首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of genes encoding developmentally regulated mRNAs in the cellular slime mold, Dictyostelium discoideum, have been described. Many of these are regulated by cAMP. Analysis of the earliest time at which elevated levels of cAMP can induce the expression of these mRNAs reveals a more complex pattern of regulation in which genes change in their ability to be induced in response to cAMP with developmental stage. A prestalk mRNA (C1/D11) previously thought not be regulated by elevated levels of cAMP is inducible by cAMP between aggregation and loose mound stage; later in development its expression becomes independent of elevated cAMP. The early prespore genes (prespore class I) also show two modes of regulation; early in development they are induced independently of continuous elevated levels of cAMP, while later in development their expression is dependent upon elevated cAMP. The period during development when the prestalk genes are cAMP inducible precedes by 2 hr the first time at which either the early prespore class I or late prespore class II mRNAs are inducible by continuous elevated levels of cAMP. Previous analysis of these mRNAs has been carried out using Dictyostelium cells grown axenically. In this report we have studied the developmental expression of these mRNAs in cells grown on bacteria. A substantial shutoff of the class I prestalk and early prespore (class I) mRNAs not seen in axenically grown cells is observed when bacterially grown cells are plated for development. Less than 10% of the maximal level of these mRNAs remains in the cells at the time of mature spore and stalk differentiation. Additionally, in the bacterially grown cells two distinct patterns of developmental regulation are observed for mRNAs which in axenically growing cells appear to be constitutively expressed throughout growth and development.  相似文献   

2.
3.
We have compared the pattern of enzyme expression in cyclic AMP-induced monolayer cultures of Dictyostelium discoideum with that found during normal development. We find that both the temporal and quantitative pattern of enzyme expression are initially similar in the two situations, although the developmental sequence is more protracted and terminal cell differentiation is delayed in the monolayer situation. We describe differentiation conditions that permit the expression of only one terminal phenotype, which may be useful for further biochemical studies. Enzyme accumulation patterns under these conditions indicate that UDP gal transferase is not required for stalk cell differentiation (i.e., it is a prespore enzyme). We have shown that, when cell monolayers are incubated with cAMP, the presence of a weak acid at low extracellular pH favors stalk-cell differentiation, while a weak base at high extracellular pH favors spore differentiation. Finally, we show that variations in the monovalent cation content of the buffer, or the addition of an ion transport inhibitor (scillaren), or an ionophore (valinomycin) all affect the ratio of stalk cells to spores. Taken together, these results suggest that intracellular H+ and/or other cations may play an important role in regulating differentiation of specific cell types in D. discoideum.  相似文献   

4.
In Dictyostelium discoideum , the formation of multicellular masses is necessary for cell differentiation. However, the present study shows that amoebae of strain V12M2 efficiently differentiate to prespore or stalk cells under submerged incubation in a simple medium containing cAMP and salts without cell contact, only if the pH of the medium is maintained at acidic values; differentiation scarcely occurs in the neutral pH range. The optimum pH values for prespore and stalk cell differentiation are 5.1 and 4.5, respectively. In addition to the extracellular pH, Mg ions and the concentration of cAMP also affect the choice of the differentiation pathway. The time courses of differentiation of both cell types under optimum conditions are also presented.  相似文献   

5.
It is well known that interconversion between prestalk and prespore cells occurs in 3-dimensional (3–D) isolates of Dictyostelium. The present work was undertaken to examine whether or not the interconversion occurs even in monolayer sheets. The results suggested that in monolayer sheets of either prespore or prestalk cells, the interconversion does not occur. Furthermore, effects of cAMP were examined in relation to the formation or loss of prespore vesicles (PSVs). In monolayer sheets, prespore cells retain their PSVs in the presence of cAMP, though they lose them in its absence. In 3–D masses, however, cAMP induces the conversion into stalk cells, stimulating PSV loss. In the case of prestalk cells, cAMP induces the maturation of prestalk cells to stalk cells in 3–D masses, but it does not induce stalk differentiation in monolayer sheets.
8-Bromo cAMP stimulates the maturation of prespore and prestalk cells into spore and stalk cells, respectively. However, the vegetative and the aggregative cells remain amoeboid even in its presence. These observations suggest that 8-bromo cAMP stimulates the maturation rather than inducing prespore and prestalk differentiation.  相似文献   

