structure both occur within populations. To determine whether inbreeding avoidance and/or biparental inbreeding can account for female persistence in Geranium maculatum, we measured selfing and biparental inbreeding rates in four populations and the spatial genetic structure in six populations. Selfing rates of hermaphrodites were low and did not differ significantly from zero in any population, leading to females gaining at most a 1–14% increase in seed fitness from inbreeding avoidance. Additionally, although significant spatial genetic structure was found in all populations, biparental inbreeding rates were low and only differed between sexes in one population, thereby having little influence on female fitness. A review of the literature revealed few sexual differences in biparental inbreeding among other gynodioecious species. Our results show that mating system differences may not fully account for female maintenance in this species, suggesting other mechanisms may be involved.  相似文献   

5.
Biparental inbreeding is thought to be a common feature of plant populations with restricted pollen dispersal. It is generally assumed that the inbreeding depression frequently observed to accompany self-fertilization can be extrapolated to the lesser degrees of consanguinity involved in biparental inbreeding, but this is virtually untested. To test this assumption, seeds collected from a single natural population of the self-incompatible annual Gaillardia pulchella were used to generate full-sib families derived by crossing either noninbred full-sibs (inbred families) or noninbred nonrelatives (outbred families). Members of each family were divided between high-stress and low-stress treatments that differed in soil volume and nutrient level. Inbred seedlings had a lower chance of survival, were more likely to be morphologically abnormal, and grew more slowly than outbred seedlings, indicating the presence of biparental inbreeding depression. Stress treatment had no significant effect on inbreeding depression, and no family stress-environment interactions were detected. Inbreeding did not increase the among-family variance in growth rate, suggesting that inbreeding depression of growth rate is caused by many genes with small individual effects. Relative to direct estimates of inbreeding depression, observed levels of near-neighbor outcrossing depression, presumed to be biparental inbreeding depression, are surprisingly high in many plant species.  相似文献   

6.
Experimental analysis of biparental inbreeding in a self-fertilizing plant   总被引:2,自引:0,他引:2  
Abstract.— Localized dispersal and mating may genetically structure plant populations, resulting in matings among related individuals. This biparental inbreeding has significant consequences for the evolution of mating systems, yet is difficult to estimate in natural populations. We estimated biparental inbreeding in two populations of the largely self-fertilizing plant Aquilegia canadensis using standard inference as well as a novel experiment comparing apparent selfing between plants that were randomly relocated within populations to experimental control plants. Using two allozyme markers, biparental inbreeding ( b ) inferred from the difference between single-locus and multilocus estimates of selfing ( b = ss – sm ) was low. Less than 3% of matings involved close relatives (mean b = 0.029). In contrast, randomly relocating plants greatly reduced apparent selfing (mean ss = 0.674) compared to control plants that had been dug up and replanted in their original locations ( ss = 0.953, P = 0.002). Based on this difference in ss , we estimated that approximately 30% of all matings involved close relatives (mean b = 0.279, 95% CL = 0.072–0.428). Inference from ss – sm underestimated b in these populations by more than an order of magnitude. Biparental inbreeding is thought to influence the evolution of self-fertilization primarily through reducing the genetic cost of outcrossing. This is unlikely to be of much significance in A. canadensis because inbreeding depression (a major cost of selfing) is much stronger than the cost of outcrossing. However, biparental inbreeding combined with strong inbreeding depression may influence selection on dispersal.  相似文献   

7.
Theoretical studies show that, although inbreeding depression (ID) will counterbalance the transmission advantage of selfing, it can only maintain a mixed mating system in plants when at least one of the following two conditions is met: (1) there is a positive association between selfing rates and the level of ID; and (2) ID is greater than 0.5 for the female component of fitness, while the average ID for male and female fitness is less than 0.5. This study tests whether these two conditions hold in the common morning glory, Ipomoea purpurea, which has a mixed mating system with 30% self-fertilization. Inbreeding depression was found in all but one fitness component measured in two groups of plants with distinct anther-stigma distances (ASD), a character that influences selfing rates. However, when examined separately, a negative association was found between selfing rates and ID; plants with large ASD (low-selfing-rate genotypes) tended to have higher ID than ones with small ASD (high-selfing-rate genotypes). Furthermore, the overall lifetime ID for male (12.5%) and female (24%) components of fitness, averaged across two ASD groups, were lower than what is necessary for ID to maintain an evolutionarily stable mixed mating system. Therefore, although inbreeding depression contributes to balancing the transmission advantage of selfing, it is not likely to be the primary mechanism maintaining the mixed mating system of I. purpurea. The contribution of other mechanisms is discussed.  相似文献   

