首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Esa Koskela 《Oecologia》1998,115(3):379-384
To estimate the optimality of brood size, it is essential to study the effects of brood size manipulation on offspring survival and reproductive success. Moreover, testing the generality of the hypothesis of reproductive costs requires experimental data from a diversity of organisms. Here I present data on the growth, survival and reproductive success of bank vole Clethrionomys glareolus individuals from manipulated litters. Furthermore, the survival of mothers whose litter size was manipulated was studied. At weaning, the mean weight of pups from enlarged litters was lower and from reduced litters higher compared to control litters. After winter, at the start of the breeding season, individuals from enlarged litters, especially males, were still lighter than individuals from the other two treatments. Litter enlargements did not increase the number of reproducing female offspring per mother, nor did the litter sizes of female offspring differ between treatments. There were no differences between treatments in winter survival of offspring after weaning, but among female offspring, weaning weight explained the survival probabilities over winter. A higher weight of females at winter determined the probability of starting to reproduce in spring. The survival of mothers did not seem to be influenced by litter manipulation performed the previous year. According to the results, mothers nursing enlarged or reduced litters do not gain any fitness benefits in terms of number of offspring surviving to breeding. The results are consistent with the majority of experiments conducted in birds, which have found costs of enlarged brood appearing as offspring trade-offs rather than parent trade-offs. Received: 14 December 1997 / Accepted: 1 March 1998  相似文献   

2.
The most productive litter size (five) was not as common as expected in a free-living population of white-footed mice. I evaluated four competing hypotheses that can explain this pattern. Reproductive costs and annual variation in recruitment appear to be insufficient explanations for the empirical distribution of litter size. Optimal investment of reproductive resources that vary among parents is supported by some tests, but not by all. The abundance of litters less than the apparent optimum is at least partially explained by asymmetric survival in large litters (the cliff-edge hypothesis). Hypotheses that explain the empirical distribution of brood size are not mutually exclusive. Several mechanisms can act alone, or interact, to create an average brood size less than that which appears to produce the greatest number of descendants.  相似文献   

3.
Providing parental care is costly for the parent, but generally beneficial for the young whose survival, growth and reproductive value can be increased. Selection should strongly favour an optimal distribution of parental resources, depending on the relationship between the costs and benefits for parents and their offspring. Parental care is characterized by trade offs in investment, for example between egg size and number of young or providing resources at the egg stage versus the post-hatching stage. Females of the spider Stegodyphus lineatus (Eresidae) produce a single small brood with small eggs and provide the young with regurgitated fluid and later, with their body contents via matriphagy. We asked whether females adjust the investment of resources differentially into eggs, regurgitation feeding and matriphagy, and how maternal investment affects the size of the young at dispersal. We followed the growth of young of broods in the lab and in the field and manipulated brood size in order to determine the pattern of resource allocation. We found that brood size was positively correlated with body mass: larger females had larger broods. Females provided 95% of their body mass to the young, allocating more resources to regurgitation than to matriphagy. Females provided regurgitated food to the young according to the brood size, providing less food when the brood was reduced. Maternal resources had a large influence on offspring mass at dispersal, which is likely to affect their future fitness. The study shows the importance of the female's body mass and her resource allocation decisions for her reproductive outcome.  相似文献   

4.
《Animal behaviour》1986,34(6):1791-1804
Taking as our starting point Trivers' (1974) account of parent-offspring conflict, we develop models of the influence of brood size on the optimal level of parental investment (PI) in the whole brood for parent and offspring, and on the magnitude of conflict between them. A modification of Trivers' model is proposed. In general, the benefit of an act of PI to an offspring in a brood of size N is (N+1)/N times the benefit to its parent. Therefore as brood size increases, offspring benefit approaches parental benefit, and this is because an increasing proportion of the offspring's benefit is being gained through siblings, to which offspring and parent are equally related. A distinction is drawn between ‘shared’ and ‘unshared’ types of PI. When PI is shared the total benefit accruing is not directly gained by all offspring but is shared amongst them (e.g. food brought to the young). In contrast, unshared PI can simultaneously benefit some or all of the brood (e.g. types of anti-predator defence). For shared investment, PI and conflict are predicted to increase with brood size. Two models of unshared anti-predator defence are described. If the predator characteristically takes the whole brood when it strikes (e.g. altricial nestlings) PI is predicted to increase and conflict decline with brood size, although this effect is inhibited or even reversed for high risk defence tactics because of the higher cost to larger broods if the parent dies. When the predator takes a single offspring (e.g. precocial birds) the parent's optimum PI is independent of brood size, the offspring's optimum PI declines in larger broods and conflict again declines with brood size. The parent is commonly expected to win the conflict over anti-predator care. Predictions concerning PI levels gain support from existing data, largely for birds, but evaluation of those for conflict must await the collection of new data. The distinction between shared and unshared investment is applicable to altruistic behaviour in general.  相似文献   

