首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We present data on the phenotype identification and genetic analysis of offspring in three lines of dominant morphological mutants of Arabidopsis thalianahaving drastically reduced fertility (a sterile calluslike mutant, a flower mutant, and a dwarf mutant) and in five lines of recessive morphological mutants (four mutants with lethal seedlings and one pigmentation mutant). The mutants were selected from a collection of transgenic plants that had genomes carrying a T-DNA insertion of plasmid vectors pLD3 and pPCVRN4; the collection was created earlier via agrobacterial transformation of germinating seeds. The results presented here were obtained using compensation of hormonal imbalance in the insertional morphological mutants of A. thalianaby exogenous hormones.  相似文献   

3.
《Fly》2013,7(2):75-81
Body pigmentation in insects and other organisms is typically variable within and between species and is often associated with fitness. Regulatory variants with large effects at bab1, t and e affect variation in abdominal pigmentation in several populations of Drosophila melanogaster. Recently, we performed a genome wide association (GWA) analysis of variation in abdominal pigmentation using the inbred, sequenced lines of the Drosophila Genetic Reference Panel (DGRP). We confirmed the large effects of regulatory variants in bab1, t and e; identified 81 additional candidate genes; and validated 17 candidate genes (out of 28 tested) using RNAi knockdown of gene expression and mutant alleles. However, these analyses are imperfect proxies for the effects of segregating variants. Here, we describe the results of an extreme quantitative trait locus (xQTL) GWA analysis of female body pigmentation in an outbred population derived from light and dark DGRP lines. We replicated the effects on pigmentation of 28 genes implicated by the DGRP GWA study, including bab1, t and e and 7 genes previously validated by RNAi and/or mutant analyses. We also identified many additional loci. The genetic architecture of Drosophila pigmentation is complex, with a few major genes and many other loci with smaller effects.  相似文献   

4.
Although a vast inventory of morphological mutants of Arabidopsis thaliana is available, only some have been used for genetic studies of leaf development. Such is the case with the Arabidopsis Information Service (AIS) Form Mutants collection, assembled by A. R. Kranz and currently stored at the Nottingham Arabidopsis Stock Centre, which includes a large number of mutant lines, most of which have been little studied. With the aim of contributing to the genetic dissection of leaf ontogeny, we have subjected 57 mutant lines isolated by others to genetic analysis; 47 of which were from the AIS collection. These are characterized by vegetative leaves of abnormal shape or size, and were chosen as candidates for mutations in genes required for leaf morphogenesis. The mutant phenotypes studied were shown to be inherited as single recessive Mendelian traits and were classified into 10 phenotypic classes. These mutant strains were found to fall into 37 complementation groups, 7 of which corresponded to known genes. Results of the phenotypic analysis and data on the genetic interactions of these mutants are presented, and their possible developmental defects discussed. Received: 28 October 1998 / Accepted: 21 February 1999  相似文献   

5.
The Mexican axolotl (Ambystoma mexicanum) provides a well-defined set of color genes which are useful for various types of analyses. These include the a (albino), m (melanoid), ax (axanthic), and d (white) genes. In addition, various combinations of these genes and a number of as yet undescribed mutants also exist. Three of these mutants (a, ax, and m) have defects associated with specific neural-crest-derived pigment cell types. The fourth mutant (d) appears to provide an unsuitable environment for the migration and maintenance of pigment cells. In one case (m), detailed information concerning the specific nature of the genetic defect is available. The goal of this article is to demonstrate ways in which the existing information on the axolotl color genes can best be utilized in terms of understanding not only the mutant phenotypes, but basic concepts in the cell and developmental biology of pigmentation as well. Thus, an attempt has been made to sort through the genetic and biochemical data relevant to these mutants in order to stimulate renewed interest in a more detailed pursuit of such studies.  相似文献   