8.
The partial dominance model for the evolution of inbreeding depression predicts that tetraploids should exhibit less inbreeding depression than their diploid progenitors. We tested this prediction by comparing the magnitude of inbreeding depression in tetraploid and diploid populations of the herbaceous perennial Epilobium angustifolium (Onagraceae). Inbreeding depression was estimated in the greenhouse for three tetraploid and two diploid populations at four life stages. The mating system of a tetraploid population was estimated and compared to a previous estimate for diploids. Tetraploids showed less inbreeding depression than diploids at all life history stages, and these differences were significant for seed-set and cumulative fitness, but not for germination, survival, or plant dry mass at nine weeks. This result suggests that the genetic basis of inbreeding depression may differ among life stages. The primary selfing rate of the tetraploid population was r = 0.43, which is nearly identical to that of a diploid population (r = 0.45), indicating that differences in inbreeding depression between diploids and tetraploids are probably not due to differences in the mating system. Cumulative inbreeding depression, calculated from the four life history stages, was significantly higher for diploids () than for tetraploids (), supporting the partial dominance model of inbreeding depression.  相似文献   

9.
10.
Ritland K 《Heredity》2002,88(4):221-228
Inferences about plant mating systems increasingly use highly informative genetic markers, and investigate finer facets of the mating system. Here, four extensions of models for the estimation mating systems are described. (1) Multiallelic probabilities for the mixed selfing-random mating model are given; these are especially suitable for microsatellites; a generalized Kronecker operator is basis of this formula. (2) Multilocus probabilities for the "correlated-matings model" are given; interestingly, comparisons between single- vs multilocus estimates of correlated-paternity can provide a new measure of population substructure. (3) A measure of biparental inbreeding, the "correlation of selfing among loci", is shown to approximate the fraction of selfing due to uniparental (as opposed to biparental) inbreeding; also joint estimation of 1- 2- and 3-locus selfing rates allow separation, under a simple model, of the frequency vs the magnitude of biparental inbreeding. (4) Method-of-moments estimators for individual outcrossing rates are given. Formulae are given for both gymnosperms and angiosperms, and the computer program "MLTR" implements these methods.  相似文献   

11.
The observation that offspring produced by the mating of close relatives are often less fit than those produced by matings between unrelated individuals (i.e., inbreeding depression) has commonly been explained in terms of the increased probability of expressing deleterious recessive alleles among inbred offspring (the partial dominance model). This model predicts that inbreeding depression should be limited in regularly inbreeding populations because the deleterious alleles that cause inbreeding depression (i.e., the genetic load) should be purged by regularly exposing these alleles to natural selection. We indirectly test the partial dominance model using four highly inbred populations of an androdioecious crustacean, the clam shrimp Eulimnadia texana. These shrimp are comprised of males and hermaphrodites, the latter capable of either self-fertilizing or mating with a male (i.e., outcrossing between hermaphrodites is impossible). Hermaphrodites are further subdivided into monogenics (produced via self-fertilization) and amphigenics (produced via self-fertilization or outcrossing). Electrophoretic evidence suggests significant differences in heterozygosity among populations, but that selfing rates were not statistically different (average s = 0.67). Additional electrophoretic analyses reveal that three previously described sex-linked loci (Fum, Idh-1, and Idh-2) are all tightly linked to each other, with crossing over on the order of 1% per generation. Although selfing rates are clearly high, we present evidence that early inbreeding depression (hatching rates, juvenile survival, and age at sexual maturity) exists in all four populations. For all of these factors, inbreeding depression was inferred by the positive correlation of multilocus heterozygosity and fitness. Cumulative inbreeding depression (8) is between 0.41 and 0.47 across all populations, which appears to be too low to limit the effects of purging via identity disequilibrium. Instead, we suggest that the maintenance of inbreeding depression in these populations is due to the observed linkage group, which we suggest contains a large number of genes including many related to fitness. Segregation of such a large linkage group would explain our observations of the predominance of amphigenic hermaphrodites in our field samples and of survival differences between monogenics and amphigenics within selfed clutches. We propose that a modified form of the overdominance model for inbreeding depression operating at the level of linkage groups maintains the observed levels of inbreeding depression in these populations even in the face of high rates of selfing.  相似文献   