5.
The theory of parent–offspring conflict is extended toplants that produce many offspring in one reproductive event.The energetic cost of begging signals and the timing of offspringconflict are explicitly taken into account. We find that ifthe indirect costs of increased provisioning of selfish offspringare borne by their brood mates, then offspring are selectedto solicit in so costly a way that a substantial part of parentalinvestment in a brood goes to solicitation rather than offspring'sgrowth and survival. Consequently, offspring conflict oftenresults in smaller seed size than the parental optimum in theabsence of conflict, although each offspring still consumesmore resources than the amount its mother is willing to give.While the optimal sex allocation can be shown to be independentof solicitation and sibling conflict, the overall reproductiveeffort is always lowered by parent–offspring conflict.The timing of offspring conflict during the period of parentalinvestment is demonstrated to be an important factor that influencesthe outcome of parent–offspring conflict. The more resourcesare allocated to individual offspring before the occurrenceof offspring solicitation, the less offspring should solicit,and hence the closer the offspring size to the parental optimum.Copyright 2000 Annals of Botany Company Evolutionarily stable strategy, parent–offspring conflict, parental investment, reproductive resource allocation, seed size, solicitation, timing of offspring conflict  相似文献   

6.
Cooperation, conflict, and crèching behavior in goldeneye ducks   总被引:1,自引:0,他引:1  
Crèching behavior, or brood amalgamation, results in offspring being reared by adults other than their genetic parents. Although a variety of hypotheses have been proposed to explain this behavior, most assume either that brood amalgamation is accidental (i.e., nonselected) or that adoption of young is selected for because of social benefits to the young and/or adopting parents. We propose, instead, that brood amalgamation is a function of two separate processes: brood desertion and brood adoption. To examine brood desertion, we develop a graphic model to predict when parents should abandon their young and we test this model experimentally for the Barrow's goldeneye (Bucephala islandica). As predicted, females deserted their offspring when the size of the brood was experimentally reduced. Brood adoption occurred when deserted ducklings joined other broods. However, the success of ducklings in doing so was strongly dependent on the availability of potential host broods and on the age of the recipient broods. Foreign ducklings were readily accepted into young broods (<10 d old) but invariably were rejected from old broods. We could detect no benefits or costs of brood adoption to the host females, contrary to the expectations of a social benefit hypothesis. Our experiments indicate that Crèching behavior is driven by selection on adults to abandon their brood when the benefits of continued investment are outweighed by the reduction in future reproduction and selection on deserted ducklings to join other broods to obtain parental care. Rather than a form of cooperative brood care, Crèching in goldeneyes is perhaps best considered as a form of reproductive parasitism, entailing parent-offspring conflict over brood desertion and intergenerational conflict over adoption of abandoned young.  相似文献   

7.
Maternal investment in offspring development is a major determinant of the survival and future reproductive success of both the mother and her young. Mothers might therefore be expected to adjust their investment according to ecological conditions in order to maximise their lifetime fitness. In cooperatively breeding species, where helpers assist breeders with offspring care, the size of the group may also influence maternal investment strategies because the costs of reproduction are shared between breeders and helpers. Here, we use longitudinal records of body mass and life history traits from a wild population of meerkats (Suricata suricatta) to explore the pattern of growth in pregnant females and investigate how the rate of growth varies with characteristics of the litter, environmental conditions, maternal traits and group size. Gestational growth was slight during the first half of pregnancy but was marked and linear from the midpoint of gestation until birth. The rate of gestational growth in the second half of pregnancy increased with litter size, maternal age and body mass, and was higher for litters conceived during the peak of the breeding season when it is hot and wet. Gestational growth rate was lower in larger groups, especially when litter size was small. These results suggest that there are ecological and physiological constraints on gestational growth in meerkats, and that females may also be able to strategically adjust their prenatal investment in offspring according to the likely fitness costs and benefits of a particular breeding attempt. Mothers in larger groups may benefit from reducing their investment because having more helpers might allow them to lower reproductive costs without decreasing breeding success.  相似文献   