6.
Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.  相似文献   

7.
8.
9.
Eye colour genetics have been extensively studied in humans since the rediscovery of Mendel’s laws. This trait was first interpreted using simplistic genetic models but soon it was realised that it is more complex. In this study, we analysed eye colour variability in a Large White pig population (n = 897) and report the results of GWASs based on several comparisons including pigs having four main eye colour categories (three with both pigmented eyes of different brown grades: pale, 17.9%; medium, 14.8%; and dark, 54.3%; another one with both eyes completely depigmented, 3.8%) and heterochromia patterns (heterochromia iridis – depigmented iris sectors in pigmented irises, 3.2%; heterochromia iridum – one whole eye iris of depigmented phenotype and the other eye with the iris completely pigmented, 5.9%). Pigs were genotyped with the Illumina PorcineSNP60 BeadChip and GEMMA was used for the association analyses. The results indicated that SLC45A2 (on chromosome 16, SSC16), EDNRB (SSC11) and KITLG (SSC5) affect the different grades of brown pigmentation of the eyes, the bilateral eye depigmentation defect and the heterochromia iridis defect recorded in this white pig population respectively. These genes are involved in several mechanisms affecting pigmentation. Significant associations for the eye depigmented patterns were also identified for SNPs on two SSC4 regions (including two candidate genes: NOTCH2 and PREX2) and on SSC6, SSC8 and SSC14 (including COL17A1 as candidate gene). This study provided useful information to understand eye pigmentation mechanisms, further valuing the pig as animal model to study complex phenotypes in humans.  相似文献   

10.
Approximately 1%–2% of cutaneous melanoma (CM) is classified as strongly familial. We sought to investigate unexplained CM predisposition in families negative for the known susceptibility genes using next‐generation sequencing of affected individuals. Segregation of germline variants of interest within families was assessed by Sanger sequencing. Several heterozygous variants in oculocutaneous albinism (OCA) genes: TYR, OCA2, TYRP1 and SLC45A2, were present in our CM cohort. OCA is a group of autosomal recessive genetic disorders, resulting in pigmentation defects of the eyes, hair and skin. Missense variants classified as pathogenic for OCA were present in multiple families and some fully segregated with CM. The functionally compromised TYR p.T373K variant was present in three unrelated families. In OCA2, known pathogenic variants: p.V443I and p.N489D, were present in three families and one family, respectively. We identified a likely pathogenic SLC45A2 frameshift variant that fully segregated with CM in a family of four cases. Another four‐case family harboured cosegregating variants (p.A24T and p.R153C) of uncertain functional significance in TYRP1. We conclude that rare, heterozygous variants in OCA genes confer moderate risk for CM.  相似文献   

11.
Wallace , Raymond H. (U. Connecticut, Storrs.), and Helen M. Habermann . Genetic history and general comparisons of two albino mutations of Helianthus annuus. Amer. Jour. Bot. 46(3) : 157-162. Illus. 1959.—The genetic history of the progeny of a single ultrasonically-treated seedling of Helianthus annuus L. has been summarized for the 6 generations for which quantitative data are available. A yellow mutation was found in the F2 generation and later in the F5, a second, white mutation occurred. Both mutants have been grown to maturity by grafting them onto normal green host plants and they have set viable seeds. Both pigment-deficient conditions are inherited as single recessive factors. These albino strains form chlorophyll during their seedling stages if they are grown at low light intensities. Chlorophyll is destroyed, however, under bright illumination and, once bleached, the capacity for chlorophyll formation appears to be lost. The yellow mutant contains xanthophyll but no traces of carotene have been found. In the white mutant, neither carotene nor xanthophyll have been detected. Flower color in the yellow mutant is normal while the flowers of the white mutant have no apparent pigmentation. The growth pattern of grafted yellow mutants is normal, save for a stiffer and woodier condition and a greater resistance to wilting. These characteristics have also been observed in grafted white mutants. In addition, there is a pronounced reduction in leaf size in the white mutant.  相似文献   