6.
Abstract. We have compared the pattern of enzyme expression in cyclic AMP-induced monolayer cultures of Dictyostelium discoideum with that found during normal development. We find that both the temporal and quantitative pattern of enzyme expression are initially similar in the two situations, although the developmental sequence is more protracted and terminal cell differentiation is delayed in the monolayer situation. We describe differentiation conditions that permit the expression of only one terminal phenotype, which may be useful for further biochemical studies. Enzyme accumulation patterns under these conditions indicate that UDP gal transferase is not required for stalk cell differentiation (i.e., it is a prespore enzyme). We have shown that, when cell monolayers are incubated with CAMP, the presence of a weak acid at low extracellular pH favors stalk-cell differentiation, while a weak base at high extracellular pH favors spore differentiation. Finally, we show that variations in the monovalent cation content of the buffer, or the addition of an ion transport inhibitor (scillaren), or an ionophore (valinomycin) all affect the ratio of stalk cells to spores. Taken together, these results suggest that intracellular H+ and or other cations may play an important role in regulating differentiation of specific cell types in D. discoideum .  相似文献   

7.
At least three distinct types of cell arise from a population of similar amoebae during Dictyostelium development: prespore, prestalk A and prestalk B cells. We report evidence suggesting that this cellular diversification can be brought about by the combinatorial action of two diffusible signals, cAMP and DIF-1. Cells at different stages of normal development were transferred to shaken suspension, challenged with various combinations of signal molecules and the expression of cell-type-specific mRNA markers measured 1-2 h later. pDd63, pDd56 and D19 mRNAs were used for prestalk A, prestalk B and prespore cells respectively. We find the following results. (1) Cells first become responsive to DIF-1 for prestalk A differentiation and to cAMP for prespore differentiation at the end of aggregation, about 2 h before these cell types normally appear. (2) At the first finger stage of development, when the rate of accumulation of the markers is maximal, the expression of each is favoured by a unique combination of effectors: prespore differentiation is stimulated by cAMP and inhibited by DIF-1; prestalk A differentiation is stimulated by both cAMP and DIF-1 and prestalk B differentiation is stimulated by DIF-1 and inhibited by cAMP. (3) Half-maximal effects are produced by 10-70 nM DIF-1, which is in the physiological range. (4) Ammonia and adenosine, which can affect cell differentiation in other circumstances, have no significant pathway-specific effect in our conditions. These results suggest that cell differentiation could be brought about in normal development by the localized action of cAMP and DIF-1.  相似文献   

8.
Development of the cellular slime mold Dictyostelium discoideum is initiated by the removal of nutrients, and results in formation of a mature fruiting body composed of two cell types, the stalk and spore cells. A considerable body of evidence supports the hypothesis that cytoplasmic pH may be an essential regulator of the choice to differentiate in either the prestalk or prespore pathway. We have devised methods for measurement and analysis of intracellular pH in developing Dictyostelium amebae in order to assess directly the potential role of cytoplasmic pH in regulating the pathway of differentiation. The intracellular pH of single D. discoideum amebae during development and in intact slugs has been measured using the pH-sensitive indicator pyranine in a low light level microspectrofluorometer. We have used the ATP-mediated loading method to introduce pyranine into these cells. Cells loaded by the ATP method appear healthy, have no detectable defects in development, and exhibit a similar population distribution of intracellular pH to those loaded by sonication. The intracellular pH of populations comprised of single amebae was found to undergo a transient acidification during development resulting in a bimodal distribution of intracellular pH. The subpopulations were characterized by fitting two gaussian distributions to the data. The number of cells in the acidic intracellular pH subpopulation reached a maximum 4 h after initiation of development, and had returned to a low level by 7 h of development. In addition, a random sample of single amebae within a slug had a median intracellular pH of 7.2, nearly identical to the median pH (7.19) of similarly treated vegetative cells. No gradient of intracellular pH along the anterior to posterior axis of the slug was detected. Our data demonstrate the existence of two distinct subpopulations of cells before the aggregation stage of development in Dictyostelium, and offers support for the hypothesis that changes in intracellular pH contribute to development in D. discoideum.  相似文献   