8.
An evolutionary conflict of interest exists between parents and their offspring over the partitioning of parental investment (PI) among siblings. When the direct fitness benefits to offspring of increased PI, outweigh the inclusive fitness costs from lost future sibling fitness, selection should favour the evolution of offspring selfishness over altruism. In theory, this conflict is heightened when females are not strictly monogamous, as current offspring should be less altruistic towards future half-siblings than they would be towards full-siblings. Using data collected on foetal growth rate (representing prenatal PI) in primates, I test the prediction from theory that the resolution of the parent-offspring conflict will be closer to the offspring's evolutionary optima in polyandrous species than in more monandrous species. Using phylogenetic comparative analysis, and controlling for allometry, I show that offspring are able to obtain more PI when the probability of future full-siblings decreases, and that this is most pronounced in taxa where there is the opportunity for direct foetal access to the maternal bloodstream. These results support the hypothesis that the resolution of prenatal PI conflict is influenced by both a species' mating system and by its placental structure.  相似文献   

9.
Fisher DO  Blomberg SP 《PloS one》2011,6(1):e15226
Evolutionary explanations for life history diversity are based on the idea of costs of reproduction, particularly on the concept of a trade-off between age-specific reproduction and parental survival, and between expenditure on current and future offspring. Such trade-offs are often difficult to detect in population studies of wild mammals. Terminal investment theory predicts that reproductive effort by older parents should increase, because individual offspring become more valuable to parents as the conflict between current versus potential future offspring declines with age. In order to demonstrate this phenomenon in females, there must be an increase in maternal expenditure on offspring with age, imposing a fitness cost on the mother. Clear evidence of both the expenditure and fitness cost components has rarely been found. In this study, we quantify costs of reproduction throughout the lifespan of female antechinuses. Antechinuses are nocturnal, insectivorous, forest-dwelling small (20-40 g) marsupials, which nest in tree hollows. They have a single synchronized mating season of around three weeks, which occurs on predictable dates each year in a population. Females produce only one litter per year. Unlike almost all other mammals, all males, and in the smaller species, most females are semelparous. We show that increased allocation to current reproduction reduces maternal survival, and that offspring growth and survival in the first breeding season is traded-off with performance of the second litter in iteroparous females. In iteroparous females, increased allocation to second litters is associated with severe weight loss in late lactation and post-lactation death of mothers, but increased offspring growth in late lactation and survival to weaning. These findings are consistent with terminal investment. Iteroparity did not increase lifetime reproductive success, indicating that terminal investment in the first breeding season at the expense of maternal survival (i.e. semelparity) is likely to be advantageous for females.  相似文献   

10.
We used exogenous gonadotropin hormones to physiologically enlarge litter size in the bank vole (Clethrionomys glareolus). This method allowed the study design to include possible production costs of reproduction and a trade-off between offspring number and body size at birth. Furthermore, progeny rearing and survival and postpartum survival of the females took place in outdoor enclosures to capture salient naturalistic effects that might be present during the fall and early winter. The aim of the study was to assess the effects of the manipulation on the growth and survival of the offspring and on the reproductive effort, survival, and future fecundity of the mothers. Mean offspring body size was smaller in enlarged litters compared to control litters at weaning, but the differences disappeared by the winter. Differences in litter sizes disappeared before weaning age due to higher mortality in enlarged litters. In addition to the effects of the litter size, offspring performance was probably also influenced by the ability of the mother to support the litter. Experimental females had higher reproductive effort at birth, and they also tended to have higher mortality during nursing. Combined effects of high reproductive effort at birth and high investment in nursing the litter entailed costs for the experimental females in terms of decreased probability of producing a second litter and a decreased body mass gain. Thus, enlarged litter size had both survival and fecundity costs for the mothers. Our results suggest that the evolution of litter size and reproductive effort is determined by reproductive costs for the mothers as well as by a trade-off between offspring number and quality.  相似文献   

