首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Models of environmental sex determination (ESD) usually assume that genetic influences on sex are polygenic, but the validity of this (or any other) form of genotype-environment interaction is virtually unknown. In the Atlantic silverside, Menidia menidia, sex is determined by an interaction between temperature and genotype and the response of sex ratio to temperature differs among populations from different latitudes. We examined the genetic basis of this pattern by measuring among family variation in the proportion of females, F/(F + M), within and among high (21°C) and low (15°C) temperatures for two populations: one from Nova Scotia (NS) where the level of ESD is low, and another from South Carolina (SC) where the level of ESD is high. In NS fish, temperature had a significant influence on sex ratio in only 1 of 23 families. The distribution of the fraction of females within temperatures for families from NS was highly heterogeneous and tended to fall into distinct classes (0.0, 0.25, 0.5, 1.0) like that expected from Mendelian segregation of a major sex factor(s). In contrast, temperature had a highly significant influence on sex ratio in all SC families examined (N = 24). Family sex ratios within temperatures were highly heterogeneous and, at least at 15°C, did not conform to simple Mendelian ratios. At 21°C, the proportion of females in most SC families was near zero and so the underlying sex tendencies of different families could not be discerned. Based on a previous study, mid-latitude fish appear to have an intermediate form of sex determination: simple Mendelian sex-ratio patterns exist and there is a moderate thermal influence on sex ratio in most but not all families. We suggest that sex determination in M. menidia is controlled by an interaction between major genetic factors, polygenic factors, and temperature and that the relative importance of each component differs with latitude. High latitude populations appear to have evolved a major sex-determining factor(s) that overrides the effect of temperature, and this factor(s) is lacking in low latitude populations.  相似文献   

2.
Eretmocerus sp. nr. furuhashii (Hymenoptera: Aphelinidae) is an indigenous parasitoid of Bemisia tabaci (Gennadius)(Hemiptera: Aleyrodidae) from southern China; the effects of constant temperatures on the life history of E. sp. nr. furuhashii were examined in the laboratory. The developmental period ranged from 39.2 days at 20°C to 12.40 days at 32°C. A total of 263.4 degree-days were required to complete development with a lower developmental threshold temperature of 11.1°C. Of the eggs produced, 59.3% completed development at 20°C with completion increasing to 71.5% at 26°C. Adult female longevity was 10.8 days at 20°C and 5.2 days at 32°C while the mean daily offspring reproduced per female was highest at 29°C with 5.9 offspring. Adult oviposition peaked three days after emergence at 26, 29 and 32°C, and four days post-emergence at 20°C and 23°C. The total numbers of offspring produced per female ranged from 25.7 individuals at 32°C to 41.1 individuals at 20°C. The sex ratio had a female bias and ranged from 0.72 at 17°C to 0.51 at 35°C. The intrinsic rate of increase was 0.1727 at 29°C followed with 0.1606 at 32°C. Results indicated that E. sp. nr. furuhashii reaches its maximum biological potential at temperatures ranging from 26°C to 32°C.  相似文献   