12.
13.
14.
Megasporogenesis is essential for female fertility, and requires the accomplishment of meiosis and the formation of functional megaspores. The inaccessibility and low abundance of female meiocytes make it particularly difficult to elucidate the molecular basis underlying megasporogenesis. We used high‐throughput tag‐sequencing analysis to identify genes expressed in female meiocytes (FMs) by comparing gene expression profiles from wild‐type ovules undergoing megasporogenesis with those from the spl mutant ovules, which lack megasporogenesis. A total of 862 genes were identified as FMs, with levels that are consistently reduced in spl ovules in two biological replicates. Fluorescence‐assisted cell sorting followed by RNA‐seq analysis of DMC1:GFP‐labeled female meiocytes confirmed that 90% of the FMs are indeed detected in the female meiocyte protoplast profiling. We performed reverse genetic analysis of 120 candidate genes and identified four FM genes with a function in female meiosis progression in Arabidopsis. We further revealed that KLU, a putative cytochrome P450 monooxygenase, is involved in chromosome pairing during female meiosis, most likely by affecting the normal expression pattern of DMC1 in ovules during female meiosis. Our studies provide valuable information for functional genomic analyses of plant germline development as well as insights into meiosis.  相似文献   

15.
Mutant genes affecting higher plant meiosis   总被引:13,自引:0,他引:13  
Summary That meiosis is conditioned by a large number of genes majority of which are present in a dominant state, is evidenced by the detection of numerous monogenic recessive mutant genes which affect the premeiotic, meiotic and post-meiotic course of events. These genes are site- and stage-specific, and a few are sex specific. Of these, the most prevalent are the mutant genes affecting male meiosis and causing male sterility (ms genes) and those inhibiting synapsis and chiasma formation (synaptic genes) and leading to gametic sterility. Majority of the mutant genes affect the entire chromosomal complement but a few influence only specific chromosomes of a complement so that the chromosomes behave differentially within a genome of the same species. Some mutant genes alter chromosome form and function, others modify integrity, degree of spiralization, movement and migration of chromosomes. Their cytogenetic behaviour, genetic significance and breeding utility are described and discussed.Dedicated to Professor Dr. Werner Gottschalk, Director, Institute of Genetics, University of Bonn, Federal Republic of Germany, on his 65th birthday for his excellent scientific contribution and humane nature  相似文献   

16.
The embryo-defective (emb) mutants of Arabidopsis constitute a large and diverse group of mutants disrupted in a broad range of embryonic processes, including morphogonesis, cell differentiation, and maturation programs. This report describes a subset of these mutants, the late embryo defectives, which develop beyond the globular stage of embryogenesis but fail to complete normal morphogenesis. A representative sample of 12 late mutants was chosen for this study, patterns of morphogenesis were characterized, the germination potential of mutant seeds was investigated, and additional mutant alleles within the collection were identified. Morphological defects in mutant embryos became apparent during the heart stage of development, when embryos normally begin the rapid cell division and expansion required for the completion of morphogenesis. Despite their morphological abnormalities, mutant embryos often germinated from dry seed, demonstrating that genetic programs required for the establishment of desiccation tolerance remained intact. Mutant seedlings displayed a wide range of developmental abnormalities, including altered morphology, lack of pigmentation, dwarfism, and disorganized vegetative growth. One late mutant was found to be allelic to an early embryo defective that arrests at the globular stage. These results suggest that a number of late EMB genes encode basic cellular and metabolic functions needed for cell division, enlargement, and embryonic growth. The rapid growth and metabolic changes that occur at the heart stage may present a barrier to normal development in the late mutants, resulting in altered embryo morphology and other developmental defects. It is proposed that many Arabidopsis mutants with abnormal embryo and seedling morphology are not defective in the regulation of pattern formation or morphogenesis, but rather in fundamental physiological and cellular processes required for the completion of normal growth and development. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Pericarps generally are thought of as structures having determinate growth, serving as a protective covering for the developing gonimoblast. In laboratory culture, the pericarps of Champia parvula (C. Agardh) Harvey, Lomentaria baileyana (Harvey) Farlow and Lomentaria sp. exhibited indeterminate growth. These tissues could be excised and grown as separate female plants. The new plants were indistinguishable from the parent tissue, were fertile, and produced viable carpospores.  相似文献   