12.
The amounts of inbreeding depression upon selfing and of heterosis upon outcrossing determine the strength of selection on the selfing rate in a population when this evolves polygenically by small steps. Genetic models are constructed which allow inbreeding depression to change with the mean selfing rate in a population by incorporating both mutation to recessive and partially dominant lethal and sublethal alleles at many loci and mutation in quantitative characters under stabilizing selection. The models help to explain observations of high inbreeding depression (> 50%) upon selfing in primarily outcrossing populations, as well as considerable heterosis upon outcrossing in primarily selfing populations. Predominant selfing and predominant outcrossing are found to be alternative stable states of the mating system in most plant populations. Which of these stable states a species approaches depends on the history of its population structure and the magnitude of effect of genes influencing the selfing rate.  相似文献   

13.
Several recent theoretical considerations of mating-system evolution predict within-population covariation between levels of inbreeding depression and genetically controlled mating-system characters. If inbreeding depression is caused by deleterious recessive alleles, families with characters that promote self-pollination should show lower levels of inbreeding depression than families with characters that promote outcrossing. The converse is expected if inbreeding depression is due to overdominant allelic interactions. Whether these associations between mating-system and viability loci evolve will have important consequences for mating-system evolution. The evolution of selfing within the genus Mimulus is associated with a reduction in stigma-anther separation (i.e., a loss of herkogamy) and high autogamous seed set. In this study we compared families from two M. guttatus populations that differed genetically in their degree of stigma-anther separation. In one of these populations we also compared families that differed genetically in the degree to which they autogamously set seed in a pollinator-free greenhouse. Dams often differed significantly in levels of inbreeding depression for aboveground biomass and flower production, but variation in inbreeding depression was never explained by herkogamy class or autogamy class. Several factors might account for why families with traits associated with selfing did not show lower inbreeding depression, and these are discussed. Our study also demonstrated significant variation among self progeny from a given female likely due to differences in pollination date and position of fruit maturation. The detection of significant dam × sire interactions suggests biparental inbreeding or differences in combining ability for specific pairs of parents.  相似文献   

14.
If inbreeding depression is caused by deleterious recessive alleles, as suggested by the partial dominance hypothesis, a negative correlation between inbreeding and inbreeding depression is predicted. This hypothesis has been tested several times by comparisons of closely related species or comparisons of populations of the same species with different histories of inbreeding. However, if one is interested in whether this relationship contributes to mating-system evolution, which occurs within populations, comparisons among families within a population are needed; that is, inbreeding depression among individuals with genetically based differences in their rate of selfing should be compared. In gynodioecious species with self-compatible hermaphrodites, hermaphrodites will have a greater history of potential inbreeding via both selfing and biparental inbreeding as compared to females and may therefore express a lower level of inbreeding depression. We estimated the inbreeding depression of female and hermaphrodite lineages in gynodioecious Lobelia siphilitica in a greenhouse experiment by comparing the performance of selfed and outcrossed progeny, as well as sibling crosses and crosses among subpopulations. We did not find support for lower inbreeding depression in hermaphrodite lineages. Multiplicative inbreeding depression (based on seed germination, juvenile survival, survival to flowering, and flower production in the first growing season) was not significantly different between hermaphrodite lineages (δ = 0.30 ± 0.08) and female lineages (δ = 0.15 ± 0.18), although the trend was for higher inbreeding depression in the hermaphrodite lineages. The population-level estimate of inbreeding depression was relatively low for a gynodioecious species (δ = 0.25) and there was no significant inbreeding depression following biparental inbreeding (δ = 0.01). All measured traits showed significant variation among families, and there was a significant interaction between family and pollination treatment for four traits (germination date, date of first flowering, number of flowers, and aboveground biomass). Our results suggest that the families responded differently to selfing and outcrossing: Some families exhibited lower fitness following selfing whereas others seemed to benefit from selfing as compared to outcrossing. Our results support recent simulation results in that prior inbreeding of the lineages did not determine the level of inbreeding depression. These results also emphasize the importance of determining family-level estimates of inbreeding depression, relative to population-level estimates, for studies of mating-system evolution.  相似文献   