3.
To control coconut leaf beetle, Brontispa longissima (Gestro), the pupal parasitoid Tetrastichus brontispae Ferrière was imported from Taiwan and its biology was studied in quarantine in Hainan, China. The parasitoid development includes an egg, three larval instars and three pupal stages. Its developmental time from egg to adult was 19.5±0.5 days under conditions of 24±2°C and 75±5% relative humidity (RH). Temperature had no effect on the sex ratio of offspring, but significantly affected the parasitism rate and reproduction. The parasitism rates were 98.07, 97.97 and 95.03% at 28, 24 and 20°C, respectively, whereas the parasitism rate was 52.18% at 18°C and 69.48% at 30°C, respectively. Furthermore, the parasitoids reared at 18 and 30°C produced fewer offspring than those at 20, 24 and 28°C, respectively. With the increase in temperature, developmental time decreased linearly from 46.19 days at 18°C to 17.10 days at 28°C. RH significantly influenced development, parasitism rate and the reproduction of T. brontispa. With the decrease of RH, developmental time increased from 22.94 days at 20% RH to 18.84 days at 95% RH. In contrast, parasitism rate and the number of offspring per female increased with the increase of RH. Though emergence rates between 50 and 95% RH were much higher than those between 20 and 35% RH, the sex ratios between 20 and 95% RH were not different. Photoperiod had no effect on parasitism, the number of offspring per female, emergence and the sex ratio of T. brontispae, but developmental time was significantly different for different photoperiods. Sucrose, honey and glucose significantly enhanced adult longevity, parasitism and the number of offspring per female of T. brontispae, but had no effect on the sex ratio and survival. Females of T. brontispae only parasitized fourth to fifth larval instars and 1–5-day-old pupae, but there was a significant difference in the number of offspring per female, development time, emergence and the sex ratio of offspring in different instars. These results showed that 1-day-old pupae, a temperature of 24–28°C and 65–95% RH were optimal for T. brontispae. These findings should be helpful in developing a production system to rear and release T. brontispae in large enough quantities to effectively control coconut leaf beetle.  相似文献   

4.
Incubation temperature determines sex in the mugger crocodile,Crocodylus palustris. Exclusively females are produced at constanttemperatures of 28.0°C through 31°C. At 32.5°C,only males are produced. Both sexes are produced in varyingproportions at 31.5, 32.0, and 33.0°C. Embryo survival isnot affected within this range, but developmental rate and totalincubation time are strongly temperature dependent. In naturalnests laid in breeding enclosures, cool incubation temperaturesproduced only females whereas males were produced only in warmnests. Clutch sex ratios were female or male biased. Yearlysex ratios (=percent male) varied from 0.05 to 0.58; overallsex ratio during six nesting seasons was 0.24 (1 male: 3 females).Sex ratio and incubation time vary with nest location and temperaturein a manner consistent with the constant temperature results.Incubation time decreases with increasing incubation temperature,and is an accurate predictor of sex ratio in the field and laboratory. To date, temperature-dependent sex determination (TSD) has beenreported in five species of Crocodylus and in three speciesof Alligatorinae; but the TSD patterns in these groups differ.The TSD pattern of C. palustris is similar to that of C. porosus.Nesting in C. palustris is synchronized with the seasonal availabilityof thermal regimes suitable for incubation. Resultant sex ratiosare a consequence of when and where eggs are laid. Early nestsare located in warm, sunny sites; in contrast, late season nestsare located in the shade. An egg transplant experiment demonstratedthat sex ratios could be altered by simple manipulations ofnest temperatures in the field. The adaptive significance ofTSD in crocodilians may relate to the influence of incubationtemperature on various hatchling attributes, particularly growth.  相似文献   

5.
Abstract The jacky dragon, Amphibolurus muricatus (White, ex Shaw 1790) is a medium sized agamid lizard from the southeast of Australia. Laboratory incubation trials show that this species possesses temperature‐dependent sex determination. Both high and low incubation temperatures produced all female offspring, while varying proportions of males hatched at intermediate temperatures. Females may lay several clutches containing from three to nine eggs during the spring and summer. We report the first field nest temperature recordings for a squamate reptile with temperature‐dependent sex determination. Hatchling sex is determined by nest temperatures that are due to the combination of daily and seasonal weather conditions, together with maternal nest site selection. Over the prolonged egg‐laying season, mean nest temperatures steadily increase. This suggests that hatchling sex is best predicted by the date of egg laying, and that sex ratios from field nests will vary over the course of the breeding season. Lizards hatching from eggs laid in the spring (October) experience a longer growing season and should reach a larger body size by the beginning of their first reproductive season, compared to lizards from eggs laid in late summer (February). Adult male A. muricatus attain a greater maximum body size and have relatively larger heads than females, possibly as a consequence of sexual selection due to male‐male competition for territories and mates. If reproductive success in males increases with larger body size, then early hatching males may obtain a greater fitness benefit as adults, compared to males that hatch in late summer. We hypothesize that early season nests should produce male‐biased sex ratios, and that this provides an adaptive explanation for temperature‐dependent sex determination in A. muricatus.  相似文献   