11.
Parent-offspring conflict may arise because the lifetime reproductive success of the parent is more influenced by its life span than by reproductive success during a particular reproductive event, while the fitness of an offspring depends firstly on its own survival as a juvenile and only subsequently on its own reproductive success. The naive immune system of young animals may allow offspring to be much more affected by parasites than their parents, and thus cause an initial asymmetry in a potential parent-offspring conflict. We investigated this type of conflict by assessing the health status and the immune response of parent and offspring sand martins Riparia riparia infested with manipulated loads of ticks Ixodes lividus (nests either treated with pyrethrin, water, or just visited). The prevalence and the intensity of tick infestations differed among treatments, with low tick loads in nests with the pyrethrin treatment. Ticks reduced the reproductive success of the host and increased offspring wing length. Broods with ticks had higher leukocyte concentrations and concentrations of immunoglobulins. The concentration of immunoglobulins in nestlings was negatively related to brood size and nestling tarsus length. Nestlings receiving the control treatments had a positive association between wing length and the concentration of immunoglobulins and a negative association between tarsus length and immunoglobulins. In contrast, adult sand martins did not respond to the parasite treatment in terms of immune response. Hence, the naive immune system of nestlings may be the crucial factor causing the parent-offspring conflict over costs of parasitism to be resolved to the advantage of parents that may sacrifice nestlings in heavily parasitized nests. Received: 30 March 1998 / Accepted: 5 December 1998  相似文献   

12.
Life history theory predicts that natural selection favours parents who balance investment across offspring to maximize fitness. Theoretical studies have shown that the optimal level of parental investment from the offspring's perspective exceeds that of its parents, and the disparity between the two generates evolutionary conflict for the allocation of parental investment. In various species, the offspring hatch asynchronously. The age hierarchy of the offspring usually establishes competitive asymmetries within the brood and determines the allocation of parental investment among offspring. However, it is not clear whether the allocation of parental investment determined by hatching pattern is optimal for parent or offspring. Here, we manipulated the hatching pattern of the burying beetle Nicrophorus quadripunctatus to demonstrate the influence of hatching pattern on the allocation of parental investment. We found that the total weight of a brood was largest in the group that mimicked the natural hatching pattern, with the offspring skewed towards early hatchers. This increases parental fitness. However, hatching patterns with more later hatchers had heavier individual offspring weights, which increases offspring fitness, but this hatching pattern is not observed in the wild. Thus, our study suggests that the natural hatching pattern optimizes parental fitness, rather than offspring fitness.  相似文献   

13.
Proximate limitation on parental food delivery has long been invoked to explain the evolution of single-chick broods of pelagic seabirds such as masked boobies (Sula dactylatra). A second possible proximate limit on brood size is siblicide driven by genetic parent–offspring conflict (POC) over brood size, if siblicidal offspring can reduce brood size to one even if the parents' optimal brood size is greater than one. I tested these two hypotheses by experimentally suppressing obligate siblicide in masked booby broods and comparing breeding parameters of these broods with unmanipulated single-chick control broods. Per capita mortality rate of experimental nestlings was higher than that of controls, but this deficit was more than made up by larger brood size. Parents of experimental broods brought more food to offspring, had higher fledging success, and apparently incurred no additional major short-term cost of reproduction, relative to parents of control broods, thus refuting the food limitation hypothesis. Estimates of inclusive fitness of chicks in experimental broods were higher than were those of control nestlings, a result inconsistent with the POC hypothesis that the siblicidal offspring's optimal brood size is one while the parents' optimum is greater than one. This discrepency between natural brood size and apparent brood size optima might be resolved in several ways: experimental artifacts may give misleading estimates of optimal brood size; experimental and control offspring may have different reproductive values at the time of fledging; nestling masked boobies may face a special frequency-dependent case of POC in which the high risk of sharing a nest with a siblicidal sibling makes invasion of other behavioral genotypes difficult even when offspring and parent inclusive fitnesses are higher from a nonsiblicidal brood of two than from a brood of one.  相似文献   