18.
 Mutations causing a visible phenotype in the adult serve as valuable visible genetic markers in multicellular genetic model organisms such as Drosophila melanogaster, Caenorhabditis elegans and Arabidopsis thaliana. In a large scale screen for mutations affecting early development of the zebrafish, we identified a number of mutations that are homozygous viable or semiviable. Here we describe viable mutations which produce visible phenotypes in the adult fish. These predominantly affect the fins and pigmentation, but also the eyes and body length of the adult. A number of dominant mutations caused visible phenotypes in the adult fish. Mutations in three genes, long fin, another long fin and wanda affected fin formation in the adult. Four mutations were found to cause a dominant reduction of the overall body length in the adult. The adult pigment pattern was found to be changed by dominant mutations in wanda, asterix, obelix, leopard, salz and pfeffer. Among the recessive mutations producing visible phenotypes in the homozygous adult, a group of mutations that failed to produce melanin was assayed for tyrosinase activity. Mutations in sandy produced embryos that failed to express tyrosinase activity. These are potentially useful for using tyrosinase as a marker for the generation of transgenic lines of zebrafish. Received: 17 June 1996 / Accepted: 15 July 1996  相似文献   

19.
Unstable mutants with similar variegated pigmentation were genetically characterized in the red algae. Gracilaria tikvahiae (McLachlan), G. foliifera (Forsk.) Børg. and. G. sjoestedtii (Kylin). All three mutants were green plants with flecks of red tissue where cells had reverted to wild type. The mutant green phenotypes were all recessive, and their genetic behavior in crosses indicated that each was the result of a single, unstable, nuclear gene. Wild-type revertant tissue was stable one it arose. Revertant plants obtained from spores and revertant fronds taken from variegated plants could not be distinguished from the normal wild type, either phenotypically or genetically. Reversion to wild type occurred during all phases of the life cycle. In crosses between the mutants and wild type, most of the F1 tetrasporophytes were heterozygous wild-type plants, an observation consistent with the recessive nature of the mutations; however, a low frequency of homozygous unstable-green F1 tetrasporophytes was also obttained from these crosses. The molecular basis of neither the mutant instability, i.e. the reversion to wild type, nor of the process producing the unstable green F1 tetrasporophytes can yet be deduced, but the phenotype of the plants and genetic results suggest the involvement of transposable genetic elements.  相似文献   

20.
Background

Inflorescences of wheat species, spikes, are characteristically unbranched and bear one sessile spikelet at a spike rachis node. Development of supernumerary spikelets (SSs) at rachis nodes or on the extended rachillas is abnormal. Various wheat morphotypes with altered spike morphology, associated with the development of SSs, present an important genetic resource for studies on genetic regulation of wheat inflorescence development.

Results

Here we characterized diploid and tetraploid wheat lines of various non-standard spike morphotypes, which allowed for identification of a new mutant allele of the WHEAT FRIZZY PANICLE (WFZP) gene that determines spike branching in diploid wheat Ttiticum monococcum L. Moreover, we found that the development of SSs and spike branching in wheat T. durum Desf. was a result of a wfzp-A/TtBH-A1 mutation that originated from spontaneous hybridization with T. turgidum convar. сompositum (L.f.) Filat. Detailed characterization of the false-true ramification phenotype controlled by the recessive sham ramification 2 (shr2) gene in tetraploid wheat T. turgidum L. allowed us to suggest putative functions of the SHR2 gene that may be involved in the regulation of spikelet meristem fate and in specification of floret meristems. The results of a gene interaction test suggested that genes WFZP and SHR2 function independently in different processes during spikelet development, whereas another spike ramification gene(s) interact(s) with SHR2 and share(s) common functions.

Conclusions

SS mutants represent an important genetic tool for research on the development of the wheat spikelet and for identification of genes that control meristem activities. Further studies on different non-standard SS morphotypes and wheat lines with altered spike morphology will allow researchers to identify new genes that control meristem identity and determinacy, to elucidate the interaction between the genes, and to understand how these genes, acting in concert, regulate the development of the wheat spike.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号