6.
7.
Global warming poses a threat to organisms with temperature‐dependent sex determination because it can affect operational sex ratios. Using a multigenerational experiment with a marine fish, we provide the first evidence that parents developing from early life at elevated temperatures can adjust their offspring gender through nongenetic and nonbehavioural means. However, this adjustment was not possible when parents reproduced, but did not develop, at elevated temperatures. Complete restoration of the offspring sex ratio occurred when parents developed at 1.5 °C above the present‐day average temperature for one generation. However, only partial improvement in the sex ratio occurred at 3.0 °C above average conditions, even after two generations, suggesting a limitation to transgenerational plasticity when developmental temperature is substantially increased. This study highlights the potential for transgenerational plasticity to ameliorate some impacts of climate change and that development from early life may be essential for expression of transgenerational plasticity in some traits.  相似文献   

8.
Higher temperatures associated with climate change have the potential to significantly alter the population sex ratio of species with temperature-dependent sex determination. Whether or not elevated temperature affects sex determination depends on both the absolute temperature experienced and the stage of development at which the thermal conditions occur. We explored the importance of exposure timing during early development in the coral reef fish, Acanthochromis polyacanthus, by increasing water temperature 1.5 or 3 °C above the summer average (28.5 °C) at different stages of development. We also measured the effect of treatment temperature on fish size and condition, in order to gauge how the thermal threshold for sex-ratio bias may compare with other commonly considered physiological metrics. Increasing grow-out temperature from 28.5 to 30 °C had no effect on the sex ratio of offspring, whereas an increase to 31.5 °C (+3 °C) produced a strong male bias (average ~90%). The thermosensitive period for this species lasted between 25 and 60 d post hatching, with the bias in sex ratio greater the earlier that fish experienced warm conditions. Temperatures high enough to bias the sex ratio are likely to be seen first during late summer (January and February) and would affect clutches produced late in the breeding season. There was no change to fish condition in response to temperature; however, the two higher temperature treatments produced significantly smaller fish at sampling. Clutches produced early in the season could buffer the population from a skewed sex ratio, as their development will remain below the thermal threshold; however, continued ocean warming could mean that clutches produced earlier in the breeding season would also be affected in the longer term. A skewed sex ratio could be detrimental to population viability by reducing the number of females in the breeding population.  相似文献   

9.
To our knowledge, there is, so far, no evidence that incubation temperature can affect sex ratios in birds, although this is common in reptiles. Here, we show that incubation temperature does affect sex ratios in megapodes, which are exceptional among birds because they use environmental heat sources for incubation. In the Australian brush-turkey Alectura lathami, a mound-building megapode, more males hatch at low incubation temperatures and more females hatch at high temperatures, whereas the proportion is 1:1 at the average temperature found in natural mounds. Chicks from lower temperatures weigh less, which probably affects offspring survival, but are not smaller. Megapodes possess heteromorphic sex chromosomes like other birds, which eliminates temperature-dependent sex determination, as described for reptiles, as the mechanism behind the skewed sex ratios at high and low temperatures. Instead, our data suggest a sex-biased temperature-sensitive embryo mortality because mortality was greater at the lower and higher temperatures, and minimal at the middle temperature where the sex ratio was 1:1.  相似文献   