14.
Infanticide is easiest to understand when it involves killing the offspring of others [1], but a parent may also kill its own offspring if the sacrifice of currently dependent young leads to higher survival of brood mates [2] or an improvement in the parent's likely future reproduction [3]. However, sex-specific infanticide by parents of their own offspring, although occurring in some human societies [4], is rare across species. Its rarity may be because killing one sex combines wasted parental effort with consequent biases in population sex ratios that are detrimental for the fitness of the overproduced sex [5-7]. We show that killing male offspring can be advantageous to Eclectus parrot (Eclectus roratus) mothers even though frequency-dependent selection then elevates the reproductive value of sons above that of daughters. In poorer-quality nest hollows, broods with a single female nestling had higher reproductive value than broods in which the female had a younger brother. Our data demonstrate frequent targeted removal of male nestlings within 3 days of hatching in these specific brood types and nesting conditions. The ability of Eclectus parrots to perceive the sex of their offspring relatively early may favor decisions to kill one sex before further investment in parental care.  相似文献   

15.
Defence of offspring against predators is an important form of parental investment in many species. We derive a model for the optimal level of parental defence during a predator attack. A higher level of defence increases offspring security, but it also exposes the parent to a higher risk. Other conditions being equal, the model predicts that the optimal level of defence increases with offspring age. This is because the relative difference between parent and offspring in expected future survival decreases with increasing offspring age. Compared with the parent itself, the relative importance of the offspring for parental inclusive fitness therefore increases. The risk that the parent should take in defending offspring therefore increases with its age. The model is applied to fieldfare (Turdus pilaris) nest defence. As predicted, parent fieldfares increase their defence throughout the nest period. The model also predicts the observed decrease in parental defence after the hatching and scattering of a precocial brood of young.  相似文献   

16.
Offspring size and number were examined in a captive population of wild guinea pigs ( Cavia aperea ), and findings were compared with models of optimal offspring size for small litters. Median and modal litter size was two, regardless of maternal size or parity. Females producing their second litter tended to have litters that were larger than average. In contrast, young females that were still growing never had litters that were larger than average. Mean offspring size decreased and variation in offspring size tended to decrease with increasing litter size. Optimal offspring size models, in which offspring survival depended on the amount of resources invested, as well as litter size, predict such a trend. Little support was found for Charnov and Downhower's (1995) tradeoff invariant life-history rule that the range in offspring sizes between litters is inversely proportional to the size of the litter. Cavia aperea may be an exception to this rule because pup mass at birth did not reflect total reproductive investment, because conversion of resources into litter mass may not be linearly related to litter size and because resources were not equally partitioned among offspring within large litters. Experimental data are needed to determine the relevance of these results among mammals in general.  相似文献   

17.
Vivid begging displays are common in species with parental care [1, 2]. They are usually seen as the way that rival offspring selfishly compete over parental investment [3], and individuals are expected to respond to the begging of rivals by increasing their own begging intensity [4, 5]. Here I show the opposite - that potential rivals gain direct benefits from begging by littermates, so that begging behavior becomes a collective enterprise, similar to other cooperative activities. I investigate begging in communally breeding banded mongooses (Mungos mungo), where each pup forms an exclusive relationship with a single helper (its "escort"), minimizing competition over food allocation. Escorts were influenced by the total signal emanating from a litter, so that pups who begged at low rates received more food as litter size increased. Focal pups increased their begging when litters were experimentally reduced or littermates were induced to beg at low rates, but they received food at similar rates and showed reduced weight gain - indicating that they were paying a higher cost for a similar reward. These results suggest that offspring can benefit from companions despite conflicts over the allocation of parental investment [6, 7]. Such benefits provide an explanation for observed variation in the expression of parent-offspring conflict.  相似文献   