15.
Predominantly outcrossing plant species are expected to accumulate recessive deleterious mutations, which can be purged when in a homozygous state following selfing. Individuals may vary in their genetic load because of different selfing histories, which could lead to differences in inbreeding depression among families. Lineage-dependent inbreeding depression can appear in gynodioecious species if obligatory outcrossed females are more likely to produce female offspring and if partially selfing hermaphrodites are more likely to produce hermaphrodites. We investigated inbreeding depression at the zygote, seed, and germination stages in the gynomonoecious-gynodioecious Dianthus sylvestris, including pure-sexed plants and a mixed morph. We performed hand-pollinations on 56 plants, belonging to the three morphs, each receiving 2-3 cross treatments (out-, sib- and self-pollination) on multiple flowers. Effects of cross treatments varied among stages and influenced seed provisioning, with sibling competition mainly occurring within outcrossed fruits. We found significant inbreeding depression for seed mass and germination and cumulative early inbreeding depression varied greatly among families. Among sex morphs, we found that females and hermaphrodites differed in biparental inbreeding depression, whereas uniparental was similar for all. Significant inbreeding depression levels may play a role in female maintenance in this species, and individual variation in association with sex-lineages proclivity is discussed.  相似文献   

16.
A comprehensive understanding of plant mating system evolution requires detailed genetic models for both the mating system and inbreeding depression, which are often intractable. A simple approximation assuming that the mating system evolves by small infrequent mutational steps has been proposed. We examine its accuracy by comparing the evolutionarily stable selfing rates it predicts to those obtained from an explicit genetic model of the selfing rate, when inbreeding depression is caused by partly recessive deleterious mutations at many loci. Both models also include pollen limitation and pollen discounting. The approximation produces reasonably accurate predictions with a low or moderate genomic mutation rate to deleterious alleles, on the order of U = 0.02–0.2. However, for high mutation rates, the predictions of the full genetic model differ substantially from those of the approximation, especially with nearly recessive lethal alleles. This occurs because when a modifier allele affecting the selfing rate is rare, homozygous modifiers are produced mainly by selfing, which enhances the opportunity for purging nearly recessive lethals and increases the marginal fitness of the allele modifying the selfing rate. Our results confirm that explicit genetic models of selfing rate and inbreeding depression are required to understand mating system evolution.  相似文献   

17.
Hodgins KA  Barrett SC 《Heredity》2006,96(3):262-270
Mating patterns in plant populations are influenced by interactions between reproductive traits and ecological conditions, both factors that are likely to vary geographically. Narcissus triandrus, a wide-ranging heterostylous herb, exhibits populations with either two (dimorphic) or three (trimorphic) style morphs and displays substantial geographical variation in demographic attributes and floral morphology. Here, we investigate this variation to determine if demography, morphology, and mating system differ between the two sexual systems. Our surveys in Portugal and NW Spain indicated that dimorphic populations were less dense, of smaller size, and had larger plants and flowers compared to trimorphic populations. Outcrossing rates estimated using allozyme markers revealed similar outcrossing rates in dimorphic and trimorphic populations (t(m) dimorphic=0.759; t(m) trimorphic=0.710). All populations experienced significant inbreeding in progeny (mean F=0.143). In contrast, parental estimates of inbreeding were not significantly different from zero (mean F=0.062), implying that few inbred offspring survive to reproductive maturity due to inbreeding depression. Although the majority of inbreeding results from selfing, significant levels of biparental inbreeding were also detected in eight of the nine populations (mean s(s)-s(m)=0.081). Density was negatively associated with levels of selfing but positively associated with biparental inbreeding. Population size was positively associated with outcrossing but not biparental inbreeding. There were no consistent differences among the style morphs in outcrossing or biparental inbreeding indicating that the maintenance of trimorphism vs dimorphism is unlikely to be associated with inbreeding of maternal parents.  相似文献   