9.
Dictyopyrones A and B (DpnA and B), whose function(s) is not known, were isolated from fruiting bodies of Dictyostelium discoideum. In the present study, to assess their function(s), we examined the effects of Dpns on in vitro cell differentiation in D. discoideum monolayer cultures with cAMP. Dpns at 1-20 microM promoted stalk cell formation to some extent in the wild-type strain V12M2. Although Dpns by themselves could hardly induce stalk cell formation in a differentiation-inducing factor (DIF)-deficient strain HM44, both of them dose-dependently promoted DIF-1-dependent stalk cell formation in the strain. In the sporogenous strain HM18, Dpns at 1-20 microM suppressed spore formation and promoted stalk cell formation in a dose-dependent manner. Analogs of Dpns were less effective in affecting cell differentiation in both HM44 and HM18 cells, indicating that the activity of Dpns should be chemical structure specific. It was also shown that DpnA at 2-20 microM dose-dependently suppressed spore formation induced with 8-bromo cAMP and promoted stalk cell formation in V12M2 cells. Interestingly, it was shown by the use of RT-PCR that DpnA at 10 microM slightly promoted both prespore- and prestalk-specific gene expressions in an early phase of V12M2 and HM18 in vitro differentiation. The present results suggest that Dpns may have functions (1) to promote both prespore and prestalk cell differentiation in an early stage of development and (2) to suppress spore formation and promote stalk cell formation in a later stage of development in D. discoideum.  相似文献   

10.
We describe a method of separating prestalk and prespore cells of Dictyostelium discoideum slugs using a self-generating Percoll gradient. This method gives quantitative recovery of cells and good purity. Separated prestalk and prespore cells possess different levels of the enzymes UDP galactose :polysaccharide transferase, cAMP phosphodiesterase and glycogen phosphorylase. We have used this method, as well as mechanical dissection of slugs, to examine the fate of separated prestalk and prespore cells in Dictyostelium strains that are able to give rise to mature stalk and spore cells in cell monolayers. The results from such experiments provide direct evidence that prestalk and prespore cells from the migrating slug stage are programmed to differentiate into stalk and spore cells respectively.  相似文献   

11.
We investigated the effect of LiCl on pattern formation and cAMP-regulated gene expression in Dictyostelium discoideum. In intact slugs, 5 mM LiCl induces an almost complete redifferentiation of prespore into prestalk cells. We found that LiCl acts by interfering with the transduction of extracellular cAMP to cell-type-specific gene expression; LiCl inhibits the induction of prespore-specific gene expression by cAMP, while it promotes the induction of prestalk-associated gene expression by cAMP. Our results indicate that two divergent pathways transduce the extracellular cAMP signal to, respectively, prestalk and prespore gene expression.  相似文献   

12.
In Dictyostelium discoideum, both prespore and prestalk differentiation require extracellular cAMP. We investigated the difference in inducibility of the two cell types by cAMP. Previous studies indicate that cAMP added in the early stage of development inhibits prespore differentiation, and this was confirmed using three species of prespore specific mRNAs. By contrast, early treatment with cAMP did not inhibit, but induced the expression of prestalk-specific mRNA. These results indicate that differentiation pathways of the two cell types have different processes in the early stage of development.  相似文献   

13.
We used sporogenous mutants of Dictyostelium discoideum to investigate the mechanism(s) by which exogenous NH4Cl and high ambient pH promote spore formation during in vitro differentiation. The level of NH4Cl required to optimize spore formation is correlated inversely with pH, indicating that NH3 rather than NH4+ is the active species. The spore-promoting activity of high ambient pH (without exogenous NH4Cl) was eliminated by the addition of an NH3-scavenging cocktail, suggesting that high pH promotes spore differentiation by increasing the ratio of NH3:NH4+ secreted into the medium by developing cells. High ammonia levels and high pH stimulated precocious accumulation of intracellular cAMP in both sporogenous and wild-type cells. In both treatments, peak cAMP levels equaled or exceeded control levels and were maintained for longer periods than in control cells. In contrast, ammonia strongly inhibited accumulation of extracellular cAMP without increasing the rate of extracellular cAMP hydrolysis, indicating that ammonia promotes accumulation of intracellular cAMP by inhibiting cAMP secretion. These results are consistent with previous observations that factors that raise intracellular cAMP levels increase spore formation. Lowering intracellular cAMP levels with caffeine or progesterone inhibited spore formation, but simultaneous exposure to these drugs and optimal concentrations of NH4Cl restored both cAMP accumulation and spore formation to normal levels. These data suggest that ammonia, which is a natural Dictyostelium morphogen, favors spore formation by promoting accumulation or maintenance of high intracellular cAMP levels.  相似文献   