10.
The influence of temperature on the biochemical composition of eight species of marine phytoplankton was investigated. Thalassiosira pseudonana Hasle and Heim-dal, Phaeodactylum tricornutum Bohlin and, Pavlova lutheri Droop (three of eight species studied) had minimum values of carbon and nitrogen quotas at intermediate temperatures resulting in a broad U-shaped response in quotas over the temperature range of 10 to 25°C. Protein per cell also had minimum values at intermediate temperatures for six species. For T. pseudonana, P. tricornutum, and P. lutheri, patterns of variation in carbon, nitrogen, and protein quotas as a function of temperature were similar. Over all species, lipid and carbohydrate per cell showed no consistent trends with temperature. Only chlorophyll a quotas and the carbon: chlorophyll a ratios (θ) showed consistent trends across all species. Chlorophyll a quotas were always lower at 10°C than at 25°C. Carbon: chlorophyll a ratios (θ) were always higher at 10°C than at 25°C. We suggest that although θ consistently increases at lower temperatures, the relationship between temperature and θ ranges from linear to exponential and is species specific. Accordingly, the interspecific variance in θ that results from species showing a range of possible responses to temperature increases as temperature declines and reaches a maximum at low temperatures. High photon flux densities appear to increase the potential interspecific variance in the carbon: chlorophyll a ratio and therefore exacerbate these trends.  相似文献   

11.
Five gynogenetic progeny groups of silver crucian carp Carassius auratus gibelio were produced and sex ratios (males:total progeny) of each of the progeny groups were analysed. About 110 males and 366 females were genotyped at 15 microsatellite loci for comparison with their parents to (1) verify the gynogenesis status of Fangzheng C. auratus gibelio, (2) detect the incorporation of paternal genetic material into the offspring and (3) study the possible association of genetic exchange at microsatellite loci with the existence of sex. The sex ratios in progenies of five groups were highly variable, but all had significant female bias. The sex ratio ranged from 0 to 0·37. Significant differences in the sex ratio within and between groups were also found. Microsatellite genotyping at 15 loci showed that 100 and 97% of the progeny shared the same genotype with the mother in four groups and in one group, respectively, confirming that gynogenesis is the general mechanism of reproduction in C. auratus gibelio. However, 0·63% of all offspring did show incorporation of paternal genetic material. No single loci tested were associated with the occurrence of male progeny, indicating unknown genetic mechanisms for sex determination in C. auratus gibelio.  相似文献   

12.
Coiled morphotype Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju that forms a water bloom in a shallow pond in northern Taiwan exhibits a negative correlation between trichome size and temperature. To investigate how temperature influences the growth and trichome size of C. raciborskii, two C. raciborskii strains isolated from the pond in August and February were grown at three temperatures (18, 24 and 30°C). Both strains exhibited the lowest and highest specific growth rates at 18°C and 24°C, respectively, and the trichomes became the largest at 18°C. However, specific growth rates of the strain isolated in August exceeded those of the strain isolated in February, and the trichomes of the strain isolated in February were larger than those of the strain isolated in August regardless of temperature. Moreover, although both strains produced larger numbers of akinetes at higher temperatures, the strain isolated in August produced many more akinetes than did the other. These findings suggest that the two strains are not identical, leading to the conclusion that the C. raciborskii population in the pond consists of at least two ecotypes. Large trichome formation and akinete production are thought to be different types of countermeasure against cold of C. raciborskii, and the patterns of investment in developing these functions seemed to vary between the strains.  相似文献   

13.
The sex ratios of the progenies of woodlice Porcellionides pruinosus (Crustacea, Isopoda) raised at different temperatures were studied. Females from three French populations sampled in the wild produced highly female-biased broods at 20°C and male-biased broods above 30°C. The effect of high temperature was not due to selective mortality of females. Sex determination was thus sensitive to temperature in P. pruinosus. We also found an interpopulation variability of sex ratio thermosensitivity and a weak inheritance of male-biased sex ratios at high temperatures. Samples taken from a wild population throughout the year showed that while the thermal conditions required for changes in the sex ratio occurred, there was no significant variation in the sex ratio. On the other hand, almost all the females and many males in the four populations studied harboured intracytoplasmic bacteria. These maternally inherited symbionts belong to the genus Wolbachia and are known to possess a feminizing effect. While in other arthropods Wolbachia are destroyed at high temperatures, the symbionts of P. pruinosus were detected by a PCR procedure whatever the rearing temperatures. In light of these results, we propose that the thermosensitivity of sex determination in P. pruinosus could reflect the removal of the cytoplasmic effect on sex determination rather than environmental sex determination sensu stricto. The reduction in the amount of bacteria (but not their entire elimination), or the inhibition of bacterial metabolism, may be responsible for sex ratio variations relating to temperature. The incomplete inheritance of male-biased sex ratios at high temperatures might reflect a selection of thermo-tolerant bacterial strains.  相似文献   