18.
Inbreeding depression is commonly observed in natural populations. The deleterious effects of forced inbreeding are often thought to be less pronounced in populations with self-pollinating mating systems than in primarily outcrossing populations. We tested this hypothesis by comparing the performance of plants produced by artificial self- and cross-pollination from three populations whose outcrossing rate estimates were 0.03, 0.26, and 0.58. Outcrossing rates and inbreeding coefficients were estimated using isozyme polymorphisms as genetic markers. Analysis of F statistics suggests that biparental inbreeding as well as self-fertilization contribute to the level of homozygosity in the seed crop. Biparental inbreeding will reduce the heterozygosity of progeny produced by outcrossing, relative to random outcrossing expectations, and hence will reduce the effects of outcrossing versus self-fertilization. Heterotic selection may increase the average heterozygosity during the life history. Selfed and outcrossed seeds from all three populations were equally likely to germinate and survive to reproduce. However, inbreeding depression was observed in fecundity traits of plants surviving to reproduction in all three populations. Even in the population whose natural self-fertilization rate was 97%, plants grown from seed produced by self-pollination produced fewer fruits and less total seed weight than plants grown from outcrossed seed. There was no detectable inbreeding depression in estimated lifetime fitness. Inbreeding effects for all reproductive yield characters were most severe in the accession from the most outcrossing population and least severe in the accession from the most self-fertilizing population.  相似文献   

19.
The effect of partial inbreeding on equilibrium populations has been extended to any degree of mating. As expected, for distantly related mates, the equilibrium levels of inbreeding and heterozygosity are not affected as much as by partial selfing. Formulas are also given for equilibrium levels of inbreeding and heterozygosity when two or more degrees of mating are present in a population. Inbreeding, other than selfing, may partially explain the deficiency of heterozygotes in outcrossers, part of the “heterozygosity paradox.”  相似文献   

20.
Inbreeding depression (δ) is a major selective force favoring outcrossing in flowering plants. Many phenotypic and genetic models of the evolution of selfing conclude that complete outcrossing should evolve whenever inbreeding depression is greater than one-half, otherwise selfing should evolve. Recent theoretical work, however, has challenged this view and emphasized (1) the importance of variation in inbreeding depression among individuals within a population; and (2) the nature of gene action between deleterious mutations at different loci (epistasis) as important determinants for the evolution of plant mating systems. The focus of this study was to examine the maintenance of inbreeding depression and the relationship between inbreeding level and inbreeding depression at both the population and the individual level in one population of the partially self-fertilizing plant Plantago coronopus (L.). Maternal plants, randomly selected from an area of about 50 m2 in a natural population, were used to establish lines with expected inbreeding coefficients (f) of 0, 0.25, 0.50, 0.75, and 0.875. Inbreeding depression was estimated both in the greenhouse and at the site of origin of the maternal plants by comparing growth, survival, flowering, and seed production of the progeny with different inbreeding coefficients. No significant inbreeding depression for these fitness traits was detected in the greenhouse after 16 weeks. This was in strong contrast to the field, where the traits all displayed significant inbreeding depression and declined with increased inbreeding. The results were consistent with the view that mutation to mildly deleterious alleles is the primary cause of inbreeding depression. At the family level, significantly different maternal line responses (maternal parent × inbreeding level interaction) provide a mechanism for the invasion of a selfing variant into the population through any maternal line exhibiting purging of its genetic load. At the population level, evidence for synergistic epistasis was detected for the probability of flowering, but not for total seed production. At the family level, however, a significant interaction between inbreeding level and maternal families for both traits was observed, indicating that epistasis could play a role in the expression of inbreeding depression among maternal lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号