14.
The cytoplasmic pH (pHi) of populations of developing Dictyostelium discoideum cells was determined by means of two independent pH null-point methods. Both methods reveal in populations containing 75-80% prespore cells a pHi value of about 0.2 pH units higher than in populations containing 50% prespore cells. During the process of cell type regulation, decreases and increases in the percentage of prespore cells of about 15-20% are accompanied by decreases and increases in pHi of about 0.2 pH units. Abolition of these changes in pHi by means of a weak base or acid also prevents the regulation process. It is concluded that changes in pHi are involved in the prespore cell type regulation in D. discoideum.  相似文献   

15.
Expression of a dominant inhibitor of the Dictyostelium cAMP-dependent protein kinase in prespore cells blocks their differentiation into spore cells. The resultant structures comprise a normal stalk supporting a bolus of cells that fail to express a sporulation-specific gene and that show greatly reduced levels of expression of several prespore-specific genes. The latter result suggests that in addition to activating spore formation, the cAMP-dependent protein kinase may play a role in initial prespore cell differentiation. Development of the strain expressing the dominant inhibitor is hypersensitive to the inhibitory effects of ammonia, the molecule that is believed to repress entry into culmination during normal development. This result supports a model whereby a decrease in ambient ammonia concentration at culmination acts to elevate intracellular cAMP and hence induce terminal differentiation.  相似文献   

16.
We have identified a novel gene, trishanku (triA), by random insertional mutagenesis of Dictyostelium discoideum. TriA is a Broad complex Tramtrack bric-a-brac domain-containing protein that is expressed strongly during the late G2 phase of cell cycle and in presumptive spore (prespore (psp)) cells. Disrupting triA destabilizes cell fate and reduces aggregate size; the fruiting body has a thick stalk, a lowered spore: stalk ratio, a sub-terminal spore mass and small, rounded spores. These changes revert when the wild-type triA gene is re-expressed under a constitutive or a psp-specific promoter. By using short- and long-lived reporter proteins, we show that in triA(-) slugs the prestalk (pst)/psp proportion is normal, but that there is inappropriate transdifferentiation between the two cell types. During culmination, regardless of their current fate, all cells with a history of pst gene expression contribute to the stalk, which could account for the altered cell-type proportion in the mutant.  相似文献   

17.
18.
Dictyostelium discoideum prestalk cells and prespore cells from migrating slugs and culminating cell aggregates were isolated by Percoll density centrifugation. Several activities relevant to the generation, detection, and turnover of extracellular cyclic AMP (cAMP) signals were determined. It was found that: the two cell types have the same basal adenylate cyclase activity; prespore cells and prestalk cells are able to relay the extracellular cAMP signal equally well; intact prestalk cells show a threefold higher cAMP phosphodiesterase activity on the cell surface than prespore cells, whereas their cytosolic activity is the same; intact prestalk cells bind three to four times more cAMP than prespore cells; no large differences in cAMP metabolism and detection were observed between cells derived from migrating slugs and culminating aggregates. The results are discussed in relation to the possible morphogenetic role of extracellular cAMP in Dictyostelium cell aggregates. On the basis of the properties of the isolated cells we assume that a gradient of extracellular cAMP exists in Dictyostelium aggregates. This gradient appears to be involved in the formation and stabilization of the prestalk-prespore cell pattern.  相似文献   

19.
Rapidly developing (rde) mutants of Dictyostelium discoideum, in which cells precociously differentiated into stalk and spore cells without normal morphogenesis, were investigated genetically and biochemically. Genetic complementation tests demonstrated that the 16 rde mutants isolated could be classified into at least two groups (groups A and C) and that the first described rde mutant FR17 (D. R. Sonneborn, G. J. White, and M. Sussman, 1963, Dev. Biol. 7, 79-93) belongs to group A. Morphological studies revealed several differences in development and final morphology between group A and group C mutants. In group A mutants, the time required for cell differentiation from vegetative cells to aggregation competent cells is reduced, whereas the time required for spore and stalk cell differentiation following the completion of aggregation is shortened in group C mutants. This suggests that group C mutants represent a new class of rde mutants and that there exist at least two mechanisms involved in regulating the timing of development in D. discoideum. Measurements of cell-associated and extracellular phosphodiesterase activities, and intracellular and total cAMP levels revealed that cAMP metabolism in both groups is significantly altered during development. Group A mutants showed precocious and excessive production of phosphodiesterase and cAMP during the entire course of development; intracellular cAMP levels in group C mutants were extremely low, and spore and stalk cell differentiation occurred without an apparent increase in these levels. Thus, while cAMP metabolism is abnormal in all the rde mutants studied, there exist several distinct types of derangement, not necessarily involving the overproduction of cAMP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号