14.
Phally, a genital dimorphism found in some species of self-compatible simultaneous hermaphrodites, presents an opportunity to examine factors maintaining outcrossing within an animal species in the presence of recombination. Both aphallics and euphallics can self-fertilize but only euphallics develop a functional penis and prostate allowing them to donate sperm. Previous studies of phally in the gastropod Bulinus truncatus (Mollusca: Pulmonata) suggest that phally may be under direct genetic control in some populations and strongly influenced by environmental factors in others. Experiments reported here identify temperature as a cue affecting phally determination in two populations of B. truncatus. In both populations, a higher proportion of euphallics was produced at low temperature (22 ± 1°C) than at high temperature (30 ± 1°C). Temperatures experienced by parents did not affect the proportion of euphallics they produced. Instead, phally was sensitive to temperature during the egg stage postoviposition and during the hatchling stage; the relative influence of temperature before and after hatching varied between populations. The total number of hatchlings reaching maturity at high and low temperature did not differ, but at low temperature, snails took longer to hatch and mature, and had lower survivorship. Just as studies of environmental sex determination have shed light on selective pressures influencing sex ratio evolution, we suggest that temperature-sensitive phally determination may shed light on the selective pressures maintaining outcrossing in B. truncatus.  相似文献   

15.
Cold storage of parasitoids to be used in biological control programs is desirable but risky for the performance of the stored parental generation as well as for its offspring. We studied the performance of cold stored and unstored parasitoids after release at different temperature regimes in the laboratory at the level of two subsequent generations in Hyssopus pallidus (Askew) (Hymenoptera: Eulophidae). This gregarious ectoparasitoid is a candidate biocontrol agent of Cydia pomonella L. (Lepidoptera: Tortricidae) and Cydia molesta (Busck) (Lepidoptera: Tortricidae) larvae, two fruit pests of high economic significance in apple cultivation. Cold storage for 14 days at 4°C imposed to the pupal stage of the parasitoid did not reduce the parasitism capacity of the parental generation, nor did it alter the female biased sex ratio of the progeny. Remarkably, this short-term storage of the parental generation exhibited a significant and consistently positive effect on offspring weight throughout all ambient temperature regimes, resulting in an increased offspring weight. Furthermore, offspring number was only reduced after release at low ambient temperatures, but not at 25°C and 30°C. Irrespective of whether the parasitoids originated from the stored or unstored group, highest parasitism rate was achieved at temperatures above 20°C. In conclusion, this candidate biocontrol agent can be cold stored for short periods without any measurable quality loss after release at most except at low ambient temperatures. Our findings suggest that H. pallidus is a thermophilous parasitoid that will perform best when applied at warm ambient temperatures in fruit orchards.  相似文献   

16.
The birth sex ratio of vertebrates with chromosomal sex determination has been shown to respond to environmental variability, such as temperature. However, in humans the few previous studies on environmental temperature and birth sex ratios have produced mixed results. We examined whether reconstructed annual mean temperatures were associated with annual offspring sex ratio at birth in the eighteenth to nineteenth century Sami from northern Finland. We found that warm years correlated with a male-biased sex ratio, whereas a warm previous year skewed sex ratio towards females. The net effect of one degree Celsius increase in mean temperature during these 2 years corresponded to approximately 1% more sons born annually. Although the physiological and ecological mechanisms mediating these effects and their evolutionary consequences on parental fitness remain unknown, our results show that environmental temperature may affect human birth sex ratio.  相似文献   