18.
The spatial position of young animals within a brood affects their survival, so that marginal individuals are at greater risk of predation. Spatial brood structuring may be caused by differences in offspring size, age, hunger, or active parental manipulation through aggression. Nepotistic manipulation of brood structure would confer fitness benefits for parents accepting nondescendant young. However, insufficient kin recognition has often been considered to preclude such nepotism in birds, particularly in precocial waterfowl. We explored the spatial structure of ducklings within broods of eiders, Somateria mollissima, a seaduck with frequent brood amalgamation. We compared the distribution of ducklings of different origin relative to reference females whose kinship to the ducklings was known. We also observed female aggression towards ducklings, to evaluate the role of parental manipulation of brood structure. We found a nonrandom distribution of ducklings within broods; a female's own young were on average closer to her than unrelated young were. We also found evidence for parental nepotism: whether the brood contained unrelated young was the strongest predictor of female aggression towards ducklings. The spatial position, hatch weight and relative size of ducklings showed no significant correlations with each other, suggesting that active parental manipulation may be needed to explain the observed spatial structure. Our study conflicts with previous anecdotal evidence suggesting that brood amalgamation in eiders results in the disintegration of parent-offspring bonds, preventing parental exploitation of nondescendant young. It also opens up the possibility that the spatial position of ducklings depends on their mother's status in the female dominance hierarchy. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.   相似文献   

19.
Uniparental offspring desertion occurs in a wide variety of avian taxa and usually reflects sexual conflict over parental care. In many species, desertion yields immediate reproductive benefits for deserters if they can re‐mate and breed again during the same nesting season; in such cases desertion may be selectively advantageous even if it significantly reduces the fitness of the current brood. However, in many other species, parents desert late‐season offspring when opportunities to re‐nest are absent. In these cases, any reproductive benefits of desertion are delayed, and desertion is unlikely to be advantageous unless the deserted parent can compensate for the loss of its partner and minimize costs to the current brood. We tested this parental compensation hypothesis in Hooded Warblers Setophaga citrina, a species in which males regularly desert late‐season nestlings and fledglings during moult. Females from deserted nests effectively doubled their provisioning efforts, and nestlings from deserted nests received just as much food, gained mass at the same rate, and were no more likely to die from either complete nest predation or brood reduction as young from biparental nests. The female provisioning response, however, was significantly related to nestling age; females undercompensated for male desertion when the nestlings were young, but overcompensated as nestlings approached fledging age, probably because of time constraints that brooding imposed on females with young nestlings. Overall, our results indicate that female Hooded Warblers completely compensate for male moult‐associated nest desertion, and that deserting males pay no reproductive cost for desertion, at least up to the point of fledging. Along with other studies, our findings support the general conclusion that late‐season offspring desertion is likely to evolve only when parental compensation by the deserted partner can minimize costs to the current brood.  相似文献   

20.
Optimal allocation of parental resources is an important life history trait. However, it has been rarely investigated empirically. We tested aspects of optimal allocation theory in a digger wasp, the European beewolf. Investment allocation theory assumes (1) a trade‐off between investment per offspring and offspring number and (2) a convex relationship between investment per offspring and fitness returns. From mis relationship an optimum amount of investment per offspring can be derived and parents are predicted to provide each offspring with this optimum amount of investment. We used the number of bees in a brood cell as a measure of parental investment. Offspring fitness was quantified as both survival until emergence and success as adults. There is evidence for a trade‐off between current and future reproduction, suggesting that the first assumption is met. In contradiction to the second assumption, one mortality factor, parasitism, increased proportionally with the number of bees in a brood cell. However, overall mortality until emergence significantly decreased with the number of bees in a brood cell as assumed by the theory. The determination of the optimum amount of investment per offspring is complicated because the sexes possibly differ in their relationship between amount of investment and fitness. Individual males received considerably fewer bees (2.2 ± 0.8) than females (3.8 ± 0.5). Two independent estimates of the investment specific survival suggested that sons with two bees had the highest fitness returns per single bee and, consistent with the prediction, most sons were provisioned with two bees. For daughters, four bees is probably the optimum amount and most daughters were provisioned with this number. In both sexes the variation of investment per offspring was less than expected by a Poisson distribution with the same mean. These findings support the view that parental investment is allocated in a way that optimizes the trade‐off between offspring number and investment per offspring. However, variation contradicting the hypothesis still occurred. This might be explained either by adaptive variation in the amount of investment per offspring, constraints in the adjustment of the optimum amount of investment, or problems in measuring parental investment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号