17.
Several flatfish species exhibit temperature-dependent sex determination. This research investigated the effects of rearing temperature on sex ratio in Atlantic halibut, Hippoglossus hippoglossus, a species in which females grow larger and faster than males under culture conditions. Previous research has shown that ovarian differentiation occurs in Atlantic halibut in the size interval of 38–50 mm, and precedes the differentiation of testes. In the current study, triplicate groups of juvenile Atlantic halibut were reared at each of three temperatures (7, 12 and 15°C) from an initial mean size of 21 mm to a final mean size of 80 mm (total length). The sex of each fish was then determined by macroscopic and histological examination of the gonads. Sex ratios were not significantly different from 1:1 in any group, suggesting that sex in this species is not influenced by temperature.  相似文献   

18.
Roy M  Brodeur J  Cloutier C 《Oecologia》2003,135(2):322-326
Although temperature is the most important environmental factor regulating arthropod development and reproduction, its influence on sex allocation in haplodiploid arthropods remains largely unexplored. We investigated under laboratory conditions how maternal age and temperature mediate offspring sex ratio of the spider mite Tetranychus mcdanieli (Acari: Tetranychidae). Over nine temperature regimes, female-biased sex ratios were consistently observed, varying from 57 to 87% among progeny produced over lifetime. Spider mite sex ratio was affected by maternal age: more male progeny were produced at both the beginning and the end of the female lifespan, yielding a dome shaped curvilinear relationship. This pattern of variation with age probably results from constraints on using sperm at young ages and sperm depletion or viability at older ages. We found a significant curvilinear relationship between temperature and sex ratio. The proportion of female offspring was lowest at intermediate temperatures and highest at extreme temperatures. We suggest that increased female-biased sex ratio at extreme temperatures is an evolutionary response of spider mites to deteriorating habitats as, in the Tetranychidae, females have better capacities than males to disperse and survive under harsh conditions.  相似文献   

19.
Thermolabile Sex Determination in honmoroko   总被引:2,自引:0,他引:2  
In six pairings (one female × three males and vice versa) of honmoroko Gnathopogon caerulescens , although in one pairing the sex ratio of the offspring did not deviate significantly from 1:1, in four pairings the proportion of females decreased significantly with an increase in temperature. Heavy mortality due to disease was observed in the remaining pair. There were highly significant differences in sex ratios among the broods produced by different mothers with the same father and vice versa, and the response of sex ratio to temperature treatments differed considerably within pairings. The progeny of five out of 20 males produced at 34°C were almost all females, two were male-biased, and the remaining had balanced (1:1) sex ratios. These results suggest that the sex determination system in honmoroko is close to female homogamety but is influenced by temperature, genetic factors and genotype-temperature interactions.  相似文献   

20.
Aims: The potential effect of in‐premise plumbing temperatures (24, 32, 37 and 41°C) on the growth of five different Legionella pneumophila strains within free‐living amoebae (Acanthamoeba polyphaga, Hartmannella vermiformis and Naegleria fowleri) was examined. Methods and Results: Compared with controls that actively fed on Escherichia coli prey, when Leg. pneumophila was used as prey, strains Lp02 and Bloomington‐2 increased in growth at 30, 32 and 37°C while strains Philadelphia‐1 and Chicago 2 did not grow at any temperature within A. polyphaga. Strains Lp02, Bloomington‐2 and Dallas 1E did not proliferate in the presence of H. vermiformis nor did strain Philadelphia‐1 in the presence of N. fowleri. Yet, strain Bloomington‐2 grew at all temperatures examined within N. fowleri, while strain Lp02 proliferated at all temperatures except 41°C. More intriguing, strain Chicago 2 only grew at 32°C within H. vermiformis and N. fowleri suggesting a limited temperature growth range for this strain. Conclusions: Identifying the presence of pathogenic legionellae may require the use of multiple host amoebae and incubation temperatures. Significance and Impact of the Study: Temperature conditions and species of amoeba host supported in drinking water appear to be important for the selection of human‐pathogenic legionellae and point to future research required to better understand Legionella ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号